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Abstract

Staphylococcus aureus colonies can spread on soft agar plates. We compared colony spreading of clinically isolated
methicillin-sensitive S. aureus (MSSA) and methicillin-resistant S. aureus (MRSA). All MSSA strains showed colony spreading,
but most MRSA strains (73%) carrying SCCmec type-II showed little colony spreading. Deletion of the entire SCCmec type-II
region from these MRSA strains restored colony spreading. Introduction of a novel gene, fudoh, carried by SCCmec type-II
into Newman strain suppressed colony spreading. MRSA strains with high spreading ability (27%) had no fudoh or a point-
mutated fudoh that did not suppress colony spreading. The fudoh-transformed Newman strain had decreased exotoxin
production and attenuated virulence in mice. Most community-acquired MRSA strains carried SCCmec type-IV, which does
not include fudoh, and showed high colony spreading ability. These findings suggest that fudoh in the SCCmec type-II
region suppresses colony spreading and exotoxin production, and is involved in S. aureus pathogenesis.
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Introduction

Staphylococcus aureus is a pathogenic bacterium that causes various

diseases in humans. In the last few decades, the emergence of

methicillin-resistant S. aureus (MRSA), vancomycin-intermediate S.

aureus, vancomycin-resistant S. aureus, and community acquired

methicillin-resistant S. aureus (CA-MRSA) has caused serious

clinical problems [1,2]. A better understanding of the virulence

mechanism of the MRSA strains is important for establishing

effective therapeutic strategies. Whether the virulence of MRSA is

different from that of MSSA, however, is controversial [3,4]. The

virulence of CA-MRSA is higher than that of MRSA [5–7], a

difference thought to be related to the production of Panton-

Valentine leukocidin [8,9] and phenol-soluble modulin (PSM)

[10], but the regulatory mechanisms causing enhanced expressions

of these toxins has not been identified.

S. aureus is a non-flagellated gram-positive bacterium that until

recently was believed not to have the ability to translocate. We

previously reported that S. aureus has the ability to spread on soft agar

surfaces, which we termed ‘‘colony spreading’’ [11]. Because

bacterial translocation, such as flagella-driven swimming, is

considered a bacterial virulence mechanism [12–14], the spreading

ability of S. aureus is suspected to have a role in its virulence. In this

study, we examined the spreading ability of clinically isolated MSSA,

MRSA, and CA-MRSA strains, and report a novel gene that affects

both the colony spreading ability and virulence of S. aureus.

Results

Most MRSA strains have less colony spreading ability
than MSSA strains

We examined the colony spreading of 10 MSSA strains and 40

MRSA strains on soft agar plates. All MSSA strains showed colony

spreading, and the average diameter of the spread after 10 h

incubation was 68 mm. In contrast, the average diameter of the

spread of the MRSA strains was 32 mm, which was significantly

smaller than that of MSSA. The diameter of the spread of 73% of

the MRSA strains was under 35 mm. The remaining MRSA

strains showed colony spreading comparable to that of MSSA

(Figure 1A). Therefore, we examined the reason for the decreased

colony spreading of most of the MRSA strains, and the high

colony spreading of some MRSA strains and all MSSA strains.

Deletion of the SCCmec region restores the colony
spreading ability of MRSA strains

One difference between MRSA and MSSA is the SCCmec

region, which harbors the mecA gene encoding PBP2’ (or PBP2a)

that confers resistance against methicillin. We hypothesized that

the SCCmec region was involved in the decreased colony spreading

of most MRSA strains. To evaluate this possibility, we deleted the

SCCmec region from the MRSA strains and examined colony

spreading. MRSA strains NI-3, NI-4, and NI-5, which showed

decreased colony spreading, were transformed with a plasmid
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carrying ccrAB genes, which encode the recombinases that catalyze

precise excision of SCCmec from the chromosome. The deletion of

SCCmec in the ccrAB-transformants was verified by a decrease in

the methicillin minimum inhibitory concentration (MIC) values to

2 mg/ml, and by the absence of the mecA gene based on the results

of polymerase chain reaction (PCR) experiments (Figure 1B). The

SCCmec-deleted mutants showed higher colony spreading than

their respective parent strains (Figure 1C and 1D). Expression of

the ccrAB genes itself did not alter colony spreading of the RN4220

strain, a laboratory strain of S. aureus (Figure S1A and S1D).

Therefore, we concluded that the colony spreading of MRSA

strains is suppressed by a factor (factors) encoded by SCCmec.

A newly identified gene, fudoh, which locates close to the
mecI gene, suppresses the colony spreading of S. aureus

To identify the gene in the SCCmec region that is responsible for

suppressing the colony spreading of S. aureus, we integrated various

flanking regions of the mecA gene of the SCCmec region (Figure 2A)

into the chromosome of the Newman strain, a laboratory MSSA

strain, using an integration vector by a single homologous

recombination to examine the colony spreading of the recombi-

nant strains. The Newman strain integrated with the mecA-R1-I

gene complex and its surrounding regions (pInt-mecAR1I-fudoh)

showed less colony spreading than the parent strain integrated

with an empty vector (pInt) (Figure 2B and 2C). Thus, a gene

(genes) in this region suppresses the colony spreading of S. aureus.

To examine which subregion of the pInt-mecAR1I-fudoh was

responsible for the suppression, we constructed integration

plasmids harboring each subregion of the plasmid. The subregion

containing the mecA gene (pInt-mecA) had little effect on colony

spreading, but the subregion containing the mecR1I genes (pInt-

mecR1I-fudoh) suppressed colony spreading. The vectors (pInt-

mecI-fudoh, pInt-mecR1-fudoh, pInt-dmecR1I-fudoh) containing

deletions of mecR1, mecI, or both from pInt-mecR1I-fudoh

suppressed the colony spreading ability of the Newman strain

(Figure 2B and 2C). Thus, the gene that suppresses colony

Figure 1. Deletion of the SCCmec region of the MRSA isolates increases colony spreading. (A) Comparison of colony spreading ability
between MSSA and MRSA. Overnight cultures of clinical isolates of MSSA and MRSA were spotted onto soft agar plates and incubated for 10 h at
37uC. Two independent experiments with duplicates were performed and the mean halo diameters are presented as dots. The group means of
MSSAs and MRSAs are presented as a bold bar. Statistical analysis was performed with Student’s t test. (B) The mecA gene and the partial region of
rpoB were amplified by PCR and electrophoresed and stained with ethidium bromide. The rpoB was used as control. (C) Overnight culture of NI-3, NI-
4, and NI-5 harboring pND50 or pccrAB (DSCCmec) was spotted onto soft agar plates and incubated for 10 h. Representative images from three
independent experiments are shown. (D) The halo diameter was measured and the means6standard deviations from three independent experiments
are presented. Statistical analysis was performed with Student’s t test.
doi:10.1371/journal.pone.0003921.g001
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spreading is neither the mecR1 gene nor the mecI gene. We searched

for open reading frames (ORFs) in the residual region and found an

ORF encoding 70 amino acids downstream of the mecI gene

(position 49366–49578 of the S. aureus N315 genome database [15],

Figure 2A). The integration plasmid harboring this ORF (pInt-

fudoh) suppressed colony spreading of the Newman strain

(Figure 2B, 2C, and Movie S1), indicating that a single copy of

the ORF suppresses colony spreading of S. aureus. The ORF has not

been registered in the S. aureus N315 genome database, and its

function is unknown. We named the gene fudoh (GenBank accession

number AB442164), which means ‘non-motile’ in Japanese. A motif

search against the fudoh gene product identified a transmembrane

domain in amino acid residues 5 to 24, but no other motifs.

We searched the fudoh gene from SCCmec type-I to type-V

sequences deposited on GenBank (type-I, AB033763; type-II,

D86934; type-III, AB037671; type-IV, AJ810121; type-V,

AB121219), and found that fudoh exists in SCCmec types-II and -

III, but not in types-I, -IV, and -V in S. aureus. To verify whether

the SCCmec type-III including the fudoh gene suppresses the colony

spreading, we examined the colony spreading of the type-III

SCCmec-deleted mutants of four clinical isolates 86/560, 86/961,

86/2652, and 85/3566 [16]. Deletion of the entire SCCmec type-

III region from two of four strains, 86/961 and 85/3566,

increased colony spreading (Figure S2), suggesting that fudoh in

type-III SCCmec also has the function to suppress the colony

spreading. Deletion of SCCmec from other two strains did not

Figure 2. A novel gene, fudoh, in the SCCmec region suppresses the colony spreading ability of the Newman strain. (A) Schematic
representation of the mecA, mecR1, mecI, and fudoh genes in the SCCmec region. MRSA chromosomal DNA is represented as a thin line, and the DNA
fragment is represented by a thick line, and the deleted DNA region is represented by a dotted line. The boxes above the thin line indicate genes
transcribed from left to right, whereas the box below the thin line indicates gene transcribed from right to left. Grey box represents the fudoh gene.
(B) The Newman strain was transformed with the integration plasmids described in (A), and colony spreading was examined. The photograph was
taken after 10 h incubation. (C) The means6standard deviations of the halo diameters of at least two independent experiments are presented.
Statistical analysis was performed with Student’s t test. The P-values are versus pInt. NS, not significant (P.0.05).
doi:10.1371/journal.pone.0003921.g002
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increase the colony spreading (data not shown), indicating that

there are other mechanisms to suppress the colony spreading.

To exclude the possibility that integration of the vector into the

Newman chromosome altered the gene expression and contrib-

uted to suppress colony spreading, we examined whether fudoh

expression from a multicopy plasmid suppressed the colony

spreading ability of S. aureus. Plasmid-induced expression of fudoh

suppressed colony spreading of the Newman strain (Figure S1B).

Therefore, the suppression of colony spreading by fudoh was not an

artifact caused by integration of the vector into the chromosome.

The fudoh-induced suppression of colony spreading was also

observed in RN4220 strain (Figure S1C and S1D), suggesting that

fudoh-induced suppression of colony spreading ability is a common

mechanism in S. aureus. To address whether the differences of the

colony spreading ability could be attributed to the differences of

growth rates, we examined the growth curves of the fudoh-

transformed Newman and the SCCmec-deleted mutants of NI-3,

NI-4, and NI-5. There were no differences of growth curves

between NI-3, NI-4, and the SCCmec-deleted mutants (Figure S3),

indicating that the differences of the colony spreading cannot be

explained by their growth rates. We found that the fudoh-

transformed Newman showed slight longer lag period than the

empty vector-transformed Newman, although the doubling time

was both 30 min. The doubling time of the SCCmec-deleted

mutant of NI-5 was 27 min, which was slight shorter than that of

the parent strain, 33 min. These differences of growth could

contribute to the differences of colony spreading ability.

fudoh is mutated in highly spreading MRSA isolates
Some MRSA strains showed high colony spreading ability that

was comparable to that of the MSSA strains (Figure 1A). We

hypothesized that fudoh may be mutated in the high-spreading

MRSA strains. To test this notion, we sequenced the fudoh gene in

all 40 MRSA strains. Ten MRSA strains that showed high colony

spreading had a point mutation in the fudoh gene inducing a K29R

amino acid substitution (Figure 3A). Another high-spreading

MRSA strain, NI-15, did not contain the fudoh gene. There was no

mutation in the fudoh genes of the remaining 29 MRSA strains

(73%) with decreased colony spreading ability (spread diameters

,35 mm/10 h) (Figure 3A). Multiplex-PCR identified the

SCCmec of NI-15 as SCCmec type-IV [17], which lacks the fudoh

gene, whereas most MRSA strains (37 strains) contained SCCmec

type-II.

To determine whether the point-mutated fudoh gene loses the

suppression activity against colony spreading, we examined colony

spreading of Newman transformed with fudoh with a K29R point

mutation. The K29R-mutated fudoh did not suppress colony

spreading of the Newman strain (Figure 3B, 3C, and S1B). The

loss of the suppression activity of the K29R-mutated fudoh was also

observed in the RN4220 strain (Figure S1C and S1D). Thus, the

K29R-mutated fudoh loses the ability to suppress colony spreading

of S. aureus. The increased colony spreading of 11 MRSA strains

can thus be explained by a mutation in, or absence of, the fudoh

gene.

The Newman strain transformed with the fudoh gene
produces less exotoxin and has attenuated virulence in
mice

To determine whether the fudoh gene affects the virulence of S.

aureus, we examined the exotoxin production of the Newman strain

transformed with the fudoh gene. The Newman strain transformed

with the fudoh gene produced less hemolysin and nuclease than the

strain transformed with an empty vector (Figure 4A and 4B).

These results indicate that the fudoh gene suppresses exotoxin

production by S. aureus.

To examine the effect of fudoh on the virulence of S. aureus in

animals, we studied the virulence of the Newman strain

transformed with the fudoh gene in a murine model of systemic

infection. Mice injected with the fudoh-transformed Newman strain

lived longer than mice injected with the empty vector-transformed

Newman (Figure 4C). Therefore, the fudoh gene suppressed S.

aureus virulence in a mouse model.

The colony spreading ability of CA-MRSA strains
To gain further insight into the relation between the fudoh gene,

colony spreading ability, and virulence, we examined colony

spreading ability and the presence of the fudoh gene in CA-MRSA

strains, which have high virulence and have been the recent cause

of serious clinical problems. MW2 (USA400) was isolated in North

Dakota in 1998, USA300 was isolated in San Francisco in 2000,

and the others were isolated in Chicago between 1996 and 1999

[6,18,19]. The average diameter of the spread of these CA-

MRSAs was 60 mm (Figure 5A), which was significantly greater

than that of MRSAs (P = 0.0001). Amplification of the fudoh gene

by PCR revealed that 13 of 14 tested strains (except for CA07) did

not have the fudoh gene (Figure 5B). The result was consistent with

reports that these strains (other than CA07) have SCCmec type IV

[6,18,19], the type that does not contain the fudoh gene. Thus,

most CA-MRSAs have increased colony spreading ability because

they lack the fudoh gene. CA07 possessed the fudoh gene, and had

decreased colony spreading, consistent with the idea that the fudoh

gene suppresses S. aureus colony spreading. Strains 4/16-6N and

5/6-8N showed decreased colony spreading, despite their lack of

the fudoh gene. These strains may have an unidentified mechanism

that decreases colony spreading ability in the absence of the fudoh

gene.

Discussion

The findings of the present study revealed that the colony

spreading ability of MSSAs is greater than that of most MRSAs.

Furthermore, our data indicate that the fudoh gene in the SCCmec

region decreases the colony spreading ability of MRSAs. S. aureus

containing the fudoh gene also had decreased exotoxin production

and decreased virulence in mice. This is the first observation that

SCCmec, which carries the methicillin-resistance determinant, is

involved in suppressing the colony spreading and virulence of S.

aureus. Most MRSAs isolated in this study had SCCmec type-II,

which is typically found in MRSA strains associated with hospitals

or other health-care institutions (HA-MRSAs). Thus, it is

considered that the MRSAs that acquired SCCmec type-II have

reduced colony spreading and virulence, although they have also

acquired resistance against all beta-lactam antibiotics. We further

demonstrated that colony spreading was restored in MRSAs

harboring the mutated fudoh gene in SCCmec type-II. The result

indicates that the fudoh gene is not a constant suppressor of colony

spreading and virulence of S. aureus, but also can function in

restoring these abilities by its mutation.

CA-MRSA strains carrying SCCmec type-IV that includes no

fudoh showed greater colony spreading than MRSAs carrying

SCCmec type-II. CA-MRSAs cause more severe infections and

produce higher amounts of exotoxins than HA-MRSAs [10].

Introduction of fudoh into the Newman strain decreased exotoxin

production and colony spreading. These results suggest that the

absence of fudoh in SCCmec type-IV is a plausible cause of the

increased colony spreading, exotoxin production, and virulence of

CA-MRSAs. Examination of SCCmec type-I to type-V sequences

SCCmec and Virulence
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Figure 3. The fudoh gene is mutated in high-spreading MRSA strains. (A) The fudoh gene of 40 MRSA strains was sequenced. The sequences
are organized according to the amount of colony spreading. The amounts of colony spreading are shown in the right bar graph from higher to lower
values. The mutated nucleotide residues and the substituted amino acid residue are colored red. (B) The Newman strain was transformed with an
integration plasmid harboring either the intact fudoh gene (pInt-fudoh) or a mutated fudoh gene (pInt-K29R-fudoh), and colony spreading was
examined. The photograph was taken after 10 h incubation. (C) The means6standard deviations of the halo diameters from three independent
experiments are presented.
doi:10.1371/journal.pone.0003921.g003
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obtained from the DNA database suggest that fudoh exists in

SCCmec types-II and -III, but not in types-I, -IV, and -V.

Investigation of the relation between the existence of fudoh or the

fudoh mutation and the clinical observations will contribute to a

better understanding of biologic role of fudoh in SCCmec types-II

and -III and to the development of more effective detection

methods of highly virulent MRSAs and therapies against MRSA

infections. SCCmec is not only present in S. aureus, but also in other

staphylococcal species. Staphylococcus epidermidis RP62A has fudoh

(ORF number, SERP2518) in its SCCmec region. S. haemolyticus, S.

hominis, and S. saprophyticus are deduced to carry fudoh from the

typing of their SCCmec [20,21]. The fudoh gene has not been found

in other chromosomal regions or in other organisms sequenced to

date. As SCCmec is a foreign DNA introduced into Staphylococcus

species [22], the coexistence of the fudoh and methicillin resistance

genes in the same SCCmec might be a survival strategy of this

foreign DNA to modulate virulence as well as methicillin

resistance to increase the fitness of the host bacteria in the infected

animal body. Such positive effect of the fudoh gene onto the fitness

of bacteria has not been demonstrated yet in our study. It should

be noted that the suppressing effect of fudoh onto virulence might

be meaningful itself if the bacteria will not kill host animals by

modulating their virulence to coexist with host animals. This

possibility should be examined using other infection models. Our

preliminary results from a microarray analysis suggested that fudoh

affects the expression of many other genes. Elucidating the

mechanisms underlying how the fudoh gene product, presumably a

membrane-associated 70-aminoacid peptide, decreases S. aureus

Figure 4. The fudoh gene decreases S. aureus exotoxin
production and virulence in mice. (A) Hemolytic activities of
culture supernatants of the Newman strains transformed with pInt or
pInt-fudoh were measured using sheep erythrocytes. The data are
means6standard deviations from three independent experiments. (B)
Nuclease activities were measured using salmon sperm DNA. (C) CD-1
mice (n = 10) were injected intravenously with a diluted bacterial
solution of Newman/pInt or Newman/pInt-fudoh. Statistical analysis
was performed with the Kaplan-Meier test. The P-value between pInt
and pInt-fudoh is less than 0.0001.
doi:10.1371/journal.pone.0003921.g004

Figure 5. Colony spreading of CA-MRSA. (A) Overnight cultures of
CA-MRSA strains were spotted onto soft agar plates and incubated for
10 h at 37uC. The dotted line indicates the averaged value. (B) The DNA
fragments containing fudoh and the partial region of rpoB were
amplified by PCR using the CA-MRSA genomes, Newman/pInt genome,
or Newman/pInt-fudoh genome as the template. The amplified DNA
was electrophoresed in 1% agarose gel and stained with ethidium
bromide.
doi:10.1371/journal.pone.0003921.g005
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colony spreading on soft agar plates, and exotoxin production and

virulence in mice will enhance our understanding of the

interrelationship between foreign DNA, host bacteria, and an

infected animal.

Materials and Methods

Bacterial strains and growth conditions
The JM109 strain of E. coli was used as a host for pND50, pInt,

and their derivatives. E. coli strains transformed with the plasmids

were cultured at 37uC in Luria-Bertani broth containing 25 mg/ml

chloramphenicol. S. aureus strains were aerobically cultured in

tryptic soy broth at 37uC, and 12.5 mg/ml chloramphenicol was

added to the medium to maintain the plasmids. Clinical isolates of

MSSA and MRSA strains were obtained from Nippon Medical

School. These strains were streaked on mannitol sodium chloride

plates (Eiken Chemical Inc., Tokyo, Japan) and their utilization of

mannitol and high-salt resistance were confirmed. For MRSA

strains, MIC values against methicillin were examined and

resistance to methicillin was confirmed. Details of the bacterial

strains and plasmids used in this study are shown in Table S1.

Colony spreading assay
Tryptic soy broth (Becton, Sparks, MD) supplemented with

0.24% agar (Nacalai Tesque Inc., Kyoto, Japan) was autoclaved.

Sterile medium (50 ml) was poured onto a plate (150 mm

diameter, FALCON 351058, Becton Dickinson Labware, NJ).

Plates were dried in a safety cabinet for 20 min before inoculation

with bacteria. Overnight cultures of S. aureus (2 ml) were spotted

onto the center of the plates using a P-20 Pipetteman (Gilson S. A.

S., Villiers-le-Bel, France). After inoculation, the plates were dried

in a safety cabinet for 15 min and incubated at 37uC for 10 h.

Photographs were taken using a FinePix S9000 digital camera

(Fuji Photo Film Co. Ltd., Tokyo, Japan).

DNA manipulation
Transformation of E. coli, extraction of plasmid DNA from E.

coli, PCR, and Southern blot analyses were performed as

previously reported [23]. Extraction of genomic DNA from S.

aureus was performed using a QIAamp DNA Blood Kit (Qiagen

Sciences, Germantown, MD). S. aureus was transformed with

plasmid DNA by electroporation [24]. Primers used in this study

are listed in Table S2.

Construction of SCCmec deletion mutants
The deletion of the SCCmec region was performed according to

the method of Katayama et. al. [25]. The ccrAB genes were

amplified by PCR using oligonucleotide primers FccrAB and

RccrAB and the N315 genome as the template. The amplified

fragments were inserted into pND50, resulting in pccrAB. The

RN4220 strain was transformed with pccrAB by electroporation

and the plasmids were extracted from colonies resistant to

chloramphenicol. NI-3, NI-4, and NI-5 strains were transformed

with the plasmid and strains resistant to chloramphenicol were

obtained. Chloramphenicol-resistant colonies were inoculated into

tryptic soy broth and cultured overnight. A 5-ml aliquot of

overnight culture was inoculated into 5 ml of tryptic soy broth and

cultured overnight. The inoculation was repeated. The overnight

culture was plated onto tryptic soy agar and a single colony was

isolated. The methicillin MIC of each strain was examined and

methicillin-sensitive strains (2 mg/ml) were obtained. Frequencies

of methicillin-sensitive strains from NI-3, NI-4, and NI-5

harboring pccrAB were 100%, 71%, and 100%, respectively.

The mecA gene was amplified by PCR using genomes of each strain

and oligonucleotide primers FmecA and RmecA.

Construction of the Newman strain harboring the
SCCmec region

The 717-bp of genomic region of RN4220 (41282–41998 in the

NCTC8325 genome database) was amplified by PCR using

primers Int-F and Int-R and inserted into the XbaI and HindIII

sites of pCK20 [26], resulting in pInt, which is able to integrate

into the S. aureus chromosome by a single homologous recombi-

nation. SCCmec regions were amplified by PCR using N315

genome as the template and inserted into the SmaI site of pInt,

resulting in various plasmids as illustrated in Figure 2A. To

construct pInt-mecR1-fudoh, pInt-mecI-fudoh, and pInt-dme-

cR1I-fudoh, the DNA fragments were amplified by PCR using

pInt-mecR1I-fudoh as the template, and self-ligated. RN4220

strains were transformed with plasmids and colonies resistant to

chloramphenicol were isolated. The chromosomal region harbor-

ing the plasmid was transferred to the Newman strain by phage 80

alpha transduction [27]. Integration of the SCCmec region into the

desired chromosomal locus was confirmed by Southern blot

analysis using the PCR-amplified region of SCCmec and pInt as

probes. To express the fudoh gene from a multicopy plasmid,

SCCmec regions were inserted into the SmaI site of pND50.

Typing of the SCCmec region of clinical isolates
Multiplex PCRs were performed to identify the SCCmec types

according to the established method [28]. Primer sets M-PCR1

and M-PCR2 were used. NI-7, NI-22, NI-36, and NI-38 were ccrC

positive. NI-13 and NI-14 were not typed because DNA fragments

were not amplified using M-PCR1 and M-PCR2.

Mouse infection experiment
Bacterial suspensions (100 ml) were injected into the tail vein of

8-wk-old female CD-1 mice (Charles River Laboratories, Kana-

gawa, Japan) [29]. After the injection, mouse survival was

monitored. All mouse protocols were reviewed by the Animal

Use Committee at the Graduate School of Pharmaceutical Science

at the University of Tokyo.

Supporting Information

Movie S1 Time-lapse imaging of the colony spreading of the

fudoh-transformed Newman. The colony spreading ability of the

Newman strain transformed with an empty vector (pInt, left panel)

or the integration plasmid harboring the intact fudoh gene (pInt-

fudoh, right panel) was examined using time-lapse imaging. Ten

hours observation was shortened to 20 seconds.

Found at: doi:10.1371/journal.pone.0003921.s001 (3.31 MB

MOV)

Figure S1 Plasmid-induced expression of fudoh suppresses colony

spreading in Newman and RN4220. (A) Overnight culture of

RN4220 harboring pND50 or pccrAB was spotted onto soft agar

plates and incubated for 10 h. (B) The Newman strain was

transformed with the plasmids described in Table S1, and colony

spreading was examined. The means6standard deviations of the

halo diameters of at least two independent experiments are

presented. Statistical analysis was performed with Student’s t test.

The P-values are versus pND50. NS, not significant (P.0.05). (C)

Overnight culture of RN4220 harboring pND50, pfudoh, or

pK29R-fudoh was spotted onto soft agar plates and incubated for

10 h. The P-values are versus pND50. (D) Representative images

of experiment (A) and (C) are presented.

SCCmec and Virulence
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Found at: doi:10.1371/journal.pone.0003921.s002 (3.66 MB TIF)

Figure S2 Deletion of the SCCmec type-III region from MRSA

86/961 and 85/3566 increases colony spreading. (A) The mecA,

the fudoh, and the partial region of rpoB were amplified by PCR

and electrophoresed and stained with ethidium bromide. The rpoB

was used as control. (B) Overnight cultures of 86/961 and 85/

3566 harboring pND50 or pccrAB (DSCCmec) were spotted onto

soft agar plates and incubated for 10 h. Representative images

from three independent experiments are shown. (C) The halo

diameter was measured and the means6standard deviations from

three independent experiments are presented. Statistical analysis

was performed with Student’s t test.

Found at: doi:10.1371/journal.pone.0003921.s003 (10.94 MB

TIF)

Figure S3 Growth curves of the fudoh-transformed Newman

strain and the SCCmec-deleted mutants of clinical isolates.

Overnight cultures of S. aureus strains were inoculated with 100-

fold dilution into fresh tryptic soy broth and incubated at 37uC
with shaking. OD600 was measured. (A), Newman; (B), NI-3; (C),

NI-4; (D), NI-5.

Found at: doi:10.1371/journal.pone.0003921.s004 (0.49 MB TIF)

Table S1 A list of bacterial strains and plasmids used.

Found at: doi:10.1371/journal.pone.0003921.s005 (0.18 MB

DOC)

Table S2 PCR primers used in this study.

Found at: doi:10.1371/journal.pone.0003921.s006 (0.06 MB

DOC)
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