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Abstract

A variety of physiological and pathological factors induce cellular swelling in the brain. Changes in cell volume activate
several types of ion channels, which mediate the release of inorganic and organic osmolytes and allow for compensatory
cell volume decrease. Volume-regulated anion channels (VRAC) are thought to be responsible for the release of some of
organic osmolytes, including the excitatory neurotransmitters glutamate and aspartate. In the present study, we compared
the in vivo properties of the swelling-activated release of glutamate, aspartate, and another major brain osmolyte taurine.
Cell swelling was induced by perfusion of hypoosmotic (low [NaCl]) medium via a microdialysis probe placed in the rat
cortex. The hypoosmotic medium produced several-fold increases in the extracellular levels of glutamate, aspartate and
taurine. However, the release of the excitatory amino acids differed from the release of taurine in several respects including:
(i) kinetic properties, (ii) sensitivity to isoosmotic changes in [NaCl], and (iii) sensitivity to hydrogen peroxide, which is known
to modulate VRAC. Consistent with the involvement of VRAC, hypoosmotic medium-induced release of the excitatory
amino acids was inhibited by the anion channel blocker DNDS, but not by the glutamate transporter inhibitor TBOA or Cd2+,
which inhibits exocytosis. In order to elucidate the mechanisms contributing to taurine release, we studied its release
properties in cultured astrocytes and cortical synaptosomes. Similarities between the results obtained in vivo and in
synaptosomes suggest that the swelling-activated release of taurine in vivo may be of neuronal origin. Taken together, our
findings indicate that different transport mechanisms and/or distinct cellular sources mediate hypoosmotic medium-
induced release of the excitatory amino acids and taurine in vivo.
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Introduction

The release of organic osmolytes in response to cellular swelling is

mediated by one or more volume-sensitive permeability pathways [1–

3]. Although this phenomenon occurs in all tissues, it has special

significance in the brain since two major swelling-sensitive organic

osmolytes, glutamate and taurine, also mediate or modulate neuronal

communication [4–6]. Several neural pathologies, most notably

cerebral ischemia, hyponatremia, hepatic encephalopathy and

traumatic brain injury, are associated with pronounced cell swelling,

which is largely restricted to astrocytes [7–9]. Pathological cell

swelling is likely related to tissue damage since pharmacological

inhibitors that block volume-sensitive anion permeability pathway(s)

suppress the pathological release of the excitatory amino acids,

glutamate and aspartate, and reduce infarct size in animal models of

stroke and ischemia [10–15]. These findings have led to the proposal

that the swelling-activated release of excitatory amino acids may play

a critical role in promoting ischemic tissue damage [7,9,16].

The swelling-induced release of the excitatory amino acids

glutamate and aspartate and the sulfonic acid taurine is thought to

be mediated by Volume Regulated Anion Channels (VRACs),

which are also termed in the literature as Volume Sensitive

Outward Rectifying (VSOR) Cl2 channels or Volume-Sensitive

Organic osmolyte/Anion Channels (VSOAC) [17–19]. VRACs are

traditionally identified as volume-sensitive Cl2/anion channels that

are activated in response to cell swelling in nearly all cell types

studied. However, in spite of extensive research efforts, the

molecular identity of these channels remains unknown [19,20].

The major physiological role of VRAC is cell volume regulation.

Upon activation in swollen cells, VRACs mediate the release of

inorganic and organic anions and, in conjunction with swelling-

activated K+ channels, facilitate reductions in intracellular osmo-

larity and subsequent regulatory volume decrease. In addition to

Cl2, VRACs are also permeable to bicarbonate (HCO3
2), several

other inorganic anions, as well as small organic osmolytes such as

amino acids, polyols, and methylamines [2,21,22].

The evidence that taurine release is mediated by VRAC, or a

very similar permeability pathway, largely stems from studies in

cultured neuronal and glial cells, which show that both swelling-

activated [3H]taurine and 125I2 (Cl2) fluxes are inhibited by a

variety of VRAC blockers, including the selective VRAC inhibitor

DCPIB [23–27]. Several electrophysiological studies have con-
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firmed that VRACs are permeable to taurine, at least under

conditions when its molecule is negatively charged [21,22,28].

Nevertheless, there is continuous debate as to whether taurine

shares the same permeability pathway with Cl2 and other anionic

amino acids [29–31]. In particular, in several cell types and in

brain slices, swelling-activated [3H]taurine efflux shows different

kinetics and pharmacological properties, when compared to Cl2

(125I2) or D-[3H]aspartate release [32–37].

Although VRAC and VRAC-mediated amino acid fluxes have

been extensively studied in cultured cells, there is limited information

regarding their properties in intact brain tissue. Several studies, which

used perfusion of hypoosmotic medium via microdialysis probes to

induce cell swelling in the brain, found increased extracellular levels

of taurine and several amino acids, which are known to permeate

through VRAC [38–41]. Likewise, Phillis and co-workers found

hypoosmotic medium-stimulated release of taurine and the VRAC-

permeable amino acids using a cortical cup perfusion technique, and

such a release was strongly inhibited by the putative VRAC-blockers

DNDS, NPPB, niflumic acid and tamoxifen [42].

In the present work, we used a microdialysis approach in

anesthetized animals to compare properties of swelling-activated

fluxes of the excitatory amino acids glutamate and aspartate to

those of taurine in the rat cortex in vivo.

Materials and Methods

Animal surgery and microdialysis procedures
All animal procedures performed in this work were approved by

the institution’s animal care and use committee and adhered to the

NIH guidelines for care and use of laboratory animals. Male

Sprague-Dawley rats (Taconic Farms), weighing between 325 and

425 g, were allowed free access to food and water. Rats were given

atropine sulfate (0.5 mg/kg, i.m.) to reduce respiratory tract fluid

secretion, and anesthetized with isoflurane prior to intubation.

Intubated rats were mechanically ventilated with a gas mixture of

2.25% isoflurane in 30% O2/balance N2. A saline drip (0.9%

NaCl) was administered intraperitoneally throughout the exper-

imental procedure to prevent dehydration. Body temperature was

monitored throughout the experiment with a rectal probe and was

maintained between 36uC and 36.5uC with a heating pad.

Animals were placed in a stereotaxic frame and microdialysis

probes (2 mm tip, 20 kD cutoff, CMA Microdialysis, North

Chelmsford, MA, U.S.A.) were slowly lowered through burr holes

into the frontoparietal cortex (from bregma, 1 mm anterior;

64 mm lateral; 2.6 mm down from the dura). Artificial cerebral

spinal fluid (aCSF; in mM: 120 NaCl, 2.7 KCl, 1 MgSO4, 1.2

CaCl2, 25 NaHCO3, 0.05 ascorbic acid; pH = 7.3) was perfused at

2 ml/min through the microdialysis probes. After two hours of

probe stabilization at least two 20 minute perfusate samples were

collected by a CMA-170 refrigerated fraction collector (CMA

Microdialysis) to determine baseline amino acid levels before the

application of drug or hypoosmotic medium. Hypoosmotic aCSF

(in mM: 25 NaCl, 2.7 KCl, 1 MgSO4, 1.2 CaCl2, 25 NaHCO3,

0.05 ascorbic acid; pH = 7.3) was perfused at 2 ml/min for one

hour and perfusate samples were collected every 5 minutes. Each

rat was implanted with two microdialysis probes placed bilaterally

in the cortex, with one probe serving as a control (hypoosmotic

solution only) and the probe on the other side (chosen at random)

serving as the experimental condition (hypoosmotic solution plus

drug). All drugs were delivered through the microdialysis probes.

Amino acid analysis in microdialysate samples
Dialysate concentrations of the amino acids were determined by

reverse-phase high performance liquid chromatography (HPLC)

using a Hewlett-Packard Series 1100 HPLC system. Pre-column

derivatization of the amino acids was done with o-phthaldialde-

hyde/2-mercaptoethanol. The derivatives were separated using a

C18 Varian column (4.66100 mm, 3 mm particle diameter). The

fluorescence signal was detected by a Hewlett-Packard 1046A

programmable fluorescence detector. Amino acid standards were

used to calculate the concentrations of the amino acids in the

perfusate.

Preparation of primary astrocyte cultures
Confluent primary astrocyte cultures were prepared from the

cerebral cortex of newborn Sprague-Dawley rats as described

elsewhere [43], with minor modifications summarized below.

Newborn Sprague-Dawley rats were euthanized by rapid

decapitation, the cerebral cortices were separated from the

meninges and basal ganglia, and tissue was dissociated using the

neutral protease Dispase II (Roche Applied Science, Indianapolis,

IN, U.S.A.). Dissociated cells were seeded on poly-D-lysine coated

18618 mm glass coverslips (Caroline Biological Supply Co,

Burlington, NC, U.S.A.) for efflux experiments, or 12-well tissue

culture plates for uptake experiments. Cell cultures were grown for

3–4 weeks in Minimal Essential Medium (MEM) supplemented

with 10% heat inactivated horse serum (HIHS), 50 U/ml

penicillin and 50 mg/ml streptomycin at 37uC in a humidified

atmosphere of 5% CO2/95% air. Culture medium was replaced

twice a week. After two weeks of cultivation, penicillin and

streptomycin were removed from the culture medium. Immuno-

cytochemistry showed $95% of the cells stained positively for the

astrocytic marker glial fibrillary acid protein.

Preparation of rat cortical synaptosomes
Rat cortical synaptosomes were isolated from the cortical tissue

of male Sprague-Dawley rats (Taconic Farms) weighing between

180 and 230 g according to [44] with modifications described

elsewhere [45]. Final synaptosomal pellets were resuspended in

HEPES-buffered medium containing (in mM): 135 NaCl, 3.8 KCl,

1.2 MgSO4, 1.3 CaCl2, 1.2 KH2PO4, 10 D-glucose, 10 HEPES;

pH = 7.4. Synaptosomes were incubated for 30–40 min at 37uC in

order to allow them to restore transmembrane ion gradients before

further use in amino acid release experiments.

[3H]Taurine and D-[3H]aspartate efflux assays
[3H]Taurine or D-[3H]aspartate efflux measurements were

performed in astrocyte cultures as follows. Astrocytes grown on

glass coverslips were loaded overnight with either [3H]taurine (4

mCi/ml) or D-[3H]aspartate (4 mCi/ml) in 2.5 ml of MEM

containing 10% HIHS in a CO2 incubator set for 5% CO2/95%

air at 37uC. Before the start of the efflux measurements, the cells

were washed free of extracellular isotope and residual serum-

containing medium in HEPES-buffered solution. The basal

HEPES-buffered medium contained (in mM): 135 NaCl, 3.8

KCl, 1.2 MgSO4, 1.3 CaCl2, 1.2 KH2PO4, 10 D-glucose, 10

HEPES; pH = 7.4. The coverslips were inserted into a Lucite

perfusion chamber which had a depression precisely cut in the

bottom to accommodate the coverslip and a Teflon screw top

leaving a space above the cells of around 100–150 mm in height.

The cells were superfused at a flow rate of 1.2 ml/min in an

incubator set at 37uC with isoosmotic or hypoosmotic HEPES-

buffered media. To prepare hypoosmotic medium, the concen-

tration of NaCl was reduced to 85 mM. The osmolarities of all

buffers were checked using a freezing point osmometer (mOsmette,

Precision Systems, Natick, MA, U.S.A.) and were 287–290 and

197–200 mOsm for isoosmotic and hypoosmotic media, respec-

tively. Superfusate fractions were collected at one minute intervals.

Cortical Amino Acid Release

PLoS ONE | www.plosone.org 2 October 2008 | Volume 3 | Issue 10 | e3543



At the end of each experiment, the isotope remaining in the cells

was extracted with a solution containing 2% sodium dodecyl

sulfate (SDS) plus 8 mM EDTA. Four ml Ecoscint scintillation

cocktail (National Diagnostics, Atlanta, GA, U.S.A.) was added

and each fraction was counted for [3H] in a Tri-Carb 1900TR

Liquid Scintillation Analyzer (PerkinElmer, Boston, MA, U.S.A.).

Percent fractional isotope release for each time point was

calculated by dividing radioactivity released in each 1-min interval

by the radioactivity left in the cells (the sum of all the radioactive

counts in the remaining fractions up to the beginning of the

fraction being measured, plus the radioactivity left in the cell

digest).

In a few experiments, astrocytes were simultaneously loaded

with D-[3H]aspartate (2 mCi/ml) and [14C]taurine (1 mCi/ml) to

compare properties of swelling-activated fluxes of excitatory amino

acids and taurine in one cell preparation. In these instances [3H]

and [14C] radioactivity was determined in the same perfusate

samples using a Tri-Carb 1900TR Liquid Scintillation Analyzer

and double-label DPM software.

To measure taurine release in synaptosomal preparations,

synaptosomal suspensions were loaded with [3H]taurine (0.5 mCi/

ml) for 1 hour at 37uC in basal HEPES-buffered solution. The

extracellular isotope was washed by adding 9 volumes of ice-cold

medium containing (in mM): 243 sucrose, 5 KCl, 1.2 MgSO4, 10

HEPES, 10 glucose; pH = 7.4. Synaptosomes were sedimented

(10,000 g, 2 min at 2uC) and resuspended in the same sucrose

medium, which prevents spontaneous synaptosome depolarization

at low temperatures. Aliquots of [3H]taurine-loaded synaptosomes

(,0.2–0.3 mg protein) were injected in glass tubes containing

4.5 mL of HEPES-buffered basal, low [NaCl] hypoosmotic, or low

[NaCl] isoosmotic media, as specified in the Results section. After

5-min incubation at 37uC, taurine efflux was terminated by rapid

vacuum filtration through GF/C glass microfiber filters (What-

man-GE Healthcare, Florham Park, NJ, U.S.A.). Filters were

placed in scintillation vials containing a 4 ml Ecoscint scintillation

cocktail and counted for radioactivity remaining in the synapto-

somes. Relative taurine efflux values (% loaded/5 min) were

calculated by comparing the radioactivity in experimental samples

to isotope content in samples filtered through GF/C without

incubation at 37uC (‘‘0 time’’).

[3H]Taurine and D-[3H]aspartate uptake assay
Cultured astrocytes for these experiments were grown in 12-well

tissue culture plates according to the cell culture method described

in the previous section. Serum-containing medium was washed

out, and the cells were incubated for 30 minutes at 37uC with

basal HEPES-buffered medium containing 0.5 mCi/mL of

[3H]taurine or D-[3H]aspartate plus 10 mM of unlabeled taurine

or L-glutamate, respectively. Following the 30-min incubation

period cells were washed four times with ice-cold physiological

phosphate buffered solution. Cells were then lysed with 2% SDS

plus 8 mM EDTA. The isotope content in the lysate was used as a

measure of taurine ([3H]taurine) or L-glutamate (D-[3H]aspartate)

uptake. Four ml Ecoscint scintillation cocktail was added to each

lysates and [3H] was counted in a Liquid Scintillation Analyzer.

Statistical analysis
The statistical significance of the differences in the amino acid

release and uptake were determined with ANOVA or repeated

measures ANOVA, as specified throughout the text and in figure

legends. For the in vivo experiments, planned comparisons were

performed with repeated measures ANOVA to determine differ-

ences in amino acid release only during hypoosmotic medium

exposure. Origin 7.5 (OriginLab, Northampton, MA) and Statistica

6.1 (StatSoft, Tulsa, OH) were used for statistical analysis.

Chemicals
Cadmium chloride (CdCl2), hydrogen peroxide (H2O2), man-

nitol and ouabain were purchased from Sigma (St. Louis, MI,

U.S.A). [3H]Taurine or D-[3H]aspartate were from GE Health-

care-Amersham (Buckinghamshire, U.K.). DL-Threo-b-benzylox-

yaspartic acid (DL-TBOA) was obtained from Tocris (Ellisville,

MI, U.S.A.). 4,49-dinitrostilbene-2,29-disulfonic acid, disodium salt

(DNDS) and all cell culture reagents were from Invitrogen

(Carlsbad, CA, U.S.A.). All other chemicals including amino acid

standards for the HPLC experiments were purchased from Sigma

or Aldrich (Milwaukee, WI, U.S.A.) and were the highest purity

available.

Results

Differences in kinetics of cortical amino acid and taurine
release in response to perfusion of hypoosmotic medium
or low NaCl isoosmotic medium

In order to examine volume-sensitive amino acid release in vivo,

rat cortices were perfused via a microdialysis probe with

hypoosmotic medium in which [NaCl] was reduced from 120 to

25 mM NaCl (65% reduction in osmolarity; medium also

contained 25 mM NaHCO3 and other salts as specified in the

Methods section). We used a larger reduction in medium

osmolarity compared to that typically employed in vitro to account

for the fact hypoosmotic media perfused via microdialysis probes

are gradually diluted with the extracellular fluids upon their

diffusion in the brain. Hypoosmotic medium initiated substantial

increases in the levels of VRAC-permeable glutamate, aspartate

and taurine (Fig. 1a–c). In the same experiments the extracellular

levels of the VRAC-impermeable amino acids, asparagine and

glutamine, were either downregulated (glutamine) or not altered

(asparagine) by the hypoosmotic medium (Fig. 1d–e). Increases in

the extracellular levels of glutamate and aspartate had similar

kinetics. Dialysate levels of both amino acids peaked at 15 minutes

(,6.5- and ,5-fold increases over baseline, for glutamate and

aspartate, respectively), then quickly decreased to levels which

were only 2-3-fold higher than the basal release, with additional

recovery observed after switching to isoosmotic medium (Fig. 1a,

b). In contrast, in the same samples, the swelling-activated release

of taurine was consistently delayed by 5 minutes versus excitatory

amino acids, had a substantially slower inactivation, and never

recovered after returning to isoosmotic conditions (Fig. 1c).

To determine if the increases in glutamate, aspartate and

taurine levels were due to changes in osmolarity or a consequence

of reduced [NaCl]e, the same rats were simultaneously perfused,

via microdialysis probes placed in the contralateral cortex, with

low [NaCl] (25 mM) medium that was made isoosmotic by the

addition of 167 mM mannitol. The isoosmotic low [NaCl]

medium failed to induce an increase in dialysate concentrations

of glutamate and aspartate (Fig 1a, b). In the same samples,

however, we found a large increase in the extracellular levels of

taurine in response to isoosmotic [NaCl]e reduction, which was

not statistically different from the hypoosmotic-stimulated aug-

mentation (Fig 1c).

In order to understand the nature of the low [NaCl]-induced

taurine release, we exposed cultured astrocytes and isolated nerve

endings (synaptosomes) prepared from rat cortical tissue to low

[NaCl] media made isoosmotic with mannitol. In striking contrast

to the in vivo microdialysis data, cultured astrocytes preloaded with

[3H]taurine failed to show any increase in taurine release levels

Cortical Amino Acid Release
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when perfused with the same low [NaCl] isoosmotic medium

(Fig 2a). In cortical synaptosomes, we found modest (,3-fold)

increases in [3H]taurine release under isoosmotic low [NaCI]

conditions (2b). However, such increases were much smaller when

compared to the releases induced by the hypoosmotic reduction in

[NaCI] (,15 fold, Fig. 2b). This was in contrast to our in vivo data

which showed very similar increases in taurine levels with both

hypoosmotic and isoosmotic low [NaCl] medium (compare Figs 2b

and 1c).

Since taurine transporter function is dependent on the

transmembrane Na+ gradient, we speculated that the increased

levels of taurine seen in vivo upon application of low extracellular

[NaCl] hypoosmotic or isoosmotic media may in part be due to

inhibition of the taurine transporter. To address this issue, we

evaluated how decreases in [Na+]e affect [3H]taurine uptake in

cultured astrocytes. Given that glutamate and aspartate levels in

vivo are insensitive to the isoosmotic decrease of [Na+]e (see Fig. 1a,

b), we additionally compared the effect of low [Na+]e on

[3H]taurine uptake to the uptake of D-[3H]aspartate. As seen in

Fig. 3, decreases in [Na+]e to 50 mM (equivalent to the low [Na+]e

used in the in vivo experiments) significantly inhibited both

[3H]taurine and D-[3H]aspartate (L-glutamate) uptake, with

taurine uptake inhibited to a greater extent. However, the

observed in vitro difference in the transporters’ sensitivities to

[Na+]e may not in itself be sufficient to explain the drastic

sensitivity of taurine release to isoosmotic modulation of the

[NaCl] observed in vivo.

Effects of the anion channel blocker DNDS on
hypoosmotic medium-stimulated amino acid and taurine
release in vivo and in vitro

Given that our data show that taurine and excitatory amino

acid levels are differentially regulated in vivo by low [NaCl], we

further investigated the potential mechanisms responsible for the

elevated amino acid levels in response to hypoosmotic medium by

using different amino acid transport inhibitors. Our first aim was

to determine if the increases in extracellular excitatory amino acid

levels is mediated by a VRAC-like pathway, as has been

extensively shown in vitro. Therefore, we used the anion channel

blocker DNDS, which has an IC50 for VRACs of ,1–2 mM [46].

Although DNDS has a low potency for inhibiting VRACs, it is one

of the few anion channel inhibitors that can be used in

microdialysis studies because it does not produce toxic effects or

changes in the basal amino acid release levels. The more potent

VRAC blockers NPPB or phloretin caused strong and progressive

increases in microdialysate glutamate and aspartate levels, which

likely reflect cytotoxicity (Y. Jin, R.E. Haskew-Layton, P.J. Feustel,

H.K. Kimelberg, A.A. Mongin, unpublished observations). Ten

mM DNDS, when added one hour prior to and during

hypoosmotic medium exposure, significantly inhibited the hypo-

osmotic-stimulated release of the excitatory amino acids glutamate

and aspartate, but did not alter basal excitatory amino acid levels

(Fig 4a, b). DNDS also potently inhibited hypoosmotic taurine

release, and in addition, also reduced taurine levels under basal

conditions (Fig. 4c).

Figure 1. Effect of hypoosmotic or isoosmotic low [NaCl] medium on amino acid levels measured in the rat cortex in vivo. (a–c)
Microdialysis probes, implanted in the rat frontoparietal cortex, were perfused with hypoosmotic medium (295 mM NaCl, 265% osmolarity) or
isoosmotic low NaCl medium (295 mM NaCl +167 mM mannitol) for one hour. In these experiments, the rat brain was perfused with both the
hypoosmotic and isoosmotic medium on opposite sides of the cortex. The data represent average dialysate levels of glutamate (a), aspartate (b), and
taurine (c) 6SEM from 5 rats. ** p,0.01, hypoosmotic vs. isoosmotic low [NaCl], repeated measures ANOVA. (d–e) In several experiments dialysate
levels of glutamine (d, N = 5), and asparagine (e, n = 3) were additionally measured on the ‘‘hypoosmotic’’ side of the brain.
doi:10.1371/journal.pone.0003543.g001
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To verify the efficacy of DNDS as a VRAC blocker we tested

the effect of DNDS on swelling-activated D-[3H]aspartate release

in cultured astrocytes, which is entirely mediated by VRACs [47].

Two mM DNDS was sufficient to suppress D-[3H]aspartate

release by ,70% (Fig. 5a), was similarly effective against astrocytic

[3H]taurine release (,75%, data not shown), and nearly

completely suppressed swelling-activated [3H]taurine release from

cortical synaptosomes (Fig. 5b). To further explore whether DNDS

may inhibit taurine transporters and in this way affects

extracellular taurine levels in vivo, we tested the effects of DNDS

on taurine uptake in cultured astrocytes. DNDS did not affect

astrocytic [3H]taurine uptake up to the concentration of 32 mM,

suggesting that this compound does not alter taurine transporter

function (data not shown).

Effects of the Ca2+ channel blocker Cd2+ on hypoosmotic
medium-stimulated amino acid and taurine release in
vivo

To additionally explore the mechanisms responsible for the

excitatory amino acid release in vivo, we tested for the contribution

of alternative release mechanisms. One such mechanism is

synaptic Ca2+-dependent release from a vesicular pool. Several

reports suggest that hypoosmotic medium induces membrane

depolarization and promotes increases in [Ca2+]i in synaptosomes

and brain slices, which may trigger exocytotic neurotransmitter

release [48–50]. To exclude the possible involvement of exocytosis

in mediating hypoosmotic-induced amino acid release we used a

broad spectrum blocker of voltage-sensitive Ca2+ channels,

cadmium (Cd2+). Ca2+-free artificial cerebral spinal fluid contain-

ing 300 mM Cd2+, given 20 minutes prior to and during Ca2+-free

hypoosmotic medium perfusion, did not alter glutamate, aspartate

or taurine release (Fig. 6a–c). Previous studies have found that

300 mM Cd2+, administered through microdialysis probes, is

effective in blocking electrically stimulated serotonin release and

membrane depolarization-induced norepinephrine release

[51,52], and 30 mM Cd2+ is sufficient to reduce tonic glutamate

release in the amygdala [53]. Thus, our data showing that amino

acid release in vivo is insensitive to 300 mM Cd2+ suggests that

hypoosmotic-stimulated excitatory amino acid release is not due to

the stimulation of exocytosis.

Effects of the glutamate transporter blocker DL-TBOA on
hypoosmotic medium-stimulated excitatory amino acid
release in vivo

Low [Na+]e may potentially elevate dialysate glutamate and

aspartate levels by inducing the reversal of glutamate transporters,

Figure 2. Isoosmotic low [NaCl] medium does not induce
taurine release from cultured rat astrocytes but modestly
enhances taurine release from rat cortical synaptosomes. (a)
Effect of hypoosmotic or isoosmotic reductions in [NaCl] on [3H]taurine
release from astrocytes. The data represent mean values 6SEM of
integral 10-min releases under isoosmotic (Basal), hypoosmotic (Hypo),
or isoosmotic low [NaCl] solutions. n = 4 for each group. *p,0.05,
***p,0.001, vs. basal. (b) Integral 5-min releases of [3H]taurine from
synaptosomes exposed to isoosmotic (Basal), hypoosmotic (Hypo) or
isoosmotic media with lowered [NaCl]. Means 6SEM of 3 experiments.
** p,0.01, vs. basal.
doi:10.1371/journal.pone.0003543.g002

Figure 3. Dependence of taurine and glutamate uptake on
extracellular [Na+] in cultured astrocytes. Taurine and glutamate
transport rates were measured in primary astrocyte cultures using
[3H]taurine and D-[3H]aspartate. Extracellular concentrations of amino
acids were adjusted to 10 mM using unlabeled taurine or L-glutamate.
To compare glutamate versus taurine uptake, the values were
normalized to uptake levels under basal conditions ([Na+]o = 135 mM).
Note that under basal conditions absolute D-[3H]aspartate uptake rate
(nmols/mg protein) was ,5-fold higher compared to taurine. Data are
the mean values 6SEM of three experiments from each group.
doi:10.1371/journal.pone.0003543.g003
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which are dependent on normal Na+ and K+ gradients [54].

Therefore to rule out the involvement of glutamate transport

reversal in mediating hypoosmotic-stimulated excitatory amino

acid release we used the broad-spectrum non-transportable

glutamate transporter blocker DL-TBOA that blocks all neuronal

and glial transporters [55,54]. 500 mM DL-TBOA given 20 min-

utes prior to and during hypoosmotic medium perfusion,

significantly increased rather than decreased excitatory amino

acid release and did not affect taurine levels (Fig. 7a, b), suggesting

that normal transport operation is maintained under hypoosmotic

conditions and transport reversal is not responsible for the

hypoosmotic medium-stimulated excitatory amino acid release.

As expected, the in vivo extracellular levels of taurine were not

affected by DL-TBOA (data not shown).

Although DL-TBOA has been well characterized as an

inhibitor of normal glutamate transporter function [55], we

wanted to verify DL-TBOA’s effectiveness in blocking glutamate

transporters working in the reverse mode. Cultured astrocytes,

preloaded with D-[3H]aspartate, were treated for 40 minutes with

1.0 mM ouabain to increase [Na+]i, prior to and during

20 minutes perfusion with an isoosmotic 100 mM [K+]e medium.

These treatment conditions have previously been shown to induce

the reversal of glutamate transporters in cultured astrocytes [56].

In vitro, 300 mM DL-TBOA given 10 minutes prior to and during

10 mM [K+] perfusion completely blocked glutamate transport

reversal-induced D-[3H]aspartate release, verifying that DL-

TBOA is an effective inhibitor of glutamate transport reversal

(Fig. 7c).

Effects of H2O2 on hypoosmotic-stimulated release of
excitatory amino acid and taurine in vivo and in vitro

We further investigated if reactive oxygen species modulate

swelling-sensitive excitatory amino acid release in the brain, as

seen in cultured astrocytes (Haskew-Layton et al., 2005). One mM

H2O2, administered 20 minutes prior to and during hypoosmotic

medium perfusion, did not affect basal levels of glutamate or

aspartate but significantly enhanced the swelling-evoked release of

both excitatory amino acids (Fig. 8a,b). In contrast, H2O2 did not

alter dialysate levels of taurine under hypoosmotic conditions

(Fig. 8c), suggesting that excitatory amino acids and taurine release

are differentially regulated. To verify that H2O2 does not

upregulate glutamate and aspartate release via a VRAC-

independent mechanism, we tested the effects of 1 mM H2O2

on amino acid levels in the absence of hypoosmotic medium in a

separate set of experiments. As seen in Fig. 8a, b, when superfused

under isoosmotic conditions, 1 mM H2O2 did not produce a

substantial increase in excitatory amino acid levels but did cause a

small gradual upward shift in the baseline.

Since H2O2 has been reported to alter glutamate uptake [57],

we tested the effects of 1–1,000 mM H2O2 on the excitatory amino

acid uptake in cultured astrocytes. H2O2 did not alter the

excitatory amino acid uptake in vitro up to the highest

concentration tested (data not shown). These data, in conjunction

with the lack of a H2O2 effect on the basal levels of excitatory

amino acid in vivo, suggest that the effects of H2O2 on hypoosmotic

glutamate and aspartate levels are unlikely due to uptake

inhibition.

In order to model the effects of H2O2 on taurine release in

astroglial and neuronal cells, we tested in vitro the effect of 300 mM

H2O2 on swelling-activated amino acid release in cultured rat

astrocytes and cortical synaptosomes. Astrocytes were simulta-

neously preloaded with D-[3H]aspartate and [14C]taurine to

reveal any potential differences between release properties of the

excitatory amino acids and taurine in the same cells. As in our

previous study (Haskew-Layton et al., 2005), H2O2 strongly

potentiated the swelling-induced release of D-[3H]aspartate (data

not shown), as well as the release of taurine (Fig. 9a) by 2-3-fold. In

striking contrast, the same concentration of H2O2 was completely

ineffective in potentiating [3H]taurine release in synaptosomes,

whether H2O2 added 10 minutes before and during application of

hypoosmotic medium (Fig. 9b) or acutely (data not shown). These

results suggest that the H2O2-insensitive, hypoosmotic-medium

stimulated taurine release observed in vivo may originate from a

neuronal compartment.

Discussion

In the present in vivo study we employed a microdialysis

approach to compare properties of the swelling-activated release of

major organic osmolytes, the excitatory amino acids glutamate

and aspartate and the sulfonic acid taurine, in the rat cortex.

Swelling-activated amino acid release may mimic pathological

processes that occur in ischemia and several other neuropathol-

ogies, where extensive astroglial cell swelling has been detected

[7,9]. To model the effects of cell swelling without the contribution

Figure 4. Effect of the anion channel blocker DNDS on hypoosmotic medium-induced amino acid release in the rat cortex. (a–c)
Microdialysis probes were perfused on opposite sides of the cortex with hypoosmotic medium (HYPO, 265% osmolarity) in the presence or absence
of 10 mM DNDS, given one hour prior to and during one-hour hypoosmotic medium perfusion. The data represent average dialysate levels of
glutamate (a), aspartate (b) and taurine (c) +/2SEM from 5 rats. * p,0.05, HYPO vs. HYPO+DNDS (glutamate); ** p,0.01, HYPO vs. HYPO+DNDS
(aspartate); *** p,0.001 HYPO vs. HYPO+DNDS (taurine). Significance was determined by repeated measures ANOVA.
doi:10.1371/journal.pone.0003543.g004
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of numerous volume-insensitive glutamate release pathways, we

utilized perfusion of hypoosmotic medium via a microdialysis

probe, rather than performing the studies in the ischemic brain.

The major finding of our work is that hypoosmotic-medium

induced release of excitatory amino acids and taurine exhibit

significant differences in their kinetic properties, sensitivity to

isoosmotic changes in extracellular [NaCl] and response to

perfusion of the reactive oxygen species H2O2. Such differences

indicate that these organic osmolytes are released from different

cellular pools and/or via different release pathways.

Properties of hypoosmotic medium-induced excitatory
amino acid release are consistent with the involvement
of VRAC

Previous findings from the literature suggest that there is

substantial similarity between swelling-activated amino acid

release in vitro and in situ. In cultured astrocytes and neuronal

cells, hypoosmotic medium promotes cell swelling and triggers the

release of several uncharged or negatively charged amino acids

such as glycine, alanine, taurine, glutamate, and aspartate

[23,24,26,47,58,59]. Several in situ studies performed in brain

slices have found that the release properties of isotope-labeled and

endogenous excitatory amino acids and taurine are similar to those

observed in vitro [36,60–62]. Such organic osmolyte release occurs

via a non-saturable pathway, which is inhibited by a variety of Cl2

channel blockers, and therefore likely mediated by an anion

channel. In vitro electrophysiological studies found that volume-

regulated anion channels (VRAC) are permeable to glutamate,

aspartate, taurine, and glycine, but not to the majority of other

amino acids [21,22,63–65]. However, it is currently debated

whether one or more permeability pathways contribute to the

release of organic osmolytes [29–31]. Furthermore, some reports

additionally proposed that hypoosmotic swelling may promote the

release of excitatory amino acids via a Ca2+-independent mode of

exocytosis [66,67].

In vivo, our present work and several previous studies found that

hypoosmotic medium stimulates the release of VRAC-permeable

amino acids (glutamate, aspartate, and taurine), while the levels of

VRAC-impermeable amino acids (e.g., asparagine and glutamine)

remain unaffected or decreased [38,39,42]. The broad spectrum

Cl2 channel blocker DNDS inhibited the release of excitatory

amino acids and taurine, at concentrations that block VRAC

activity in vitro. We have found that DNDS is well tolerated in vivo,

unlike other commonly used and more potent VRAC blockers,

such as NPPB and phloretin. Consistent with the involvement of

VRAC, increases in the extracellular levels of the excitatory amino

acids were seen upon application of hypoosmotic medium (low

[NaCl]e) but not in response to isoosmotic changes in [NaCl]e

(NaCl replaced with mannitol). Furthermore, swelling-induced

excitatory amino acid release was not blocked by inhibitors of two

alternative glutamate and aspartate release pathways, i.e. reversal

of glutamate transporters and exocytotic release.

Although cell swelling is thought to be the primary stimulus

responsible for initiating VRAC opening in the pathological brain,

little else is known about the activation or modulation of VRACs

in the intact tissue. Our recent in vitro work demonstrated that

swelling activated excitatory amino acid release via VRAC is

potently modulated by reactive nitrogen species and reactive

oxygen species [68,69]. In the present microdialysis experiments,

the reactive oxygen species H2O2 strongly increased hypoosmotic

levels of glutamate and aspartate, but had little effect when

administered under isoosmotic conditions. Taken together with

the pharmacological data, these findings are in line with the idea

that VRAC is the primary source of the excitatory amino acid

release in response to hypoosmotic medium-induced (and

pathological) cell swelling.

Hypoosmotic medium-induced release of taurine differs
from the excitatory amino acid release

Unexpectedly, we found marked differences in taurine and

excitatory amino acid release. Taurine is widely regarded as an

important osmoregulatory molecule in the brain and in other

tissues because it is one of the most abundant organic osmolytes

and effectively permeates a putative VRAC-like pathway

Figure 5. Effect of DNDS on swelling-activated D-[3H]aspartate
release from cultured astrocytes and swelling-activated
[3H]taurine uptake in cortical synaptosomes. (a) Cultured
astrocytes preloaded with D-[3H]aspartate were superfused with
hypoosmotic medium in the presence or absence of 2 mM DNDS.
The data are the mean values of five experiments for each group 6SEM.
*** p,0.001 hypo, vs. DNDS. (b) Release of preloaded [3H]taurine from
cortical synaptosomes was measured under isoosmotic (BASAL) and
hypoosmotic (HYPO) conditions in the presence or absence of 2 mM
DNDS. The data are the mean values of integral 10-min [3H]taurine
release 6SEM of three experiments performed in quadruplicate.
***p,0.001 vs. isoosmotic control (BASAL), ###p,0.001 vs. hypoos-
motic control (HYPO).
doi:10.1371/journal.pone.0003543.g005
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Figure 6. Effect of the Ca2+ channel blocker Cd2+ on hypoosmotic medium-induced amino acid release in the cortex. (a–c)
Microdialysis probes were perfused with hypoosmotic medium (HYPO) in the presence or absence of 300 mM Cd2+ given 20 minutes prior to and
during one-hour hypoosmotic medium perfusion. Each rat had two microdialysis probes implanted on opposite sides of the cortex (one perfused
with HYPO alone and the other with HYPO+Cd2+). The data represent the average dialysate levels 6SEM of glutamate (a), aspartate (b), and taurine
(c) from 5 rats.
doi:10.1371/journal.pone.0003543.g006

Figure 7. Effect of the glutamate transporter inhibitor DL-TBOA on hypoosmotic medium induced amino acid release in the cortex
and glutamate transporter reversal in cultured astrocytes. (a–b) Microdialysis probes implanted on opposite sides of the cortex were
perfused with hypoosmotic medium in the presence or absence of 500 mM DL-TBOA, given 20 minutes prior to and during one hour hypoosmotic
medium perfusion. The data represent average dialysate levels of glutamate (a), aspartate (b) 6SEM from 4 rats. ** p,0.01 HYPO vs. HYPO+TBOA. (c)
DL-TBOA effectively prevented reversal of glutamate transporter in cultured astrocytes. Cultured astrocytes were superfused for one hour with 1 mM
ouabain and additionally for 20 min high [KCl] (100 mM) plus ouabain to induce glutamate transporter reversal. 300 mM DL-TBOA was given
10 minutes prior to and during the high [KCl] perfusion in the presence of ouabain. The data are the average values 6SEM for three experiments in
each group. ** p,0.01 KCl vs. KCl+TBOA.
doi:10.1371/journal.pone.0003543.g007

Figure 8. Effect of H2O2 on hypoosmotic medium induced amino acid release in the cortex. (a–c) Two microdialysis probes implanted on
opposite sides of the cortex were perfused with hypoosmotic medium in the presence or absence of 1 mM H2O2 given 20 minutes prior to and
during one-hour hypoosmotic medium perfusion. The data represent the average dialysate levels 6SEM of glutamate (a), aspartate (b) and taurine
(c) from 9 rats. ** p,0.01 HYPO vs. HYPO+H2O2. In separate experiments, rats were perfused with 1 mM H2O2 alone (N = 5).
doi:10.1371/journal.pone.0003543.g008
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[23,22,28,43,70]. Consistent with its osmoregulatory role, taurine

release in cultured astrocytes, hippocampal slices, and in vivo

microdialysis experiments has been found to be potently

upregulated under hypoosmotic conditions (reductions in [Na-

Cl]e), but is insensitive to isoosmotic changes in [NaCl]e

[23,41,66]. Therefore, our observation, that cortical taurine levels

are strongly elevated by either hypoosmotic or isoosmotic low

[NaCl] media, was rather surprising. Nevertheless, such a finding

is not unique. A similar sensitivity of taurine to changes in [NaCl]e

independent of changes in osmolarity has been found in two

microdialysis studies measuring taurine levels in the rat hippo-

campus and in slices prepared from the mouse brain stem [71,72].

Using an alternative approach, in which extracellular amino acids

were sampled via a cortical cup, Phillis et al. also observed that

replacement of extracellular NaCl with choline-Cl or MMDG-Cl

strongly elevated superfusate levels of taurine but not those of

glutamate or aspartate [73].

Besides the differences in sensitivity to isoosmotic [NaCl]e

decreases, taurine release was (i) consistently delayed by ,5 min-

utes, compared to the swelling-activate release of the excitatory

amino acids, (ii) showed much slower inactivation, and (iii) was

completely insensitive to the application of H2O2. Since the amino

acid measurements were performed in the same samples, these

data unequivocally point to different release mechanisms or

different cellular sources. The idea of diverse transport pathways

for taurine and other osmolytes has been suggested in the past,

based on dissimilar properties of taurine and excitatory amino acid

release in cultured astrocytes, hippocampal brain slices, and in a

mammary cell line [35,66,74]. However, because the molecular

identity of the volume-sensitive organic osmolyte release pathway

is unknown, this hypothesis is difficult to address.

An alternative hypothesis that would explain the atypical

behavior of taurine is that in the cortex taurine and excitatory

amino acids are released from different cellular pools. Glutamate is

uniformly distributed in the brain, however it is somewhat more

concentrated in neurons since its concentration in astrocytes is

lowered by the activity of glutamine synthase [75]. In contrast, the

cellular localization of taurine is highly heterogeneous. Depending

on the brain region, taurine is concentrated within either glial cells

or neurons. For instance, in the cerebellum and the putamen

taurine is primarily localized to neurons, while in the thalamus,

hypothalamus and brain stem it is concentrated in glial cells [76–

78]. In the cortex there have been conflicting reports suggesting

that taurine is preferentially localized to either neurons or glial

cells [79,80].

In order to model properties of astroglial and neuronal taurine

release we performed experiments in primary rat astrocytes and

cortical synaptosomes. In cultured astrocytes, taurine release was

completely dissimilar to the release in vivo: it was absolutely

insensitive to isoosmotic decreases in [NaCl]e, and was strongly

potentiated by H2O2 in swollen cells. Since we were unable to

mimic the astrocytic profile of taurine release in vivo, it suggests that

astrocytes may contribute to only a negligible portion of taurine

release in the cortex. On the other hand, similar to our in vivo data,

swelling-activated taurine release in synaptosomes mimicked the in

vivo release in that it was completely insensitive to H2O2 and

sensitive to isoosmotic reductions in [NaCl]e (albeit to a much

weaker degree than the in vivo response). Although these

synaptosomal data do not perfectly match the in vivo results, they

suggest a possibility that taurine release in the cerebral cortex

originates from a neuronal pool. Ineffective uptake of extracellular

taurine in vivo under hypoosmotic conditions and in response to

isoosmotic reductions in [NaCl] may be determined by a lower

density of taurine transporters and their high dependence on

extracellular [Na+] and [Cl2] (see Fig. 3). In contrast, glutamate

transporters are expressed at a very high density in the brain and

driven by the transmembrane gradients of K+, Na+, and Cl2, and

are therefore less sensitive to changes in [NaCl]e [54,75]. An

integrated model, providing an explanation for our in vivo and in

vitro data, is presented in Fig. 10.

Relevance to pathophysiological amino acid and taurine
release in ischemia

There is ample evidence that VRAC contributes to pathological

excitatory amino acid release in a number of neurological

conditions associated with cell swelling, including ischemia,

hyponatremia, hepatic encephalopathy, and traumatic brain

injury (reviewed in [7,9]). In animal ischemia models, VRAC

blockers reduce pathological elevations in the extracellular levels of

excitatory amino acids [10,11,14,81], and potently protect the

animal brain against ischemic damage [12,82,83]. Most recently,

Figure 9. Effect of H2O2 on swelling-activated taurine release
from cultured astrocytes and cortical synaptosomes. (a) The
effect of H2O2 on swelling-activated [14C]taurine release from cultured
astrocytes. Astrocytes were preloaded overnight with [14C]taurine and
D-[3H]aspartate. 300 mM H2O2 was added to the media 10 min before
and during exposure to hypoosmotic medium. For clarity, only
[14C]taurine release is shown. The data are the mean values 6SEM of
three experiments. **p,0.01 vs. hypotonic control. (b) The effect of
H2O2 on swelling activated [3H]taurine release from rat cortical
synaptosomes. Integral [3H]taurine release was measured for 5 minutes
as described in Material and methods. 300 mM H2O2 was present in
media 10 min before and during measurements of taurine release. Data
are the mean values 6SEM of three independent experiments
performed in quadruplicate. ***p,0.001 vs. basal release.
doi:10.1371/journal.pone.0003543.g009
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the selective VRAC inhibitor DCPIB has been found to reduce

intra-ischemic glutamate release and potently reduce ischemic

infarction in a rat focal reversible ischemia model [15]. Consistent

with in vivo findings, in a slice model of cerebral spreading

depression, VRAC inhibitors delay the onset of glutamate-

dependent depolarizations and reduce glutamate release, which

is at least partially associated with cell swelling [84]. Interestingly,

characteristics of intra-ischemic taurine release also show strong

deviation from those of glutamate and aspartate. For instance, in a

rat global ischemia model ischemic striatal taurine release was

weekly sensitive to 1 and 10 mM DNDS, as compared to the

strong inhibition of pathological excitatory amino acid release

[11]. Although in the present experiments, both the hypoosmotic

release of taurine and the excitatory amino acids were potently

suppressed by DNDS, the global ischemia data are consistent with

the idea that taurine and excitatory amino acids may be released

from different cellular pools and/or via different transport

mechanisms. Properties of swelling activated excitatory amino

acid release in vivo strongly resembled the positive modulation of

the excitatory amino acid release via a putative VRAC pathway,

and in particular were strongly upregulated by H2O2, as seen in

cultured astrocytes [69]. Since H2O2 levels are strongly upregu-

lated in ischemia and reperfusion [85,86], the additive effects of

cell swelling and reactive oxygen species may contribute to

excitotoxic tissue damage in stroke and perhaps other neuropa-

thologies.

In summary, we found that cellular swelling in the rat cortex in

vivo triggers release of glutamate and aspartate with properties

strongly resembling swelling-activated excitatory amino acid

release in cultured astrocytes, which is thought to be mediated

by VRAC [47]. In contrast, hypoosmotic medium-induced taurine

release seemingly is derived from a different cellular source or

mediated by different transporter mechanism(s). Since taurine

release properties could be mimicked in synaptosomal prepara-

tions, we speculate that such release may originate from a

neuronal compartment.
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