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Abstract

Background: Mycobacterium tuberculosis is the principal etiologic agent of human tuberculosis. It has no environmental reservoir
and is believed to have co-evolved with its host over millennia. This is supported by skeletal evidence of the disease in early
humans, and inferred from M. tuberculosis genomic analysis. Direct examination of ancient human remains for M. tuberculosis
biomarkers should aid our understanding of the nature of prehistoric tuberculosis and the host/pathogen relationship.

Methodology/Principal Findings: We used conventional PCR to examine bone samples with typical tuberculosis lesions from
a woman and infant, who were buried together in the now submerged site of Atlit-Yam in the Eastern Mediterranean, dating
from 9250-8160 years ago. Rigorous precautions were taken to prevent contamination, and independent centers were used to
confirm authenticity of findings. DNA from five M tuberculosis genetic loci was detected and had characteristics consistent with
extant genetic lineages. High performance liquid chromatography was used as an independent method of verification and it
directly detected mycolic acid lipid biomarkers, specific for the M. tuberculosis complex.

Conclusions/Significance: Human tuberculosis was confirmed by morphological and molecular methods in a population
living in one of the first villages with evidence of agriculture and animal domestication. The widespread use of animals was
not a source of infection but may have supported a denser human population that facilitated transmission of the tubercle
bacillus. The similarity of the M. tuberculosis genetic signature with those of today gives support to the theory of a long-term
co-existence of host and pathogen.
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Mycobactertum bovis has a wider host range and is the main cause of
tuberculosis in other animal species. Humans become infected by
M. bovis, usually via milk, milk products or meat from an infected

Introduction

Tuberculosis is a major global cause of death and disease and

around 2 billion people, about one third of the world’s total
population, are believed to be infected with tubercle bacilli [1].
However, only around 10% of infected persons become ill with
active disease, and this high level of latent infection is an indication
of long-term co-existence of human host and bacterial pathogen
[2]. Tuberculosis is caused by a group of closely related bacterial
species termed the Mycobacterium tuberculosis complex. Today the
principal cause of human tuberculosis is Mycobacterium tuberculosts.
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animal. It is estimated that in the pre-antibiotic era M. bovis was
responsible for about 6% of tuberculosis deaths in humans [3,4].
Other members of the M. tuberculosis complex include the human
pathogens Mycobacterium canettii, Mycobacterium africanum, and species
usually associated with animal infections, such as Mycobacterium
macroti, Mycobacterium caprae and Mycobacterium pinnipediz.
Tuberculosis can cause characteristic skeletal changes, such as
collapse of the vertebrae (Pott’s disease), periosteal reactive lesions,
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and osteomyelitis [5]. Such paleopathological changes have been
reported in pre-dynastic (3500-2650 BC) Egypt [6], and Neolithic
(3200-2300 BC) Sweden culturally associated with the earliest
cattle breeders [7]. These are the oldest cases of human
tuberculosis confirmed by ancient DNA. Older cases recognized
by skeletal changes alone were found in Neolithic Italy at the
beginning of the fourth millennium BC [8,9].

Erosive lesions suggestive of tuberculosis have been found on
fossil fauna from the Natural Trap Cave in Wyoming, dated from
the 17,000 to 20,000 year level [10] and tuberculosis in one
specimen was confirmed by biomolecular methods [11]. Initially it
was believed that humans acquired tuberculosis from animals,
especially after domestication [12-14]. Whole genome sequencing
has since revealed that the M. tuberculosis complex has accumulated
deletions over time, which can be used to distinguish individual
species and lineages [15] and earlier ideas about the evolution of
the M. tuberculosis complex have been revised [16,17]. An
intriguing indication of the antiquity of the disease is the finding
of non-specific morphological changes consistent with tuberculosis
in a fossil Homo erectus dating from the middle Pleistocene (490—
510,000 years BP) from Turkey [18].

The emergence of human infectious diseases has been linked to
changes in human ecology and to interactions between popula-
tions [19]. The change from a gatherer-hunter lifestyle to settled
farming communities appears to coincide with the appearance of
diseases such as smallpox, measles, malaria, schistosomiasis, and
tuberculosis [20]. Our aim was to investigate this stage of human
history by the use of molecular methods to examine human
remains that pre-date the earliest verified cases of tuberculosis, but
with paleopathology consistent with this disease. A further aim was
to elucidate the molecular characteristics of the causative
organism. It is believed that the denser, settled populations
associated with agriculture and animal domestication enabled
human pathogens such as M. tuberculosis to be maintained
indefinitely [21]. Therefore, we examined one of the earliest
villages with evidence of both animal domestication and
agriculture, Atlit-Yam [22], for the presence of tuberculosis in
human remains with characteristic lesions. M. tuberculosis was
confirmed in the skeletal remains of a woman and child, using
both ancient DNA and bacterial cell-wall specific lipid markers.
Deletion analysis indicates that the modern M. tuberculosis lineage
characterized by the ThD1 deletion existed 9000 years ago.

Materials and Methods

The site of Atlit-Yam is now located 300-500 m offshore,
(34°56" E, 32°42.5" N), 8-12 m below sea level in the North Bay
of Atlit, 10 km south of Haifa (Figure 1). Calibrated radiocarbon
dates range from 9250-8160 years BP [23], indicating a date
during the last phase of the Pre-Pottery Neolithic C period, when
human society accomplished a full shift from hunting and
gathering to farming, fishing and animal husbandry. The rich
finds included botanical remains, tools, animal and human bones.
The many animal remains that were excavated included goat
(44%), cattle (43%), pig (9%), gazelle and deer (3.3%).

Human skeletons, which were embedded in dark clay, were
carefully excavated and soaked in fresh-water tanks to dissolve the
salts. The skeletal remains [24,25] were generally well-preserved
(Supporting Figure SI1A) and some showed paleopathological
features consistent with a diagnosis of tuberculosis. Samples were
taken for molecular examination from the skeletal remains of a
woman buried together with an infant (Supporting Figure S1B). We
analyzed the ribs, arm bones (adult) and long bones (infant). The
work was done in separate centers to provide verification of data,
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Figure 1. Map of Atlit-Yam site in the North Bay of Atlit, 10 km
south of Haifa (34°56’' E, 32°42.5' N). Inset shows general
geographical location.

doi:10.1371/journal.pone.0003426.g001

and stringent precautions were taken against contamination
(Supporting Materials and Methods S1). Separate areas and
pipettes were used for extraction, PCR set-up and product analysis.
Filter tips were used routinely and surfaces and equipment were
cleaned before each assay. DNA extracts were prepared and, using
the polymerase chain reaction (PCR), both multi-copy and single
copy target loci were amplified (Table 1) and sequenced to confirm
their identity. Screening PCRs detected the M. tuberculosis complex
and nested or hemi-nested PCR was used to increase the likelihood
of detection (Supporting Materiasls and Methods S1). A single copy
conserved membrane protein locus (CMP) found in the M.
tuberculosis complex was examined by PCR to assess the feasibility
of seeking further single-copy loci. PCR target regions, based on
specific deletions, were used to distinguish between M. tuberculosis
and M. bows. Extracts were analyzed further by reverse dot-blot
hybridization of the M. tuberculosis complex-specific Direct Repeat
(DR) region, a procedure known as spoligotyping [26]. In addition,
samples from both the infant and adult were analyzed by high
performance liquid chromatography (HPLC) for mycobacterial cell
wall mycolic acids [27,28] (Supporting Tables S1, S2 and S3 and
Supporting Figure S2 A and B). Long chain fatty acids were
converted to pyrenebutyric acid-pentafluorobenzyl mycolates, and
reverse phase HPLC examined for profiles similar to standard M.
tuberculosts. Further normal and reverse phase HPLC was performed
to give detailed profiles for each sample. These were used to
determine the percentage ratios and absolute amounts of mycolic
acids extracted from bone samples.

Results

Paleopathology
The infant, though small in size, was estimated to be about 12
months old, based on crown development and long bone
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Table 1. Primer sequences and PCR details.’

Neolithic M. tuberculosis

Locus Primers (5’ - 3') MgCl, (mM) Annealing temp. (°C) Product (bp)
1S6110 P1: CTCGTCCAGCGCCGCTTCGG
Outer P2: CCTGCGAGCGTAGGCGTCGG 1.5 68 123
1S6110 1S3: TTCGGACCACCAGCACCTAA
Nested 1S4: TCGGTGACAAAGGCCACGTA 1.5 58 92
IS1081 F2: CTGCTCTCGACGTTCATCGCCG
Outer R2: GGCACGGGTGTCGAAATCACG 1.5 58 135
1S7081 F2: CTGCTCTCGACGTTCATCGCCG
Hemi-nested R3: TGGCGGTAGCCGTTGCGC 2.0 58 113
TbD1 TbD1a: CTAACGGGTGCAGGGGATTTC
Flanking outer TbD1b: CCAAGGTTACGGTCACGCTGGC 1.5 60 128
TbD1 TbD1c: GCAGGGGATTTCAGTGACTG
Flanking inner TbD1d: GCTGGCCAGCTGCTCGCCG 1.5 58 103
CMP F2: TCGGTCAGCAAGACGTTGAAG

R: ACTTCAGTGCTGGTTCGTGG 2.0 58 105
RD2 BV1: ATCTTGCGGCCCAATGAATC
Outer BV2: CAACGTCTTGCTGACCGACA 1.5 58 124
RD2 BV3: ATGAATCGGCCGCGTTCG
Nested BV4: GACCGACATCGGTGCCGCG 1.5 58 99
DR DRa: GGTTTTGGGTGTGACGAC? Not applicable

DRb: CCGAGAGGGGACGGAAAC 3.0 55

for all PCR amplifications.

doi:10.1371/journal.pone.0003426.t001

dimensions. On the inner aspect of the infant cranial bones were
serpentine engravings (serpens endocrania symmetrica, SES; Figure 2A),
a reliable diagnostic criterion for intra-thoracic inflammation [29)]
and associated with tuberculosis. The infant tubular bones also
demonstrated lesions identified as hypertrophic osteoarthropathy
(HOA), highly suggestive of tuberculosis [30] and characterized by
the formation of an expanded shell of periosteal reactive bone
(Figure 2B and C). The woman was estimated to be around 25
years old, based on dental attrition, epiphyseal ring ankylosis and
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Figure 2. Paleopathological lesions on Neolithic infant bones.
A. Endocranial surface of the infant showing marked engravings
(serpens endocrania symmetrica, SES), which indicate chronic respiratory
malfunction, and are usually associated with tuberculosis. B. Fragment
of long bone of the infant. Note the intensive bone remodeling
(hypertrophic osteoarthropathy, HOA) at the surface on the right side.
C. Higher magnification of the HOA on the infant bone.
doi:10.1371/journal.pone.0003426.9002
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'An initial denaturation step (95°C for 15 mins — hot start PCR, or 94°C for 1 min); DNA amplification (initially 40 cycles, with 25 cycles in nested reactions) of strand
separation at 94°C for 40 sec, 1 min of primer annealing, followed by strand extension at 72°C for 20 sec plus 1 sec/cycle; and a final extension step at 72°C, were used

2The DRa primer was biotinylated at the 5’ end to enable subsequent detection of amplified DNA by reverse hybridization.

symphysis pubis. There was a slight periosteal reaction affecting
the distal diaphysis of the one tibia available for examination, a
bony change consistent with HOA [5,31,32]. However, the
changes were not so marked as to be diagnostic.

Mycobacterium tuberculosis complex and M. tuberculosis
DNA

M. tuberculosis complex DNA was detected in the bones of
woman and infant (Table 2). Positive results with the multi-copy
1S6110 [33,34] and IS7081 [35] PCRs were obtained with the rib
sample from the woman and infant long bone sample, and
confirmed by sequencing. An IS6770 123 bp product from the
woman (right rib) and a 92 bp nested IS6770 product from the
infant were obtained, identical to those in the NCBI database.
Additionally, a 104 bp sequence identical to the relevant NCBI
sequence in the IS7081 product was obtained from the infant.

The single copy ThDI flanking PCR was positive from the
infant sample and a complete DNA sequence for the 128 bp
amplicon with the outer primers was obtained (Supporting Figure
S3A and B). The consensus sequence was identical to that in the
NCBI database. The strong signal indicates the excellent
preservation at this locus of the M. tuberculosis DNA template.
Nested PCR was also successful. Weak positives were obtained
with the outer primers from the female sample. These findings are
evidence that the infecting organism was M. tuberculosis from a
lineage in which the ThD1 deletion had occurred [16]. Results
from the infant for the single copy CMP PCR were faint and a
partial sequence was obtained (Supporting Figure S3C) with some
mismatched bases compared with the database, attributed to poor
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Table 2. Summary of PCR results.

PCR locus Woman Infant

1st stage 2nd stage  1st stage 2nd stage

PCR PCR PCR PCR
1S6110 Positive Positive Positive' Negative
IS1081 Positive Positive Positive' Positive
Flanking TbD1 Positive Negative Positive' Positive
RD2 Negative Negative Negative Negative
CMP Positive Not done Positive' Not done

'confirmed by sequencing.
doi:10.1371/journal.pone.0003426.t002

DNA preservation. No demonstrable amplicons of human nuclear
microsatellite DNA were obtained from the bone samples.
Spoligotyping provided additional evidence for M. tuberculosis
complex DNA for both the adult and infant specimens (Supporting
Figure S4 A-D), although there were several faint or dubious
positives and inconsistencies between replicates, as might be
expected of ancient specimens.

Lipid biomarkers of M. tuberculosis

Modifying an established protocol [28,36], long-chain fatty
acids were extracted as pentafluorobenzyl (PFB) esters, and
fractions corresponding to PFB mycolates were obtained (Sup-
porting Tables S4, S5). After treatment with pyrenebutyric acid
(PBA) these fractions produced PBA-PFB mycolates, which, after
reverse phase HPLC, gave profiles closely similar to those
produced by the M. tuberculosis complex, as indicated by a
standard M. tuberculosis strain (Figure 3). Further normal and
reverse phase HPLC gave detailed profiles for each sample,
reinforcing the close identity with AL tuberculosis (Supporting Figure
S2 C and D).

Discussion

It is believed that inundation of the Atlit-Yam site occurred
shortly after abandonment [24] and thereafter the environment
remained unchanged for 9,000 years. The Atlit-Yam site was
located within marshland; the graves were encased in clay,
eventually covered by thick layer of sand and later by salt water,
thus providing anaerobic conditions that retard degradation. The
excellent preservation of the skeletal remains is consistent with the
excellent physical state of the organic artifacts (wooden bowls, reed
mats) that were found on the site. The paleopathogical lesions of
SES in the infant cranium and HOA in the infant long bones and
possibly also the tibia of the woman buried with the infant,
presumed to be the mother, suggest that both suffered from, and
died of, tuberculosis.

Anaerobic conditions are also conducive for DNA preservation
[37] and DNA analysis supports the paleopathological diagnosis of
tuberculosis. Overall, the PCR data provide strong evidence of the
M. tuberculosts complex as specific DNA was detected in five
different genetic loci, including the TbD1 locus with a deletion
that is specific for a broadly-defined modern linecage of M.
tuberculosis. Failure to detect human DNA (data not included) may
reflect the greater stability of the GC-rich mycobacterial DNA,
which additionally benefits from the robust hydrophobic bacterial
cell wall [28,38,39].

Direct detection of cell wall mycolic acids specific for the
Mpycobacterium tuberculosis complex, without any amplification step,
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Figure 3. Detection of Mycobacterium tuberculosis mycolic acid
pyrenebutyric acid-pentafluorobenzyl (PBA-PFB) derivatives
by reverse phase fluorescence high performance liquid
chromatography (HPLC), from the Neolithic woman and infant.
The characteristic tight envelopes of peaks are the total mixture of
homologues for the different a-, methoxy- and ketomycolates. The Y-
axis in the profiles represents absorbance; absolute values of the
mycolates detected are shown in Supporting Table 5.
doi:10.1371/journal.pone.0003426.9g003

provides independent, robust confirmation of the presence of
tuberculosis. The quantity of mycolic acids appeared lower in the
infant sample (Supporting Table S5), in contrast to the DNA
studies where the infant gave better results. However, the mycolate
analyses were carried out on three combined rib samples from the
baby, not all of which had been tested for MTB DNA. These
extremely hydrophobic high molecular weight molecules are more
stable than DNA and have been used previously to confirm
diagnoses of ancient tuberculosis [27,28].

We conclude that both individuals in our study were infected
with M. tuberculosis, and that our findings are supported when we
consider the nature of the site, the stringent precautions taken to
prevent cross-contamination and verification by the specific lipid
biomarkers. Furthermore, we believe that this is the earliest report
of the disease in humans that has been confirmed by molecular
means. The infant is likely to have had disseminated primary
tuberculosis: - the only DNA sequences for single copy loci were
obtained from the infant material, which suggests a higher
bacterial load during life. In infants less than a year old the
present risk of developing active disease on infection with AL
tuberculosts is as high as 43% [40] due to the inadequacy of their
immune system. This compares with 5-10% in adults, 15% in
adolescents, and 24% in children aged 1-5 years.

The size of the infant’s bones, and the extent of the bony
changes, suggest a case of acquired neonatal tuberculosis, in which
an adult suffering from contagious pulmonary tuberculosis infects
an infant shortly after birth. Childhood tuberculosis is closely
linked to adult disease and is usually a sentinel event in the
community, demonstrating recent transmission. Infant and
maternal mortality rates from untreated tuberculosis in recent
times was between 30% and 40% [41], so it i3 unsurprising for
both mother and child to succumb and be buried together.

Spoligotyping should be a useful method of examining DNA
from archaeological material as even fragmented DNA gives
results, due to the increased sensitivity from the combination of
amplification and hybridization [42]. M. tuberculosis complex DNA
from the lesion of a 17,000-old extinct Pleistocene bison [11]
yielded spoligotyping patterns most similar to Mycobacterium
africanum or M. tuberculosis [43], and distinct from present day M.
bovis. Zink et al. [44] obtained spoligotypes from ancient Egyptian
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human bone and soft tissue samples, dating back to about 4000
years. Of their 12 positive samples, spoligotyping indicated M.
tuberculosis or, in some older Middle Kingdom samples, M.
africanum patterns, but not those of M. bovis.

We carried out spoligotyping on specimens from the woman
and infant but replicated typing gave inconsistent results, which
suggests there may be poor DNA preservation of some of the
single-copy spacer regions. The observed patterns do not match
any in the International Data Base spoldb4: www.pasteur-
guadeloupe.fr/th/spoldb4 but appear similar to an ancestral
pattern. Results need to be interpreted with caution, as spoldb4 is
based on data obtained from cultured organisms and spoligotyping
has not been validated for application to DNA extracts prepared
from degraded or archival specimens. The spoligotyping technique
is based on modern M. tuberculosis strains from around the world.
As the main variation in types is caused by unidirectional
deletions, all ancestral strains are likely to produce a near-
complete profile of the DR region and therefore to resemble each
other. This may explain why the spoligotypes from the Atlit Yam
skeletons resemble those of the Pleistocene bison [11].

Deletion analysis is a more robust method of examining ancient
material [16,45], and based on the TbDI1 deletion, the genetic
lineage resembles modern lineages of M. tuberculosis [16,43,51].

Suggestions that human tuberculosis arose from AL bovis in
hunted or domesticated animals have been revised since
comparative genomic studies demonstrate that M. bovis represents
a later lineage [16,17]. Members of the M. tuberculosis complex are
genetically very similar and were believed to be the result of a
clonal expansion following an evolutionary bottleneck 20,000
35,000 years ago [16,46,47]. However, further genomic studies of
the M. tuberculosis complex indicate a more ancient origin of this
group of closely related species than had previously been believed,
and that possibly an early progenitor, perhaps similar to M. canettu,
was present in East Africa as early as 3 million years ago [48,49].
The observation of non-specific lesions consistent with tuberculosis
found in a 500,000 year-old skeleton of Homo erectus [18] may also
indicate the long-term co-existence of host and pathogen, although
the diagnosis in this particular case has been questioned. However,
M. tuberculosis appears to have undergone long-term co-evolution
with its human host prior to the evolutionary bottleneck and well
before the development of agriculture and domestication,
comparable to other long-term human pathogens such as
Helicobacter pylori [50,51].

The present study of a population from 9250-8160 years ago,
around the time of the first great transition from hunter-gatherers
to a settled agriculture-based lifestyle [19], helps us to understand
the nature of tuberculosis within the Middle East. Could the
presence of cattle be pertinent? Atlit-Yam is among the very few
Pre-Pottery Neolithic sites where domesticated cattle have been
found. Furthermore, it is the only Neolithic site where there were
quantities of bovine bones, indicating that cattle were a major
dietary component [23]. We suggest that in the absence of
detectable M. bovis, the cattle may be important by supporting a
larger and denser human population, thus indirectly encouraging
the conditions for the long-term maintenance and transmission of
M. tuberculosis [21].

Supporting Information

Materials and Methods S1 Text

Found at: doi:10.1371/journal.pone.0003426.s001 (0.05 MB
DOC)

Table S1 The solvent sequence used for the silica gel normal

phase cartridge fractionation of long-chain compounds
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Found at: doi:10.1371/journal.pone.0003426.s002 (0.03 MB
DOC)
Table 82 'The solvent sequence used for the reverse phase

cartridge purification of PBA-PFB mycolates
Found at: doi:10.1371/journal.pone.0003426.s003 (0.02 MB
DOC)

Table 83 Conditions for HPLC analysis of PBA-PIB mycolates
Found at: doi:10.1371/journal.pone.0003426.s004 (0.02 MB
DOC)

Table 84 Percentage ratios of alpha-, methoxy- and ketomyco-
lates in archaeological samples and AM. tuberculosis standard
determined in normal phase HPLC

Found at: doi:10.1371/journal.pone.0003426.s005 (0.02 MB
DOC)

Table 85 Absolute amounts of mycolic acids extracted from
bone samples

Found at: doi:10.1371/journal.pone.0003426.s006 (0.02 MB
DOC)

Figure S1 Atlit-Yam burials. A. An example of human remains
with excellent preservation. B. Partial excavation of the burial site
with the adult female and infant skeleton (arrow).

Found at: doi:10.1371/journal.pone.0003426.s007 (2.46 MB TTF)

Figure $2 High Performance Liquid Chromatography (HPLC)
methodology. A. Representative structures of the mycolic acids
from M. tuberculosis. Natural mixtures of mycolates express a range
of homologous components with varying chain lengths. B. Strategy
for the release and derivatization of mycolic acids for fluorescence
HPLC. (a) Hydrolysis with KOH/ methanol/toluene to release
mycolic acids. (b) Phase-transfer catalyzed esterification of mycolic
acids with pentafluorobenzyl bromide (PFB) to give PIB
mycolates. (c) Esterification of PFB mycolates, by reaction with
pyrenebutyric acid (PBA), to produce PBA-PFB mycolates,
catalyzed by dicyclohexylcarbodiimide and pyrrolidinopyridine.
R- represents the remainder of the mycolate molecule. C. Normal
phase HPLC of PBA-PFB mycolates from bone samples and
standard M. tuberculosis. D. Reverse phase HPLC of individual o -,
methoxy- and ketomycolic acid PBA-PFB derivatives from bone
samples and standard M. tuberculosis. The number of carbons in the
individual underivatized mycolic acids is shown.

Found at: doi:10.1371/journal.pone.0003426.s008 (0.83 MB TTF)

Figure 83 DNA sequence data. A. M. tuberculosis ThD1 flanking
region (128 bp), obtained from the infant sample (5'-3’ strand). B.
M. tuberculosis ThD1 flanking region (128 bp), obtained from the
infant sample (3'-5" strand). C. M. tberculosis conserved membrane
protein (CMP) region, obtained from the infant sample (5'-3'
strand only).

Found at: doi:10.1371/journal.pone.0003426.s009 (12.09 MB

TIF)

Figure 84 Repeated spoligotypes from the Atlit-Yam samples
and controls. Each set of spoligotyping data (A—C) represents, from
top to bottom, M. tuberculosis, M. bovis (BCG) controls, Atlit Yam
female and Atlit Yam infant. D. Diagram of spoligotyping data,
including M. africanum spoligotypes (Donoghue et al 2004), and a
consensus pattern based on one or more positive results.

Found at: doi:10.1371/journal.pone.0003426.s010 (5.61 MB TTF)
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