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Abstract

A single internal ribosomal entry site (IRES) in conjunction with IRES transactivating factors (ITAFs) is sufficient to recruit the
translational machinery to a eukaryotic mRNA independent of the cap structure. However, we demonstrate that the mouse
TrkB mRNA contains two independent IRESes. The mouse TrkB mRNA consists of one of two 59 leaders (1428 nt and 448 nt),
both of which include the common 39 exon (Ex2, 344 nt). Dicistronic RNA transfections and in vitro translation of
monocistronic RNA demonstrated that both full-length 59 leaders, as well as Ex2, exhibit IRES activity indicating the IRES is
located within Ex2. Additional analysis of the upstream sequences demonstrated that the first 260 nt of exon 1 (Ex1a) also
contains an IRES. Dicistronic RNA transfections into SH-SY5Y cells showed the Ex1a IRES is constitutively active. However, the
Ex2 IRES is only active in response to retinoic acid induced neural differentiation, a state which correlates with the synthesis
of the ITAF polypyrimidine tract binding protein (PTB1). Correspondingly, addition or knock-down of PTB1 altered Ex2, but
not Ex1a IRES activity in vitro and ex vivo, respectively. These results demonstrate that the two functionally independent
IRESes within the mouse TrkB 59 leader are differentially regulated, in part by PTB1.
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Introduction

In eukaryotes, recruitment of canonical factors including the

ribosome to the 7-methyl guanosine cap structure on the 59 end of

the mRNA is thought to be the primary mechanism by which

translation initiation occurs[1]. Once recruited to the mRNA, the

40S ribosome scans along the 59 leader until it encounters the

initiator codon [1]. However, initiation of a number of eukaryotic

mRNAs can also occur through internal ribosomal entry sites

(IRESes, for review see [2]), a mechanism first identified in viral

RNAs [3]. In a manner analogous to the cap structure, a single

IRES recruits the 40S ribosomal subunit to the mRNA for

translation [4,5].

Unlike initiation from the cap structure, the subset of proteins

required for initiation from a eukaryotic IRES has yet to be

determined. However, the current literature suggests that most

eukaryotic IRESes require non-canonical translation factors

referred to as IRES transactivating factors (ITAFs) for initiation.

The three isoforms of polypyrimidine tract binding protein (PTB1,

2 and 4) [6] [7], La protein[8], and upstream of n-ras protein (unr)

[9] are examples of ITAFs required for efficient translation from

eukaryotic and viral IRESes. These proteins may function as

chaperones, altering or maintaining specific RNA structures that

permit binding of the translational machinery (for review see [10]).

This theory is supported by work from the Niepmann lab

demonstrating that binding of PTB to the foot-and-mouth disease

(FMDV) IRES enhances the recruitment of the initiation factor

eIF4G and stimulates FMDV IRES activity [11]. Additionally, it

has been shown that the eukaryotic Apaf-1 59 leader undergoes

secondary structure changes upon the binding of unr and PTB,

allowing for internal initiation of translation [5].

Utilization of eukaryotic IRESes often occurs during cellular

events that reduce cap-dependent translation. For example, during

mitosis the family of eIF4E binding proteins (4E-BP) is hypopho-

sphorylated, which enhances their ability to bind eIF4E [12]. The

sequestering of eIF4E inhibits cap-dependent translation [3] and

the overall level of protein synthesis is decreased [13]. However,

during mitosis several mRNAs, including those encoding for

ornithine decarboxylase (ODC) [12] and p58 (PITSLRE kinase)

[14], are translated in an IRES-dependent manner. For PITSLRE

kinase, its IRES activity partially depends on the upregulation of

unr expression at the G2/M junction underscoring not only the

importance of the cell state, but also the importance of ITAF

availability for internal initiation.

Studies in model systems indicate that neural activity may also

promote dependency on internal initiation of translation. In

response to activity-dependent neural plasticity, Aplysia neuroen-

docrine cells undergo a switch from cap-dependent to cap-

independent translation [15]. Additionally, multiple dendritically

localized mRNAs exhibit IRES activity within neural cell lines

[16] and primary neuronal cultures [17] suggesting they may be

translated in response to neural activity.
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The mRNA encoding for the neurotrophin receptor TrkB is

dendritically-localized [18] and encodes for a tyrosine kinase

receptor that binds brain-derived neurotrophin factor (BDNF) (for

review see [19]). The TrkB receptor is synthesized under diverse

conditions and its activity contributes to multiple cellular processes

(for review see [20]). In neural stem cells, the TrkB mediated

pathway promotes cell proliferation [21]. In the adult, TrkB

activity contributes to changes in synaptic efficacy and local

connectivity, ultimately affecting learning and memory (for review

see [19]). Owing to its diverse functions, TrkB expression is

regulated at multiple steps in response to various cellular

conditions [22,23,24]. For example, ischemia stimulates TrkB

protein synthesis in order to promote cell survival [25].

Interestingly, ischemia also inhibits cap-dependent translation

[26] suggesting that the upregulation of TrkB occurs in a cap-

independent manner. In accordance with this observation, our lab

has demonstrated that the 59 leader of the mRNA encoding for

human TrkB contains an IRES [16].

We hypothesized that if IRES-dependent translation was a

critical mechanism for the synthesis of TrkB protein, then both the

presence of an IRES and its mechanism would be evolutionarily

conserved. The human TrkB 59 leader is derived from alternative

transcriptional start sites and alternative splicing of five exons [27].

Interestingly, the IRES was localized to exon 5, which is present in

all 59 leader variants [16]. Unlike the human 59 leader, the mouse

TrkB 59 leader is transcribed from two promoters and is comprised

of two exons [28]. However, similar to the human TrkB 59 leader,

all of the mouse TrkB 59 leaders contain a 39 common exon, exon

2. The human exon 5 and the mouse exon 2 sequences share a

63% identity with regions of high similarity on the extreme ends of

the exons. Consequently, we predicted that the mouse TrkB 59

leader would mediate internal initiation and that the IRES would

be located within Exon 2.

In the present report we establish that the mouse TrkB Exon 2

does contain an IRES. But surprisingly, an IRES is also located

within Exon 1 demonstrating the presence of two IRESes initiating

translation of the same open reading frame. The two IRESes are

differentially utilized based on the differentiation state of a

neuronal cell line. This phenomenon is explained in part by the

observation that PTB1 differentially affects translation mediated

by the two IRESes, despite the fact that PTB1 binds both IRESes

with similar affinity.

Results

The Mouse TrkB 59 Leaders Contain a Potential IRES
Element

To determine if the full-length 59 leaders generated from the

first promoter, Leader 1 (L1, 1.428 kb), from the second promoter,

Leader 2 (L2, 448 nt), and Exon 2 (Ex2, 344 nt) exhibited IRES

activity, they were inserted into the intercistronic region of the

dicistronic luciferase DNA vector pRF (Fig 1a and 1b)[29]. The 59

leader of the human b-globin mRNA (50 nt) and the leader of the

encephlomyocarditis virus (EMCV) (608 nt) were also inserted as

negative and positive controls, respectively [30]. The individual

constructs were transfected into two neural cell lines, C6 and N2a,

and after 24 hours the cells were harvested and assayed for

luciferase activity. A ratio of the Photinus luciferase to the Renilla

luciferase was calculated following a luciferase assay of the cell

lysates. The ratio obtained for the negative control, b-globin, was

set to one, and the ratios obtained from the other constructs were

normalized to that value.

As expected, the positive control EMCV exhibited an increased

Photinus:Renilla (P:R) luciferase ratio when compared to the b-

globin 59 leader in both cell lines. EMCV generated a ratio of 28

in C6 cells and 16 in N2a cells (Fig 2). All three mouse TrkB 59

Figure 1. The mouse TrkB 59 leaders. (A) Schematic representation of the gene structure of the mouse TrkB 59 leader [28] and variations used for
luciferase assays (B) as well as the two controls, the b-globin 59 leader and EMCV IRES. The boxes represent exons, lines represent introns, and the
blue arrows indicate the transcriptional start site of the two promoters.
doi:10.1371/journal.pone.0003242.g001

Two IRESes in the TrkB mRNA
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leaders also exhibited higher P:R ratios than the negative control.

Ex2 exhibited a P:R ratio of 9 in C6 cells and 15 in N2a cells,

while the full-length L2 had a ratio of 7 in both cell lines.

Interestingly, L1 yielded a ratio ranging from 200–300 in the cell

lines. These results suggest that all three mouse TrkB 59 leaders

can internally initiate translation, however the presence of other

regulatory elements could also lead to an increased P:R ratio from

the DNA construct.

A Cryptic Promoter is Present in the Mouse TrkB 59

Leader
The dicistronic DNA construct has been used as the major assay

to test for IRES activity. However, additional mechanisms can

account for translation of the second cistron. The dicistronic DNA

construct used in these assays contains an intron upstream of the

Renilla luciferase gene to increase transcription and translation

efficiency. However, the presence of a cryptic splice site located in

the 59 leader of interest would lead to the splicing of the Renilla

luciferase gene, leaving only the Photinus luciferase gene to be

translated and effectively increasing the P:R ratio. In addition, the

presence of a cryptic promoter in the 59 leader would generate a

monocistronic mRNA encoding only the Photinus luciferase gene.

This process would create an mRNA consisting only of the Photinus

luciferase gene and again, would lead to an increase in the P:R ratio.

To determine if a cryptic promoter is present in the TrkB 59

leaders, we inserted the TrkB and the b-globin 59 leaders into the

intercistronic region of a promoterless dicistronic luciferase

construct (a generous gift from Dr. Anne Willis [31]). Transfection

of the promoterless dicistronic DNA into C6 cells yielded robust

Photinus luciferase activity from the TrkB L1 59 leader (Fig. 3); the

P:R ratio was 76 fold higher than that obtained from the

dicistronic construct containing the b-globin 59 leader. In addition,

both Ex2 and L2 showed a ten-fold increase in the P:R ratio. It

was perhaps surprising that L2 and Ex2 exhibited cryptic

promoter activity because a Northern blot analysis did not reveal

additional RNA species (data not shown), although this incongru-

ity has been observed previously [32]. These results indicate that

all three TrkB 59 leaders exhibit some level of cryptic promoter

activity.

The Mouse TrkB 59 Leader Internally Initiates Translation
from Dicistronic RNA

To overcome the limitations of cryptic promoter activity (and

cryptic splicing which we did not examine), we in vitro transcribed

the dicistronic DNA. The resulting dicistronic mRNA was

transfected into C6 cells. All three TrkB 59 leaders exhibited a

P:R ratio higher than that observed from the dicistronic mRNA

containing the b-globin 59 leader (Fig. 4). The largest ratio of

Figure 2. The mouse TrkB 59 leaders exhibit an increased
Photinus to Renilla luciferase (P:R) ratio. Dicistronic luciferase
constructs containing the b-globin, EMCV, and TrkB 59 leaders were
transfected into the C6 and N2a neural cell lines. The P:R ratio from each
construct was normalized to that obtained from the b-globin construct,
whose P:R ratio was set to one.
doi:10.1371/journal.pone.0003242.g002

Figure 3. The mouse TrkB 59 leaders exhibit cryptic promoter
activity. Promoterless dicistronic luciferase constructs containing the
b-globin or the TrkB 59 leaders were transfected into C6 cells. The P:R
ratio was normalized to that obtained from construct containing the b-
globin 59 leader.
doi:10.1371/journal.pone.0003242.g003

Two IRESes in the TrkB mRNA
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approximately six was seen with L2. Ex2 generated a P:R ratio of

four, and L1 showed the lowest ratio of approximately 2.5. This

result demonstrates that all three mouse TrkB 59 leaders can

mediate IRES-dependent translation. The result also indicates that

the presence of a cryptic promoter in a 59 leader does not preclude

its ability to internally initiate translation.

Mouse TrkB 59 Leaders Initiate Translation When Cap-
Dependent Translation is Inhibited

With a capped monocistronic RNA, it cannot be determined

whether translation initiation is occurring in a cap-dependent

manner or through an IRES. To dissociate between the two

mechanisms, cap-dependent translation was inhibited ex vivo. We

inserted the 59 leaders upstream of the Photinus luciferase gene.

The Renilla luciferase gene was contained on the same plasmid

(pRM) under an independent promoter and served as an internal

transfection control (Fig 1b). The multiple cloning site from the

pGL3 plasmid (83 nt) was used as a negative control in this

experiment because the Renilla gene on the pRM plasmid also

utilizes this multiple cloning site as its 59 leader. We have

previously shown that the pGL3 multiple cloning site does not

contain an IRES and exhibits a P:R ratio equivalent to that

obtained from a dicistronic DNA construct containing the b-

globin 59 leader [16]. The mouse TrkB and pGL3 DNA constructs

were co-transfected into C6 cells with either a hypophosphorylated

form of 4EBP [33] or a null vector. When expressed, the

hypophosphorylated 4EBP sequesters eIF4E, inhibiting cap-

dependent translation [34]. The percentage of luciferase activity

remaining in the presence of the hypophosphorylated form of

4EBP when compared to that observed in the presence of the null

vector was calculated. Translation of Renilla luciferase mRNA

containing the pGL3 multiple cloning site served as the internal

control to monitor cap-dependent translation.

In the presence of hypophosphorylated 4EBP, the Renilla

luciferase activity decreased to approximately 23–30% of the

control level for all of the constructs. This result demonstrated that

cap-dependent translation was being inhibited (Fig 5a). In

addition, the level of Photinus luciferase activity generated from

the mRNA containing the multiple cloning site from the vector

pGL3 decreased to 28% of the control confirming that its

translation was also cap-dependent. On the other hand, the

Photinus luciferase mRNA containing the EMCV IRES decreased

to 51% of the control transfection when cap-dependent translation

was inhibited confirming that it does initiate translation through a

cap-independent mechanism. The relatively large decrease in the

overall level of translation from the mRNA containing the EMCV

IRES when cap-dependent translation is shut down is believed to

be due to the addition of a cap structure to the mRNA. This

creates an artificial context for the EMCV 59 leader and when

uninhibited, allows for the cap structure to compete with the IRES

for translational machinery. All three mRNAs containing the

different mouse TrkB 59 leaders showed a smaller reduction in

activity compared to that observed from the pGL3 mRNA. Ex2

and L2 exhibited similar reductions of approximately 50%. L1

exhibited only a 15% decrease in Photinus luciferase activity in the

presence of hypophosphorylated 4EBP. This result supports the

conclusion that all three TrkB 59 leaders can initiate translation

independent of the cap. It also suggests that the contribution of

cap- and IRES-dependent translation may vary for each leader.

To further demonstrate the ability of the TrkB 59 leaders to

initiate cap-independent translation, in vitro transcribed mRNA

containing the three mouse TrkB 59 leaders or the b-globin 59

leader upstream of the Photinus luciferase open reading frame was

translated in rabbit reticulocyte lysate (RRL). Increasing concen-

trations of cap analog, which binds and sequesters eIF4E

inhibiting cap-dependent translation, was added to the lysate.

Indeed, the level of Photinus luciferase activity derived from the

mRNA containing the b-globin 59 leader was inversely propor-

tional to the concentration of cap analog (Fig 5b). However, the

level of translation from the mRNAs containing the mouse TrkB

59 leaders was relatively stable irrespective of the cap analog

concentration. These results demonstrate that the mRNA

containing the TrkB 59 leader can be translated in a cap-

independent manner.

The Mouse TrkB 59 Leader Contains Multiple Contains
Multiple IRESes

Our results indicate that an IRES element is located within

exon 2, which is present in both mouse TrkB 59 leaders. To

determine whether the unique upstream regions in each 59 leader

can also internally initiate translation, these regions were inserted

into dicistronic RNA constructs and transfected into C6 cells. The

unique region from Leader 2, L2U (104 nt, Fig 1a), generated a

P:R ratio similar to that observed with the negative control b-

globin (Fig 6a). However, the upstream sequence from Leader 1,

Ex1 (1.084 kb), generated a P:R ratio comparable to that observed

from Ex2 indicating that Ex1 contains an IRES.

To confirm the ex vivo results, we inserted Ex1 and Pr2U into

monocistronic Photinus constructs and in vitro translated the mRNA

Figure 4. The mouse TrkB 59 leaders exhibit IRES activity when
expressed in dicistronic RNA constructs. Dicistronic luciferase
mRNA containing the b-globin and the TrkB 59 leaders were transfected
into C6 cells. The P:R ratio for each construct was normalized to that of
the negative control, b-globin.
doi:10.1371/journal.pone.0003242.g004

Two IRESes in the TrkB mRNA
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(Fig 6b). As expected, translation from the L2U construct

decreased in the presence of increasing amounts of cap analog

similar to that observed from the mRNA containing the b-globin

59 leader. On the other hand, translation from the Ex1 construct

remained relatively constant. Taken together, the ex vivo and in vitro

data demonstrate the ability of Ex1, in addition to Ex2, to

internally initiate translation.

Exon 1 of mouse TrkB can be alternatively spliced at three sites

creating three different leaders, which all contain the first 259 nt of

the exon (Fig 1a). To identify the region within Exon 1 that

contains the IRES we created dicistronic constructs containing the

individual segments, Ex1a, Ex1b, and Ex1c, or in contiguous

pairs, Ex1ab and Ex1bc. Transfection of C6 cells with the

dicistronic RNA showed that all 59 leaders containing Ex1a

generated a P:R ratio higher than b-globin (Fig 7). However,

Ex1b, Ex1c, and Ex1bc exhibited a P:R ratio equivalent to that

obtained from b-globin. These results indicate that the IRES

element in Ex1 is located within Ex1a.

Figure 5. The mouse TrkB 59 leaders are able to initiate
translation when cap-dependent translation is inhibited. A) A
dual monocistronic construct containing the pGL3 multiple cloning site
upstream of the Renilla luciferase and the pGL3 multiple cloning site,
EMCV, or the TrkB 59 leaders upstream of the Photinus luciferase gene
was co-transfected into C6 cells with a construct encoding for a
hypophosphorylated 4EBP construct or a null vector. The level of
Photinus luciferase activity from each mRNA, when co-transfected with
the null vector, was normalized to 100 percent. The Renilla and Photinus
luciferase activity obtained in cells co-transfected with hypopho-
sphorylated 4EBP is represented as a percentage of the activity
obtained in cells co-transfected with the null plasmid. B) Monocistronic
Photinus luciferase mRNA containing the b-globin or TrkB 59 leaders was
in vitro translated in rabbit reticulocyte lysate in the presence of
increasing concentrations of cap analog. Photinus luciferase activity for
each mRNA in the absence of cap analog was set to 100 percent.
doi:10.1371/journal.pone.0003242.g005

Figure 6. The mouse TrkB mRNA contains two independent
IRESes. A) The additional sequence upstream of Exon 2 from both full-
length leaders (Ex1 and L2U) and Exon 2 alone (see Fig 1a) were
individually inserted into dicistronic RNA vectors and transfected into
C6 cells. The resulting P:R ratios were normalized to the ratio observed
from the mRNA containing the b-globin 59 leader. B) The unique
regions of the full-length TrkB 59 leaders, as well as the b-globin 59
leader were inserted upstream of a monocistronic Photinus luciferase
open reading frame and in vitro translated in the presence of increasing
concentrations of cap analog. The initial level of Photinus luciferase
activity was set to 100 percent for each mRNA.
doi:10.1371/journal.pone.0003242.g006

Two IRESes in the TrkB mRNA
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PTB1 Protein Binds both Mouse TrkB IRESes
PTB activates or enhances IRES activity from a number of

cellular mRNAs [6,9,35]. As mentioned previously, unr and PTB

bind to the Apaf-1 IRES, inducing conformational changes and

allowing for internal initiation to occur [5]. PTB binds to the Apaf-1

IRES at two polypyrimidine tracts located 74 and 118 nucleotides

from the initiator codon, respectively. Sequence comparison

revealed that the mouse TrkB 59 leader has two polypyrimidine

tracts in similar locations of 75 and 124 nucleotides from the initiaton

codon suggesting that PTB may also influence RNA secondary

structure, and ultimately the IRES activity, of the mouse TrkB 59

leader. To determine the ability of PTB1 to directly bind the Ex1a

and Ex2 IRESes, we performed a filter binding assay. The cricket

paralysis virus (CrPV) IRES was used as a negative control since it

has been established that the CrPV IRES does not require protein

factors to initiate translation [36]. Radiolabeled RNA consisting of

Ex1a, Ex2, or CrPV was incubated in the presence of increasing

amounts of recombinant PTB1 protein and passed through a dot

blot apparatus. The resulting binding curve was fit using the

Langmuir equation. As expected, the CrPV IRES did not bind to

PTB1 with a significant affinity (Fig 8). However, Ex1a and Ex2

bound to PTB1 with Kd values equaling 85 nM and 46 nM,

respectively. Although PTB1 binding to both IRESes falls within the

same order of magnitude, the two-fold difference may reflect a

biologically significant difference.

The Two TrkB IRESes Are Differentially Regulated
To address whether the binding of PTB1 plays an important

role in Ex1a and Ex2 IRES activity, dicistronic RNA was in vitro

translated in the presence of 0.4 mg of PTB1 protein isoform [37].

Somewhat surprisingly, no change in the P:R ratio from Ex1a was

observed when PTB1 was present despite the ability of PTB1 to

bind to Ex1a (Fig 9a). Conversely, the P:R ratio from the

dicistronic mRNA containing Ex2 increased by 40% in the

presence of PTB1. This result suggests that PTB1 stimulates Ex2

IRES activity and that PTB1 interacts with the mouse TrkB

IRESes differently.

Changes in cell state, such as mitosis [12], inhibit cap-

dependent translation and promote ITAF synthesis and IRES

activity. Since the TrkB receptor contributes to different cellular

functions in neural stem cells and neurons, we were interested in

determining whether differentiation also affected IRES activity.

To examine the effects of differentiation on the TrkB IRESes, we

chose SH-SY5Y cells, a neuroblastoma that generates a differen-

tiated neuronal phenotype when exposed to retinoic acid [9].

Dicistronic RNA containing Ex1a, Ex2, or the b-globin 59 leader

was transfected into SH-SY5Y cells that were either treated with

DMSO (undifferentiated) or retinoic acid (differentiated) for four

days (Fig. 9b). The dicistronic mRNA containing Ex1a exhibited a

P:R ratio approximately three-fold higher than b-globin in both

the undifferentiated and differentiated cells. Surprisingly, in

undifferentiated cells Ex2 did not demonstrate IRES activity,

yielding a P:R ratio similar to that of b-globin. However, in the

differentiated cells the P:R ratio of Ex2 increased to approximately

two and a half fold that of b-globin. This result suggests that the

Ex1a IRES is constitutively active is SH-SY5Y cells, while the Ex2

IRES is only active in differentiated SH-SY5Y cells.

The ability of Ex2 to internally initiate translation in

differentiated but not undifferentiated SH-SY5Y cells indicates

the presence of a factor that is induced upon differentiation. Since

we have already established that PTB1 affects the IRES activity

from the mouse TrkB IRESes differentially, it suggests that PTB1

Figure 7. The upstream IRES in the mouse TrkB 59 leader is
located within Ex1a. The exon 1 splice variants (shown in the
schematic, see also Fig 1A) were inserted into dicistronic RNA vectors
and transfected into C6 cells. The resulting P:R ratios were normalized
to the ratio observed from b-globin 59 leader.
doi:10.1371/journal.pone.0003242.g007

Figure 8. The mouse TrkB 59 leaders bind PTB1 protein. Purified
PTB1 was added in increasing amounts to radiolabeled RNA containing
Ex1a, Ex2, or the negative control CrPV IRES. A Langmuir plot was
created using the calculated fraction bound. Disassociation constants of
85 nM and 46 nM were determined for the PTB1 interaction with Ex1a
and Ex2, respectively.
doi:10.1371/journal.pone.0003242.g008

Two IRESes in the TrkB mRNA
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may be the factor responsible for the differential regulation

observed in the SH-SY5Y cells. Indeed, differentiation of SH-

SY5Y cells by retinoic acid leads to the induction of PTB1 [9], but

not the neural isoform, nPTB (data not shown). To investigate

whether the presence of PTB1 affects TrkB IRES activity, PTB1

protein was knocked down in differentiated SH-SY5Y cells using

siRNA. Western blot analysis revealed that the siRNA reduced

PTB1 expression level by greater than 80% from that observed in

untreated differentiated cells (Fig. 10a). Additionally, transfection of

dicistronic RNA into the PTB1 depleted differentiated SH-SY5Y

cells showed a decrease in Ex2 IRES activity, suggesting that PTB1 is

required for internal initiation from the Ex2 IRES (Fig. 10b). The

Ex1a IRES activity was not affected by the reduction in PTB1,

confirming the differential regulation seen above.

Discussion

In the present report, we demonstrate that the mouse TrkB 59

leader contains two IRESes. One IRES is located within Ex2, a

region similar to the region within the human TrkB 59 leader

found to exhibit IRES activity [16]. The other IRES is unique to

the mouse TrkB 59 leader and is found in the 59 end of Exon 1.

Moreover, we found that the two IRESes exhibit different

characteristics. The IRES in Ex2 is active in differentiated SH-

SY5Y cells, binds PTB1, and its activity is enhanced in the

presence of PTB1. On the other hand, the IRES within Ex1a is

active in both differentiated and undifferentiated SH-SY5Y cells,

binds PTB1, but its activity is unaffected in the presence of PTB1.

Figure 9. PTB increases IRES activity from the Ex2 IRES, but
does not affect Ex1a IRES activity. A) Dicistronic luciferase mRNA
containing the Ex1a, Ex2, or b-globin 59 leader was in vitro translated in
RRL that was either untreated or supplemented with 0.4 mg of PTB1.
The change in the P:R ratio for the samples when in the presence of
PTB1 relative to the untreated sample are shown. B) The two mouse
TrkB IRESes demonstrate differential regulation. SH-SY5Y cells treated
with 2 mM retinoic acid or with DMSO (mock) for four days were
transfected with dicistronic mRNA containing the b-globin, Ex2, or Ex1a
59 leaders. The P:R ratios were normalized to that from the mRNA
containing the b-globin 59 leader.
doi:10.1371/journal.pone.0003242.g009

Figure 10. PTB expression is required for IRES activity
mediated by Ex2. A) Western blot analysis of PTB and GAPDH (as a
loading control) from lysates obtained from differentiated and
undifferentiated SH-SY5Y cells transfected with siRNA directed against
PTB or mock transfected for 72 hours. B) Dicistronic RNA containing the
two mouse TrkB IRESes were transfected into differentiated SH-SY5Y
cells depleted of PTB1 by siRNA. The P:R ratios were normalized to that
from the mRNA containing the b-globin 59 leader in control
undifferentiated SH-SY5Y cells.
doi:10.1371/journal.pone.0003242.g010

Two IRESes in the TrkB mRNA
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We also noted that the TrkB 59 leaders contain a cryptic promoter,

indicating that 59 leaders can contain both a cryptic promoter, as

well as an IRES.

Limitations of Using Dicistronic DNA Constructs to
Demonstrate IRES Activity

Historically, dicistronic constructs have been used to examine 59

leaders for the ability to internally initiate translation. However,

the increased P:R ratios that have been interpreted as the presence

of an IRES can also be due to the presence of cryptic splice sites or

cryptic promoters [32]. Removal of the promoter and intron from

the dicistronic construct demonstrated that all three TrkB 59

leaders exhibit some level of cryptic promoter activity. This result

does not rule out the possibility that cryptic splicing occurs in the

original dicistronic vector, and therefore, it is still possible that

both processing events can occur and contribute to the second

RNA species.

Our results indicate that the presence of a cryptic promoter in a

eukaryotic 59 leader does not preclude the presence of an IRES.

Indeed, it was previously reported that both an IRES and a cryptic

promoter are present in the 59 leader of hepatitis C virus (HCV)

[38]. To more conclusively demonstrate IRES activity in cells, we

transfected cells directly with RNA. This approach should reveal

IRES activity exhibited by mRNA without subjecting it to nuclear

processes. Indeed, aberrant RNA species following transfection of

DNA constructs have not been observed when the corresponding

RNA was transfected [39]. Using RNA transfections, all three

mouse TrkB 59 leaders demonstrated IRES activity. In addition,

the TrkB 59 leaders were able to initiate translation in vitro when

cap-dependent translation was inhibited. Together, these data

suggest that despite the presence of a cryptic promoter, the mouse

TrkB 59 leaders can internally initiate translation.

Multiple IRESes Present in a Single mRNA
The mouse TrkB mRNA is one of only a few eukaryotic

mRNAs to contain two IRESes within the same mRNA.

Transcription of the mouse TrkB gene from promoter 1 yields

the 59 leader 1 with IRESes located within Ex1 and Ex2. The

IRES in Ex1 was further localized to the 59 end, a region that is

within all alternatively spliced variants. The rationale for multiple

IRESes on the same 59 leader is not known. It is possible that

multiple IRESes work cooperatively to increase IRES activity. If

this was occurring with the Ex1a and Ex2 IRESes, we predict the

presence of both IRESes (L1) would generate higher IRES activity

than either IRES alone. However, L1 exhibited a lower P:R ratio

than either Ex1a or Ex2 alone (Fig 4).

A second possibility is that the two IRESes initiate at different

initiator codons. This situation occurs with the two IRESes located

within the c-myc mRNA. The upstream element, IRES 1, initiates

translation of the MYCHEX1 open reading frame (ORF) while

the downstream IRES 2 initiates the c-myc 1/ c-myc 2 ORF [40].

Additionally, two IRESes exist in the 59 leader of the mRNA

coding for endothelial growth factor (VEGF). They control

initiation at two alternative start sites yielding a protein with a

different N-terminus [41,42]. Interestingly, an upstream ORF

(uORF) located between the two IRESes determines which IRES

is utilized [43]. The mouse TrkB Exon 1 contains 15 potential

uORFs that could also regulate the usage of the two TrkB IRESes.

Only one uORF (21048 nt in Ex1b) is in a moderately favorable

Kozak context. It would therefore, be of interest to determine if

the predicted 4.2 kD product encoded in Exon 1 is synthesized.

We cannot identify at present, whether one or both IRESes is

utilized in the full length L1 59 leader. However, since all 59

leaders containing one or two IRESes (regardless of the presence

of uORFs) yield equivalent levels of luciferase protein it indicates

that the major ORF is the Photinus luciferase ORF. This

observation is in agreement with the identification of a single

initiation start site in both the mouse and human TrkB genes

[27,28], and would be the first example of two unique IRESes

being used to produce the identical protein.

A third explanation is that the two IRESes are differentially

employed. Multiple mechanisms may exist to ensure the presence

and/or use of one IRES. For example, neural activity increases

transcription mediated by promoter 2 generating an mRNA with

only one IRES [44]. Second, the presence of RNA upstream of an

IRES may inhibit its function [45]. In this case, the Ex1a IRES

would be active in the full-length leader if the presence of the

upstream sequence inhibits the Ex2 IRES. Finally, when both

IRESes are present, IRES selection may be regulated by the

presence of ITAFs. It has been well documented that IRESes are

neither constitutively nor ubiquitously active. IRESes, including

those in the mouse TrkB 59 leaders, as well as human TrkB [16], c-

IAP1 [46], Apaf-1 [47] and c-myc [48], demonstrate varying

activities in different cell lines, presumably due to differential

expression of ITAFs. Indeed, we have shown that the two IRESes

within the TrkB 59 leader are differentially regulated within a cell

line. This level of regulation is likely functional within primary

neurons. For example, Ex2 IRES is only active in differentiated

SH-SY5Y cells, a model for post-mitotic neurons that are capable

of neural activity [49]. Neural activity in turn promotes the use of

promoter 2 generating a TrkB 59 leader containing only the Ex2

IRES [44]. This observation provides a link between the

differential usage of the TrkB promoters and TrkB translation.

At the molecular level, differential usage of the two TrkB

IRESes may be regulated in part by PTB1. IRES activity in vitro

mediated by the Ex2 IRES was increased in the presence of PTB1.

In addition, Ex2 IRES activity correlates with the expression

pattern of PTB1 within SH-SY5Y cells [9] and is decreased when

PTB1 levels are significantly reduced. IRES activity mediated by

Ex2 mirrors that of the Apaf-1 IRES in that it is also only active in

differentiated SH-SY5Y cells and is regulated by PTB1 [9].

Binding of an accessory protein to an mRNA does not implicate

the protein as an ITAF. In vitro translation assays and RNA

transfections into SH-SY5Y cells demonstrate that although PTB1

binds to both Ex1a and Ex2, it only affects Ex2 IRES activity. Ex1a

does not require PTB1 to internally initiate translation and the

changes in the level of PTB1 does not alter Ex1a IRES activity, an

observation seen previously for one of the IRESes in the VEGF 59

leader [42]. It remains possible that PTB1 plays a role in enhancing

Ex1a IRES activity in conjunction with additional factors that are

absent from RRL and SH-SY5Y cells. The Apaf-1 and BAG-1

IRESes require the presence of unr and poly(rC) binding protein 1

respectively, in addition to PTB1, for IRES activity [5,50].

The position of the PTB1 site within the mRNA secondary

structure can determine whether PTB1 binding can affect IRES

activity. Therefore, the inability of PTB1 to enhance Ex1a IRES

activity may be due to the context of the PTB1 binding sites. The

Willis lab demonstrated that the PTB1 binding site, a CCU repeat,

can only internally initiate translation when present within a stem

structure and not as single stranded RNA [31]. Consequently, it

would be predicted that potential PTB1 binding sites within Ex2

are in a double stranded conformation, while those within Ex1a

would exist in a single stranded state.

It is also possible that PTB1 binding to the TrkB mRNA occurs

to mediate another mRNA processing event. PTB1, in addition to

regulating internal initiation, also affects RNA splicing [37]. Since

Exon 1 is alternatively spliced, it is possible that PTB1 is binding

for that purpose. In addition, the assay was performed in isolation
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of other polypyrimidine binding proteins that may normally

compete with PTB1 for the binding sites within TrkB and prevent

the binding of PTB1.

Differential use of the TrkB IRESes may be a mechanism to

regulate protein expression levels. For instance, the selection of

which IRES is utilized will alter the sequence and distance over

which the ribosome must scan, in a similar manner to that

predicted for ribosomes recruited to the cap structure. For

example, a long G/C rich 59 leader will impede ribosomal

scanning and decrease the overall level of protein synthesis [51]. In

the case of TrkB, the distance from the Ex1a IRES is over 1kb

long, is G/C rich, and contains multiple upstream AUGs.

Therefore, when less TrkB is required, initiation could occur

from the Ex1a IRES. However, when TrkB upregulation is

required to affect synaptic plasticity in response to neural activity,

initiation could occur from the shorter, and now more prevalent

Ex2 IRES. Consequently, the presence of multiple IRESes on a

single 59 leader may provide an additional mechanism to regulate

protein synthesis.

Materials and Methods

Constructs
The mouse TrkB 59 leaders (Fig 1a), with the exception of L1,

were cloned from a mouse brain cDNA library (Clontech) with

EcoRI and NcoI restriction sites. L1 was created by PCR

amplifying exon 1 and exon 2 separately. Exon 1 was created

with an EcoRI site at the 59 end and a blunt 39 end. Exon 2 had a

blunt 59 end and an NcoI site at its 39 end. The central blunt ends

were ligated together and the combined exons were the inserted

into the RF vector using the EcoRI and NcoI sites at the insert

ends. The RF vector was a generous gift from Dr. Anne Willis,

University of Nottingham.

In order to create the dual monocistronic vector, the RF

constructs were then digested with EcoRI and HpaI to isolate the

59 leader, the Photinus luciferase gene, and the SV40 39 UTR. This

portion was then ligated into the pGL3 vector (Promega). To isolate

the 59 leader and Photinus luciferase gene from this vector, it was

digested with SnaBI and ApaLI. The fragment was then ligated into

a backbone that already contained a monocistronic Renilla luciferase

gene, creating a vector that contains both luciferase genes in a

monocistronic context. The mono- and dicistronic constructs used

for in vitro transcription were made as described in [16].

To create the promoterless constructs, the b-globin RP vector

was digested sequentially with SmaI and EcoRV to release the

upstream intron and promoter. The blunt ends were then ligated

together to create the promoterless vector. The 59 leaders were

exchanged using the EcoRI and NcoI restriction sites.

DNA containing the cricket paralysis virus (CrPV) IRES was

PCR amplified from plasmid DNA designed as described in [52]

using M13 primers. The original CrPV IRES DNA was a

generous gift from Dr. Peter Sarnow, Stanford University.

Capped RNA used for in vitro translation and RNA transfections

was in vitro transcribed using the mMessage Machine kit (Ambion)

per manufacturer’s instructions as described in [16]. Uncapped

RNA used for in vitro binding assays was in vitro transcribed using

the MEGAScript kit (Ambion) per manufacturer’s instructions.

Cell Culture/Transfections
C6 and N2a cell lines were purchased from ATCC and cultured

in DMEM, 10% fetal bovine serum, and 200 mM L-glutamine.

Two micrograms of DNA was transfected into the cells using

FuGene6 reagent (Roche). The cells were harvested 24 hours later

and lysed using passive cell lysis buffer (Promega). The lysate was

then assayed for luciferase activity using the Dual-Luciferase

Reporter Assay System (Promega) measured using a Luminoskan

luminometer.

Co-transfections were performed as described above using

1.8 mg of RP DNA and 0.2 mg of either the Pactag null vector

(based on pACTAG-2) or DNA encoding for a hypopho-

sphorylated version of 4E-BP1 [33]. The 4E-BP1 and pAC-

TAG-2 constructs were a generous gift from Dr. Nahum

Sonenberg, McGill University.

RNA transfections using 2 mg of RNA were performed using

the RNA Transmessenger kit (Qiagen) per manufacturer’s

instructions. The cells were incubated for seven hours after

transfection, harvested, and assayed for luciferase activity.

SH-SY5Y cells were purchased from ATCC and cultured in

DMEM, 10% fetal bovine serum, and 200 mM L-glutamine. Cells

were plated four days prior to transfection and differentiated by

treating with 2 mM retinoic acid. Upon transfection, the media

was replaced with DMEM. Three hours into the transfection, the

media was exchanged and retinoic acid or the carrier DMSO was

added to the cells for the remainder of the incubation.

PTB1 Purification
Rosetta cells (Novagen) were transformed with the plasmid

PGEX-2TK-PTB1, encoding GST-tagged full-length human

PTB1. The PTB1 construct was a generous gift from M. A.

Garcia-Blanco. Bacteria were grown in 2XYT media to a density

0.35 ODU595nm at which time expression of GST-1 was induced

with 0.2 mM IPTG. After 18 hrs of expression at 25uC, the cells

were collected by centrifugation and resuspended in lysis buffer

(50 mM Tris-HCl pH 8.0, 0.25 M NaCl, 1 mM TCEP, 1 mM

EDTA). After lysis by sonication, the NaCl concentration was

raised to 1 M and the lysate clarified by centrifugation. The

resulting supernatant was applied to glutathione-coupled agarose

(GE-Healthcare), and the column was washed with lysis buffer to

remove the excess NaCl. To liberate PTB1, thrombin was added

and the column was incubated at 25uC for 3 hours with gentle

agitation followed by elution of the PTB1. Glycerol was added to

the PTB1 containing fractions to a final concentration of ,10%

(v/v). Afterwards, the fractions were concentrated. The PTB1 was

further purified by size exclusion chromatography on a Sup200

column (GE Healthcare) in lysis buffer. To remove any bound

nucleic acids from PTB1, the protein was bound to a heparin

column (GE Healthcare) in lysis buffer, and eluted with a 0.25–

2 M NaCl linear gradient. The PTB1 containing fractions were

concentrated, dialyzed against the storage buffer (50 mM Tris-

HCl pH 8.0, 0.25 M NaCl, 1 mM TCEP, 1 mM EDTA, 20%

glycerol (v/v)), and stored at 4uC.

In Vitro Translation
One microgram of Photinus luciferase monocistronic mRNA was

added to rabbit reticulosyte lysate (RRL) (Red Nova, Novagen) in

the presence of cap analog (Ambion). Following a 1 hour

incubation at 30uC, the sample was assayed for Photinus luciferase

activity.

For the in vitro translation assays involving PTB1, 1 mg of

dicistronic mRNA was added to RRL (Promega) in the presence of

0.4 mg of PTB1 protein. The lysates were incubated for 1 hour at

30uC and then the samples were assayed for luciferase activity as

described above.

PTB1 Binding Assay
Approximately 2 pmol of radiolabeled RNA (500 cpm) was

combined with increasing amounts of recombinant PTB1 protein

in protein binding buffer (10 mM Tris-HCl pH 8, 100 mM KCl,
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2.5 mM MgCl2, 5% glycerol (v/v)) [53] in triplicate. The reaction

was incubated for 10 minutes at 37uC and then passed through a

dot blot apparatus containing a sandwich of nitrocellulose and

charged nylon membranes. A ratio of the fraction of bound RNA

to the total RNA was calculated and plotted against the PTB1

concentration. The curve was fit using the Langmuir formula

[(m0*m1/(M0+m2)+m3);m1 = .9;m2 = 1e29;m3 = .001] to deter-

mine the dissociation constant.

siRNA Transfection
SH-SY5Y cells were treated for two days with either DMSO

(mock) or 2 mM retinoic acid to induce differentiation. The cells

were incubated with 300 mM siRNA (Dharmacon) and Dharma-

fect 1 reagent (Dharmacon). After 24 hours, the siRNA and media

were aspirated off and fresh media was applied to the cells for an

additional 24 hours. The cells were treated with DMSO or 2 mM

retinoic acid for an additional 48 hours. At this stage, the cells

were either harvested for Western blot analysis or transfected with

RNA as described above.
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