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Abstract

In neurons, spike timing is determined by integration of synaptic potentials in delicate concert with intrinsic properties.
Although the integration time is functionally crucial, it remains elusive during network activity. While mechanisms of rapid
processing are well documented in sensory systems, agility in motor systems has received little attention. Here we analyze
how intense synaptic activity affects integration time in spinal motoneurons during functional motor activity and report a
10-fold decrease. As a result, action potentials can only be predicted from the membrane potential within 10 ms of their
occurrence and detected for less than 10 ms after their occurrence. Being shorter than the average inter-spike interval, the
AHP has little effect on integration time and spike timing, which instead is entirely determined by fluctuations in membrane
potential caused by the barrage of inhibitory and excitatory synaptic activity. By shortening the effective integration time,
this intense synaptic input may serve to facilitate the generation of rapid changes in movements.
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Introduction

Spike timing in nerve cells is determined by temporal

integration of synaptic potentials and intrinsic response properties.

However, little is known about the timescale of this integration

during functional network activity and how it is affected by

synaptic events. In the absence of synaptic input the spike

afterhyperpolarization (AHP) determines spike timing during

repetitive firing. In motoneurons (MNs), the frequency range of

this firing is well suited for force regulation in the muscle fibers

they innervate [1]. This suggests that main role of AHP is

temporal filtering that converts the continuous asynchronous

synaptic bombardment to a regular output discharge of action

potentials. Furthermore, firing maintained by AHP and other slow

intrinsic properties is also appealing because it is a metabolically

inexpensive way of shaping the spike patterns to suit particular

functions, e.g. spinal motor rhythms [2–5].

On the other hand, the AHP and other slow intrinsic properties

would impede rapidly changing motor responses and it is not

known how resilient they are to a noisy background of synaptic

activity. Recent evidence suggests that intrinsic response properties

may be shunted by synaptic conductance in cortical and sub-

cortical networks [6–10]. In the spinal cord of the adult turtle,

scratch motor network activity is associated with a dramatic rise in

conductance and in fluctuations of the membrane potential (Vm) in

both MNs and interneurons during spiking [11,12]. This is due to

a concurrent intense inhibitory and excitatory synaptic activity

[13]. Under these conditions of high synaptic conductance, the

temporal resolution is predicted to be enhanced [14–16] and the

role of slow intrinsic properties becomes less obvious. Surprisingly

few experimental studies have explored this interplay between

high synaptic conductance, AHP and temporal integration in

active networks.

For this reason, we have conducted experiments on spinal

motoneurons embedded in a functionally active network during

fictive motor behavior. In earlier studies the conductance increase

in motoneurons during fictive locomotor and scratch network

activity was first measured in vivo in the cat [17,18] and in the

turtle [12]. The isolated spinal cord-carapace preparation from the

turtle [19] offers uniquely stable recording conditions in which

intrinsic and synaptic conductance changes during network

activity can be measured against a background of very low leak

conductance [11,13,20]. This allows us for the first time to

quantify the relative importance of active and passive intrinsic

properties and the dynamics of synaptic input for spike timing

during functional network activity.

We measured the effective integration time in MNs during

network activity using a novel statistical approach that quantified

the Vm-fluctuations before and after the action potential. Three

temporal features were characterized: the membrane time-

constant, effective synaptic integration time (eSIT) and the effective

recovery time (eRT). We define the eSIT as the time it takes to sum

up enough synaptic input to cause a spike. The eRT is defined as

the time it takes for the Vm-distribution following a spike to return

to the pre-spike condition, i.e. how long it takes the cell to ‘‘forget’’

that a spike has occurred. We report eRT as short as 4 ms during

network activity, which is more than a 10-fold decrease compared

with quiescent network. Our results show that even prominent

intrinsic response properties like the AHP are severely attenuated

concurrent with increase in synaptic conductance. For this reason,

the contribution of synaptic activity and active membrane

properties to network dynamics can only be captured by a
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conductance-based model [8,16,21,22] (Figure 1). We conclude

that a shortening of the recovery time and integration time of

motoneurons cause an increase in the temporal resolution of the

motor system during activity, which we suggest as a mechanism to

facilitate rapidly changing movements.

Results

The question we ask is how the surge in conductance from

intense synaptic bombardment during network activity modifies

intrinsic properties exemplified by the spike AHP and shrinks

response time and integration time of the neuron. The sensitivity

of spike generation and spike pattern to conductance is illustrated

in simulations in a simple model (Figure 1). In the absence of

synaptic input the regular firing during maintained depolarization

in the model neuron was determined by the AHP (red trace in

Figure 1A). Synaptic input simulated as current noise, i.e. linear

summation of synaptic potentials, resulted in greater variability in

spike timing, but did not change the averaged AHP (black trace

Figure 1A, B). Thus, current-based synaptic input fluctuations

changed neither total conductance nor neuronal integration time.

However, when synaptic activity was modeled more realistically as

a noisy conductance increase, spike timing was strongly influenced

by the stochastic fluctuations in Vm (blue trace, Figure 1A, B), the

AHP was severely attenuated (arrow in Figure 1B) and the

integration time was shortened [22,23]. Thus, the simple

simulation showed that a fluctuating current is not likely to affect

the integration time or reduce the importance of the AHP whereas

intense and fluctuating synaptic conductance is.

For the purpose of making these statements applicable to

quantitative evaluation of experimental data, we developed

statistics to capture the temporal features of Vm before and after

the spike. We define two measures linked to the superposition of

spikes (Figure 1C and D). First, the effective synaptic integration time

(eSIT), defined as the time period prior to spikes during which

fluctuations in membrane potential showed a significant depolar-

izing trend compared with a baseline template (Figure 1D).

Likewise, we define the effective recovery time (eRT), as the time it

takes to regain pre-spike Vm-levels. Notice that both eRT and

eSIT are absent in current noise model whereas they are present in

the conductance noise model (cf. Figure 1 C and D).

To evaluate whether the neuronal integration time and AHP

are substantially affected during intense network activity we

measured eSIT and eRT in MN during scratching. The data set

consisted of more than 10.000 spikes in 185 scratch epochs in 17

MNs. The analysis is organized as follows. First, we estimated the

conductance increase in a sub-sample of MN to confirm that

strong synaptic components were present (Figure 2). Next, we

applied our statistics to measure the eSIT and eRT and estimated

the effective membrane time-constant from Vm-fluctuations at

different levels of synaptic activity. Since intensity of synaptic

activity may vary among cells, we compared the eRT with

indicators of input, i.e. the effective membrane time constant as

well as the smallest inter-spike interval (ISI) for each MN. Finally,

since the functional expression of AHP accumulation in moto-

neurons is spike frequency adaptation (SFA) [4,24], we also tested

for adaptation during each cycle of the scratch epochs.

Synaptic conductance
A scratch epoch was induced by rhythmic cutaneous stimulation

of the skin in the hind-limb pocket and the concurrent synaptic

conductance (Figure 2A, B) was estimated from the voltage

deflections to injected current pulses (Figure 2C–F) for a subset of

MN. Conductance due to action potentials is a potential source of

error in these measurements [25]. We therefore avoided spikes by

injecting a steady hyperpolarizing current (typically 22 nA) or

selected a part of the scratch episode without spikes. The pair of

spikes in Figure 2F was left in for illustration, but the sweep was

not included in the final estimate. Even with this conservative

approach, the estimated conductance increased 2–5 times during

Figure 1. Computer simulation to illustrate firing pattern and
AHP in current-based and conductance based models of
synaptic input during repetitive firing. (A). Red top trace: Model
with constant current injection, no other input. Black middle trace:
Model with added current noise with same mean current as in top
trace. Blue bottom trace: Model with same mean injected constant
current and noise stemming from fluctuating conductance. (B). Spike
triggered superimposed spikes. Red, black (n = 243) and blue (n = 72)
traces are averages of spikes from (A). Notice the current-noise average
closely overlap the no-noise trace (red) whereas the conductance-noise
average (blue) rapidly reach pre-spike Vm-level (see arrow), because of
increase in total conductance. (C) and (D) illustrate the statistical
quantification of the evolution of Vm before and after the spike for
traces in (B). A template distribution of Vm traces is chosen at an
arbitrary time prior to the spike (see arrow at ttemplate) for which the
distribution at the rest of the time points is compared with. The
outcome of comparison is shown as the KS-test trace below, 1
represents acceptance and 0 represents rejection of the hypothesis that
they are different. Below is shown the P-values for the KS test. The
distribution of Vm in (C) is different everywhere, whereas the
distribution in (D) is only different up to and immediately after the
spike. The time it takes to regain the pre-spike distribution following
the spike is referred to as effective recovery time (eRT, arrow), while the
endmost time of same distribution before the spike is referred to as
effective synaptic integration time (eSIT, arrow).
doi:10.1371/journal.pone.0003218.g001

Temporal Motor Processing
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scratching (table 1 and Figure 2G)[9]. We attribute this increase to

balanced inhibitory and excitatory synaptic input [13] and

conclude that temporal processing in MNs could be affected by

synaptic conductance during network activity.

Effective synaptic integration time
We first considered the Vm-statistics prior to spikes. The time of

the earliest statistical sign of depolarization prior to action

potentials we dub ‘‘the effective synaptic integration time’’ (eSIT).

This depolarization may be caused by a rise in excitatory

conductance or a fall in inhibitory conductance. For each cell,

the eSIT was estimated by comparing a template distribution of

Vm with distributions of Vm as a function of time prior to action

potentials, as in figure 1. The comparison was attained using a KS-

two-sample test at each point in time (method, Figure 3). The

template distribution was chosen at a time, ttemplate, well before the

spikes (arrows Figures 3A and B). The eSIT did not depend

systematically on the choice of ttemplate as long as it was at least

10 ms prior to the spike (Figure 3C) even though the number of

samples in the distribution decreased (Figure 3D).

Memory of a spike–eRT
The same statistical test was used to evaluate the impact of a

spike by comparing the Vm-distribution after action potentials with

template distributions well before the spike (arrow Figure 3B). In

the graph of the KS-test, the gray area represents rejection of the

null hypothesis that the Vm-distribution before and after the spike

was statistically similar to the template distribution. When the Vm-

distribution after the spike was indistinguishable from the template

distribution, we considered the impact of a spike to have ceased

(graph of P-values, Figures 3A and B). Both eRT and eSIT had no

clear dependence on ttemplate earlier than ,20 ms (Figure 3C).

Since the number of spikes in the distribution decreased with

ttemplate (Figure 3D) the eRT estimate should not be performed

with a high ttemplate. We chose to calculate the mean eRT over the

range 20 ms,ttemplate,40 ms.

Impact of teff and AHP on recovery time
Right after the occurrence of an action potential Vm is

hyperpolarized. The time it takes for Vm to re-polarize back to

the level prior to the spike depends on the AHP and on the passive

effective time-constant of the membrane, which we refer to as teff.

Figure 2. Increase in synaptic conductance during a single scratch epoch. (A) Cutaneous stimulation via sinusoidal movements of a glass
rod on the hind-limb pocket skin. (B) Electro-neurogram from hip flexor nerve. (C) Vm from intracellular recording. Tick mark indicates Vm of
2100 mV. (D) Current pulses of 20.7 nA from constant current level of 21.0 nA. (E) High-pass filtered Vm from (C) (cut off is 2 Hz). Transient artifacts
removed. (F) left, average voltage deflections from (E) during quiescence (n = 14), right during network activity (n = 14). The average increase in
conductance is 340%. Notice the occurrence of two spikes. (G) The membrane conductance as a function of time. The peak conductance during
network activity is .800% of the conductance during quiescence.
doi:10.1371/journal.pone.0003218.g002

Table 1. Total input conductance for 5 MN during both
quiescence and active network.

Motoneuron number Gquiescence [nS] Gactive [nS] Fraction [100%]

2 73 320 438

3 45 181 405

10 71 224 314

13 20 40 200

14 55 258 470

doi:10.1371/journal.pone.0003218.t001

Temporal Motor Processing
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In our attempt to sort out which part of the re-polarization is due

to the passive decay of Vm and which is due to the cessation of

AHP conductance, it is important to estimate teff during network

activity. The increase in total conductance will also diminish the

relative importance of the AHP conductance and the AHP will

appear shorter. To quantify the vestige of the AHP under different

levels of input conductance we define the effective After-Hyperpolar-

isation Period (eAHP). This period represents the time it takes until

the AHP ceases to affect the Vm trajectory. If there is no overlap

between the passive membrane decay and the eAHP, the eRT is

just the sum of teff and eAHP, while if there is overlap eRT will be

less than the sum:

eRTƒeAHPzteff ,

It is important to emphasize the eRT also represents the upper

bound on both eAHP and teff, i.e. eRT$eAHP and eRT$teff.

Hence, it was important to determine teff for each cell in order to

determine the contribution of AHP to the integration process.

Estimating teff during activity
For the spinal motor activity we differentiated three situations:

The quiescent state with little or no synaptic input; the on-cycle

with motor nerve activity and spike activity in motoneurons; and

the off-cycle, which is at the low point in between the on-cycles

(Figure 4A–C). As expected the effective membrane time constant

decreased significantly during scratching. For representative data,

teff was 27 ms in the quiescent state, while it was only 2.8 ms in the

On-cycle and 5.2 ms in the off-cycle (Figure 4C–E). Membrane

time constants during quiescence are ordinarily estimated from

Vm-decay times after injected current pulses (figure S2). During

the dynamic and intense synaptic input in the on-cycle and off-

cycle, this method was both difficult and imprecise. Instead, if Vm

is assumed to follow a stochastic process known as Ornstein-

Uhlenbeck-process (OU-process), then maximum likelihood esti-

mation would be the proper way to obtain teff [26,27]. The

estimated values of teff with this technique are listed in Data and

Methods 1 in Data and Methods S1 and see Figures S1–S3. It

turned out that Vm did not obey an OU-process (Figure S4) and

these estimates of teff were systematically much higher than eRT

and eSIT. Therefore, teff was instead estimated empirically by

fitting an exponential decay to the initial part of the auto-

correlation sequence (Figure 4F). It was necessary to fit to the

initial part (from 0 to 3 ms, vertical gray line) to assure that the

auto-correlation lag was small compared to the total length of the

sample (200 ms), since the premise of exponential decay is infinite-

length of data trace (see Data and Method S1).

Temporal features for the population
The effective synaptic integration times, the effective recovery

times and the effective membrane time constants across the

population of neurons are listed in Figure 5A. The average eSIT

was m = 7.760.8 ms and the average eRT was m = 7.560.7 ms

(mean6SE, n = 17). The median of eSIT and eRT were both

7.7 ms. The eRT was assumed to be approximately equal to the

sum of teff and the effective AHP (see above). However, the

population average of teff was m = 9.361.4 ms (mean6SE, n = 17)

while the median of teff was 7.0 ms. In some cases (41%, n = 7/17)

teff was longer than the corresponding eRT, which suggests two

things. First, the reset potentials were closer to the steady state

mean Vm than the natural fluctuations of Vm around the mean, so

the decay from reset back to the mean was faster than teff.

Secondly, the eAHP was close to zero or no more than a couple of

milliseconds. This value of eAHP is a dramatic decrease from the

200 ms AHP duration previously reported during quiescence

[4,24]. Further, not only did the population spread in eRT across

cells correlate with the population spread in eSIT (R2 = 0.81), the

eRT and the eSIT both had significant correlation with teff

(Figure 5B) (ReSIT
2 = 0.60, p = 0.0007, ReRT

2 = 0.47, p = 0.005,

when ignoring the two outliers, cell 7 and 16). Since eRT is

dependent on both teff and eAHP, while eSIT is only dependent

on teff, these strong correlations also indicate that the contribution

of eAHP to eRT must be minor in most cells.

Hence, the population spread in eRT, eSIT, and teff probably

reflected different levels of synaptic intensity in different cells.

Since the eRT is the major contribution to the refractory period,

we expected most of the inter-spike intervals (ISI) to be longer than

or equal to the eRT. If this is the case, the data points in a plot of

the shortest ISI versus eRT in each cell should fall at the 45u-line

Figure 3. Effective recovery time and synaptic integration time during scratching. Peri-spike Vm distribution in quiescence (A) (n = 50) and
during scratching (B) (n = 29). Top, superimposed data traces (gray) with mean Vm in black. Middle, KS-test. Bottom, P-values for the KS test. The
effective synaptic integration time (eSIT) and effective recovery time (eRT), defined as the time periods before and after the spike, in which the Vm

distribution is significantly different from a template distribution (arrows), i.e. gray areas in the KS-graphs in the middle. P-vaules of the test is plotted
below. (C) Estimates of eSIT and eRT versus position of the template distribution relative to the spike from (B) (broken lines represent mean values
eSIT = 12.1 ms, eRT = 8.7 ms). (D) The number of traces in template distribution decreases with window length (from same data as in (B) and (C)).
doi:10.1371/journal.pone.0003218.g003

Temporal Motor Processing
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Figure 4. Temporal characteristics of sub-threshold Vm-fluctuation in motoneurons during quiescence and in the on- and off-cycle
during scratching. (A) Hip-flexor nerve recording during scratch. (B) Concurrent Vm in MN, spikes avoided with 22.5 nA hyperpolarizing current.
Shaded regions mark the selected area of on- and off-cycle illustration below. Sample trace of Vm in quiescence (C) (note time-course of spontaneous
synaptic potentials) and in the on-cycle (D) and off-cycle (E). D and E are from the shaded boxes in B. (F) The auto-correlation sequence of each
sample trace. Blue is from quiescent trace (C), gray is from the off-cycle trace (E), and red is the on-cycle trace (D). The effective time constant of each
trace is obtained by fitting an exponential decay function (broken lines) to the initial 3 ms (until the vertical gray line). The time constants are
teff = 2.8 ms (on-cycle activity), teff = 5.2 ms (off-cycle activity) and teff = 27.0 ms (quiescence). C–E are on the same time scale.
doi:10.1371/journal.pone.0003218.g004

Temporal Motor Processing
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or below. Indeed, all points were within their error bars or below

(Figure 5C). In this way, the inverse of the eRT represents an

upper bound for the spike frequency during network activity.

Absence of spike frequency adaptation
The AHP contributes to spike frequency adaptation (SFA) in

motoneurons at rest [4,24]. A classical example of SFA in absence of

synaptic input is during bursting induced by N-Methyl-D-Aspartic

acid (NMDA). We therefore performed a heuristic comparison

between NMDA-bursting in MNs in slices with the bursting induced

by synaptic input in functional networks (cf. Figures 6A and 6B).

During each burst in the case of NMDA-bursting (Figure 6Aa), spike

frequency peaked at onset and adapted to a lower level at the end of

the burst (Figure 6Ab). The histogram of interspike-intervals

confirmed similarity in firing rate distribution between NMDA-

bursting and network bursting [28] (cf. Figure 6Ac and 6Bc). ISIN

plotted against ISIN+1 displayed a ring-like pattern (Figure 6Ad), as

expected from adapting spike trains in each successive burst [29].

Note that the vast majority of points (83%/17%, SE = 6%) are above

the 45u-line, which is a consequence of SFA, presumably in large

part produced by the prominent AHP. Under these conditions

neighboring ISIs were significantly correlated (R2 = 0.17) as expected

from AHP-mediated adaptation (Figure 6Ae).

The firing pattern in MNs during scratching was qualitatively

different (Figure 6Ba). Though the distribution of ISI times

resembled the NMDA-bursting (cf. Figure 6Bc and 6Ac), spike

timing was irregular (Figure 6Bb) and points scattered nearly

symmetrically around the 45u-line in the return map (51%/49%,

SE = 6%) (Figure 6Bd). This shows that spike frequency acceleration

was as prevalent as spike frequency adaptation during bursts [29] and

therefore that the AHP and other intrinsic mechanisms for

adaptation or acceleration in spike frequency did not have a

detectable influence on the firing pattern during network activity.

Furthermore, the correlation between ISIN and ISIN+1 was

marginal (R2 = 0.03) (Figure 6Be), which shows that spikes were

driven by a stochastic process rather than by deterministic intrinsic

properties. In all 17 motoneurons SFA was insignificant during

depolarizing waves, i.e. the numbers above the line were not

significantly higher than 50% (Figure 7). Thus, we conclude that

the mechanisms causing SFA such as AHP accumulation were not

pervasive enough to overcome the increase in synaptic conduc-

tance during motor activity.

Discussion

Spike timing, the principal output of neurons, is determined by

interacting synaptic and intrinsic ionic conductances. Recent

decades have provided a wealth of information about the intrinsic

response properties and their proposed roles in specific cell types in

many parts of the nervous system [5,30,31]. Properties of the AHP

in particular have been linked to classification of fast and slow

Figure 5. Time constants across the population of MNs. (A) The average teff (for ON-cycle), eRT and eSIT (mean6SE) as triplets bars for each
cell. Horizontal lines represent population averages, m= 9.5 ms for teff, m= 7.5 ms for eRT, and m= 7.7 ms for eSIT. Cell 3 is marked with a w and the
sample cell used in figures 3, 4, 5. (B) eRT and eSIT plotted against teff show significant correlation. The lines are linear least square fits. (C) The
shortest ISI at zero current injection plotted against the average eRT for each MN. Gray line is where x = y.
doi:10.1371/journal.pone.0003218.g005

Temporal Motor Processing
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Figure 6. Presence and absence of spike frequency adaptation (SFA) during bursting. (Aa) SFA in intracellular recording from motoneuron in
slice during NMDA induced bursting. (Ab) Single burst highlighted in (Aa) show gradual increase in ISI. (Ac) Histogram of ISI. The mean ISI is 55 ms
(arrow). (Ad) Plot of ISIN against ISIN+1 shows significantly greater proportion of points above than below the ISIN = ISIN+1 line (83.2% above, total N = 239),
which is evidence of spike frequency adaptation. In addition, ISIs are correlated with their neighbors (correlation coefficient = 0.41), as expected when ISI
are influenced by AHP conductance and the burst pattern is reproduced after 10 spikes (Ae). Gray area represents the 5% confidence limit +1:96

� ffiffiffiffiffi
N
p

(Ba) Recording from a MN in a functional spinal network during rhythmic motor activity. (Bb) A hightligted cycle from (Ba) shows irregular spike times and
no SFA. (Bc) Histogram of ISI. The mean ISI is 34 ms (arrow) (Bd) A plot of ISIN against ISIN+1 illustrates no discrepancy of points above and below the
ISIN = ISIN+1 line (51.3% above, total N = 362), which demonstrates absence of SFA. Furthermore, there is only a marginal correlation of ISI with neighbors
(correlation coefficient = 0.18), as expected with negligible AHP conductance (Be). Gray area represents the 5% confidence limit +1:96

� ffiffiffiffiffi
N
p

. Tick marks to
the left represent 280 mV (A) and 260 mV (B). Inter-burst-intervals are omitted in analysis.
doi:10.1371/journal.pone.0003218.g006
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spiking neurons with clear functional connotations [5,32]. The

present study reports up to ten-fold decrease in the membrane

time constant (Figure 4) and severe reduction in the AHP during

functional activity (Figure 3 and 5) which emphasize that

assertions about the functional significance of intrinsic response

properties must be validated in neurons embedded in an active

network. In our experimental paradigm, the role of the AHP in

spike timing is essentially eliminated and replaced by rapid

temporal integration in the high conductance state provided by

intense synaptic input (Figures 3, 5, 6). We therefore propose that

motor systems perform rapidly changing movements by letting

intense synaptic input transiently supplant slow intrinsic properties

when necessary.

Coincidence detection
This transition has previously been referred to as a transition

from temporal integration to coincidence detection in sensory

perception [33]. Konig and colleagues defined a coincidence

detector as a neuron in which the integration time for synaptic

potentials is short compared with the average ISI, and a temporal

integrator if the reverse is true. Adopting this definition, the

motoneurons in the present study were all coincidence detectors

during motor activity, since their eSIT and eRT on average are an

order of magnitude shorter than their average ISI (cf. Figure 5A

and 6Bc, and see Figure S5). The functional effect and benefit of

MNs working as coincidence detectors could be to minimize

aberrant firing due to the background barrage of noisy synaptic

input [28]. The potentially undesirable consequence of having

such a coincidence detection scheme is irregular spike patterns,

which we indeed did observe (Figure 6). However, irregular

patterns are not likely to be a problem, since muscle fibers are slow

integrators, and therefore the exact temporal structure of the MN

firing, whether irregular and yet fast coincidence detectors or slow

regular temporal integrators, is unimportant for securing a smooth

contraction.

Origins of spike pattern
The network mechanisms underlying the phasic spike activity in

motoneurons during rhythmic motor behaviors are unknown. It

has been hypothesized that certain intrinsic properties are crucial

mediators of bursting rhythms in spinal networks [3,5,34]. It is also

widely accepted that the after-hyperpolarization in MN secures

repetitive firing at low rates appropriate for regulation of muscle

contraction [3,4]. The high conductance state, however, compro-

mises the ability to fire repetitively during steady depolarization

[11]. This is probably a direct consequence of the reduced slow

AHP since the same effect is observed when the AHP is reduced by

blocking the underlying ionic current pharmacologically rather

than by shunting [35]. Nevertheless, MNs still fired in a broad

range of rates in the high conductance state while driven by rapid

fluctuations in membrane potential during motor activity

(Figure 6B) [13]. Further evidence for fluctuation driven irregular

firing is the fact that the shortest ISIs in the active network are

longer than the eRT (and thus eAHP) (Figure 6C). This is in

contrast to the regular firing and frequency adaptation in

motoneurons in slices during NMDA induced bursting

(Figure 6A). The reduced AHP amplitude, increased spike time

variability and the absence of adaptation during locomotor

network activity have also been observed in MNs in the decerebrate

cat [36]. In the light of our findings it will be interesting to

investigate if the underlying mechanism is modulation of intrinsic

properties [1,24,37] or parallel increase in excitatory and inhibitory

synaptic activity [13,38].

In conclusion, the rhythm-generation could have two origins: a

pattern generating subset of neurons elsewhere in the network in

which intrinsic response properties are protected from shunting by

Figure 7. Spike frequency adaptation during NMDA induced bursts but absent during scratching. The number of points above the
ISIN = ISIN+1 –line in a ISI-return map (Figure. 7Ad and 7Bd) divided by the total number of intervals (6100%) for all MNs including the NMDA induced
bursting data from slice experiment for comparison. The network induced bursting have little or no SFA since there is an even amount of points
above as below. In contrast, the NMDA-activated bursting has a much larger fraction above the line reflecting the high degree of SFA. Error bars are
SE~

ffiffiffiffiffiffiffiffiffiffi
K :0:25
p

K
, where K total number of ISI.

doi:10.1371/journal.pone.0003218.g007
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intense synaptic bombardment or alternatively, the motor rhythm

can be an emergent distributed network phenomenon as suggested

for respiratory rhythms [39,40], i.e. the network bursting hypothesis.

Decisive experimental tests of these hypotheses are still missing.

Caveats of constant current protocols
The role of AHPs in repetitive firing in MNs induced by

depolarizing current through the recording electrode has been

thoroughly investigated [4,5,24]. Based on the linear summation of

synaptic potentials under certain experimental conditions [41,42]

this approach takes injected current as a simplifying representation of

synaptic input. However, important aspects of synaptic input are

overlooked in this approach. First, synaptic variability adds

fluctuations as a second moment to Vm [22]. Synaptic Vm-

fluctuations may have important computational roles [43–45].

Secondly, the effect of surge in conductance from synaptic input is

unaccounted for in the constant current protocol (Figure 1).

Therefore the functional role of the AHP and other intrinsic

response properties should be assessed either in functional networks

with real synaptic input, as in the present study, or by dynamic clamp

analysis in neurons at rest [7,8,46] if a valid estimate of the temporal

structure of the functional synaptic conductances is available.

Balanced state in the spinal cord
Though anatomical evidence suggests an approximate balance

between inhibitory and excitatory contacts in cat motoneurons [4],

the circuit substrate for variations in the balance of inhibition and

excitation during motor activity and its prevalence in other spinal

networks is yet unresolved. High-conductance states produced by

parallel increase in inhibitory and excitatory synaptic activity is a

common occurrence in other functional networks [6,38,47–51]. In

the neocortex, the link between excitation and inhibition is

provided by feed-forward and recurrent pathways [48,49,52–55].

In the spinal cord, recurrent inhibition is unlikely to contribute

significantly to the high conductance state in MNs since recurrent

collaterals are scarce in the turtle [56,57] and Renshaw inhibition

has not been documented. Feed-forward inhibition provided by Ia

inhibitory interneurons can produce synaptic conductance that

clearly reduces intrinsic response properties in cat MNs in vivo [58].

However, reciprocal inhibition contributes insignificantly to the

high conductance state in MNs during breathing [38] and

scratching [13]. We propose that inhibitory input to MN is mostly

due to local feedforward inhibitory connections, but it remains to

be seen if balanced spinal motor networks resemble architectures

of the much better investigated networks in other parts of the

nervous system [6,38,48,51,55].

Materials and Methods

All the experiments were performed in an integrated spinal

cord-carapace preparation from the adult turtle except the

heuristic control experiment of NMDA-induced spike frequency

adaptation in figure 6A, which was performed in a transverse slice

from adult turtle. In the integrated preparation the spinal cord

remains in the spinal canal with the tactile sensory nerves from the

carapace intact. The motor nerves are carefully transected to

avoid muscle movements and dissected out to for electro-

neurogram recordings. The scratch reflex was activated by

mechanical somato-sensory stimulation of selected regions on the

carapace (see below) as described [11,20].

Integrated preparation
Red-eared turtles (Trachemys scripta elegans) were placed on crushed

ice for 2 hrs to ensure hypothermic anesthesia. Animals were killed

by decapitation and blood substituted by perfusion with a Ringer

solution containing (mM): 120 NaCl; 5 KCl; 15 NaHCO3; 2 MgCl2;

3 CaCl2; and 20 glucose, saturated with 98% O2 and 2% CO2 to

obtain pH 7.6. The carapace containing the D4-D10 spinal cord

segments was isolated by transverse cuts and removed from the

animals, similar to studies published elsewhere [19,20]. The surgical

procedures complied with Danish legislation and were approved by

the controlling body under the Ministry of Justice.

Slice preparation
One mm thick slices of the turtle spinal cord were placed in a

chamber for intracellular recording and submerged in and

perfused with oxygenated Ringer solution. The pharmacological

agent N-methyl-D-aspartate (NMDA) was added to the ringer

medium to induce bursting activity (10 mM).

Recordings
Intracellular recordings in current-clamp mode were performed

with an Axoclamp-2A amplifier (Axon Instruments, Union City,

CA). Glass pipettes (part no. 30-0066, Havard Apparatus, UK) were

pulled with a electrode puller (model P-87, Sutter instrument co.,

USA) and filled with a mixture of 0.9 M potassium acetate and

0.1 M KCl. Intracellular recordings were obtained from neurons in

segment D10. Recordings were accepted if neurons had a stable

membrane potential more negative than 250 mV. Data were

sampled at 20 kHz with a 12-bit analog-to-digital converter (Digidata

1200, Axon Instruments, Union City, CA), displayed by means of

Axoscope and Clampex software (Axon Instruments, Union City,

CA), and stored on a hard disk for later analysis. Hip flexor nerve

activity was recorded with a differential amplifier Iso-DAM8 (WPI)

using a suction pipette. The bandwidth was 100 Hz–1 kHz.

Activation of network
Mechanical stimulation was performed with the fire polished tip

of a bent glass rod mounted to the membrane of a loudspeaker in

the cutaneous region known to elicit ‘‘pocket scratch’’ [12] which

results in a broad activation of cells [59]. The duration, frequency,

and amplitude of the stimulus were controlled with a function

generator (Figure 2A). This tactile stimulus induced the scratch-

like network activity, which was monitored by the suction

electrode nerve recordings from the Hip-flexor nerve (Figure 2B).

Model data
The data used to illustrate the difference between synaptic-

current and synaptic-conductance based fluctuating inputs

(Figure 1) was based on a one-compartment model simulation

[22] supplemented with Ca2+ conductance and a Ca2+-activated

K+-conductance. The synaptic noise was modeled as white current

noise in the current-based regime with the heuristic expression,

C
dVm

dt
~Gleak

: Eleak{Vmð ÞzGAHP
: EK{Vmð ÞzISyn

where the fast conductances of the action potential and Ca2+-

conductance were not shown here for simplicity (for complete

description see Data and Methods S1) and the total membrane

conductance was

Gtotal~GleakzGAHP,

which contains no synaptic component. In this scheme, the

synaptic input was represented as a current, Isyn. The membrane

capacitance is C, and Gleak, Eleak, GAHP, EK are conductance and

reversal potential of leak and AHP, respectively.
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In a more realistic regime, the high intensity synaptic input was

modeled as a conductance [22]. Here, the AHP was reduced as a

consequence of the increase in total input conductance (Figure 1).

The conductance-based regime applies when the synaptic

conductance (Gsyn) is so large that it can no longer be considered

small compared with the Gtotal [6]. Heuristically expressed similar

to the synaptic current model

C dVm

dt
~Gleak

: Eleak{Vmð ÞzGAHP
: EK{Vmð ÞzGSyn

: Esyn{Vm

� �

Gtotal~GleakzGAHPzGsyn

where Esyn is the weighted reversal potential of excitatory and

inhibitory synaptic reversal potentials and Gsyn is the sum of both

conductances. Gsyn is competing with GAHP in controlling inter-

spike intervals, and if it is large enough it can render GAHP

insignificant at steady state:

Vm~
GAHP

Gtotal

EKz
Gleak

Gtotal

Eleakz
Gsyn

Gtotal

Esyn&
Gleak

Gtotal

Eleak

z
Gsyn

Gtotal

Esyn

when GSyn&GAHP. The action potentials were largely unaffected by

the conductance increase, since fast Na/K conductances of the

action potential were much larger. In a simple Hodgkin-Huxley-

model added AHP- and Ca2+- conductances and including

synaptic input as either current noise (Isyn = 12 nA, ssyn = 3 nA,

OU-simulated with time-constant = 1 ms and D = 0.0005) or

conductance noise we verified the theoretical importance of

synaptic conductance (Figure 1). The conductance noise was a

mixture between inhibition and excitation balanced at 260 mV

(see Data and Method S1 for details).

Evolution of Vm-distribution
The variable constituting the estimation of effective eSIT and

eRT was the membrane potential (Vm). This variable was

stochastic and a sample measurement drawn from an underlying

probability distribution function (PV), which we assumed had the

same statistics in all interspike intervals. The probability

distribution depends on time after occurrence of spike and this

dependence was a manifestation of intrinsic current generators

like SK-channels. Because of the large synaptic fluctuations, it was

necessary to look at the distribution PV instead of just isolated

instances of Vm. These fluctuations were assumed uncorrelated

from trial to trial, so we could estimate Pv by superimposing

spikes.

The key assumption is, if the distribution at some given point in

time, Pv(t1), is different from the distribution at a later point in

time, Pv(t2), then there has been a change in the intrinsic current

generation (cf. Figure 3A and B). We selected Pv at one point in

time (t = ttemplate) as a template distribution, which all distributions

PV(t?ttemplate) were compared with. The PV(ttemplate) was chosen

more than 10 ms before the spike, since this region constitute a

background Vm, and was compared via the Kolmogorov-Smirnov-

2 sample test (KS-test) [60] expressed formally as:

F V ,tð Þ~ Number of Vm tð ÞƒV
N

D tð Þ~ sup
V

F V ,tð Þ{F V ,ttemplate

� ��� ��

F(V, t) is the empirical cumulative probability distribution

function of Vm. N is the total number of traces (and spikes) used to

estimate the distribution at time t (Figure 3D). The maximal

difference between the cumulatives, D(t), was the measure for

rejecting or accepting the null hypothesis. If the difference was

larger than a critical value, then we rejected the null hypothesis

that Vm(t) and Vm(ttemplate) were drawn from the same distribution.

The binary test outcome was plotted (Figure 3A and B) where 1

represented rejection (gray area) and 0 represented no rejection of

null hypothesis, at a 5% confidence limit. The p-value of the test

was plotted below.

Effective Recovery time
The first point in time after the spike, where the KS-test was

zero (i. e. no rejection of hypothesis of same distribution) was

where we defined the AHP conductance and other transient

intrinsic current generators no longer had a significant impact on

the Vm and the passive diffusive spread had reach steady state. We

dubbed this period effective recovery time (eRT, arrow in Figure 3B) in

analogy to the effective membrane resistance and effective

membrane time constant [14,16,21,22]. This recovery time told

us how long time after the spike had occurred that there was still a

memory of the spike in Vm (Figure 3B).

Effective synaptic integration time
Similar to eRT, we could ask how long time prior to the spike,

that Pv was different from the template distribution. This point

represented a net depolarization caused either by reduced

inhibition or increased excitation. We named this period effective

synaptic integration time (eSIT) indicating the time prior to the spike

where its occurrence can be predicted (arrow in Figure 3B).

Location of template
Obviously, the choice of template distribution is important.

The template is always chosen prior to the spike. The earlier

before the spike we choose the template, the more independent it

is. However, there is a trade off, since the inter-spike interval has

to be longer than the window between the template distribution

and the spike. As a result, the larger the window is, the fewer

spikes in a finite dataset will participate in the distribution

(Figure 3D). Fortunately, the estimation of both eRT and eSIT is

largely independent on the window size (Figure 3C). We chose to

average the values of eRT and eSIT from templates 20 to 40 ms

prior the spike, since these locations gave nearly constant values

(Figure 3C).

Critique of method
The above described statistical testing of the evolution of Pv

only accounts for changes that are locked to the occurrence of a

single action potential, such as the AHP. Accumulative events that

build up over several spikes as e.g. spike frequency adaptation or

plateau potentials are not easily accounted for using this statistics.

One way to test for slow changes would be to divide the spikes

according into several different groups depending on their position

in the epoch. These groups could then be compared to evaluate if

the distributions have changed. However, we decided this was

outside the scope of the present study and it was not necessary

since the test of spike frequency adaptation (Figure 6) came out

negative.

Inter-spike interval analysis
The inter-spike intervals were extracted from the intracellular

recording during scratch episodes and processed. The auto-

correlations were calculated as the normalized covariance function

[26,61] between ISIN and ISIN+1, ISIN+2, ISIN+3 etc (Figure 6d).

The test for spike frequency adaptation (Figure 6e) was performed
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assuming statistical independence of observation of (ISIN, ISIN+1)-

pairs [29] and thus a binomial distribution with chance of 50%

above and 50% below the line ISIN = ISIN+1. If the number of

points above was within a standard deviation of

s~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K :p: 1{pð Þ

p
~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K :0:25
p

SE~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K :0:25
p �

K~
ffiffiffiffiffiffi
0:25
K

q

CI~+1:96:SE

of the 50%-line, as expected from an even binomial distribution

[61], there was no significant spike frequency adaptation. K is the

total number of points and p is the probability of a point being

above the line, when assuming no correlation.

Data processing
All analysis was performed in Matlab (version 7.3, Mathworks).

The data was converted from Axoclamp format to matlab and the

spikes were identified and superimposed (Figure 3) to study the Vm

statistics before and after the spike as described above. KS-testing

of the Vm distributions was done with the matlab procedure

‘‘kstest2.m’’. The custom made procedures for calculating eRT

and eSIT has been uploaded to mathworks code sharing web site

(http://www.mathworks.com/matlabcentral/) with the name

‘‘eRT.m’’ for the interested reader. The remaining matlab code

is available on request.
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