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Abstract

Background: Accumulating evidence implicates a fundamental link between the immune system and atherosclerosis. Toll-
like receptors are principal sensors of the innate immune system. Here we report an assessment of the role of the TLR2
pathway in atherosclerosis associated with a high-fat diet and/or bacteria in ApoE+/2 mice.

Methods and Results: To explore the role of TLR2 in inflammation- and infection-associated atherosclerosis, 10 week-old
ApoE+/2-TLR2+/+, ApoE+/2-TLR2+/2 and ApoE+/2-TLR22/2 mice were fed either a high fat diet or a regular chow diet. All
mice were inoculated intravenously, once per week for 24 consecutive weeks, with 50 ml live Porphyromonas gingivalis (P.g)
(107 CFU) or vehicle (normal saline). Animals were euthanized 24 weeks after the first inoculation. ApoE+/2-TLR2+/+ mice
showed a significant increase in atheromatous lesions in proximal aorta and aortic tree compared to ApoE+/2-TLR2+/2 and
ApoE+/2-TLR22/2 mice for all diet conditions. They also displayed profound changes in plaque composition, as evidenced
by increased macrophage infiltration and apoptosis, increased lipid content, and decreased smooth muscle cell mass, all
reflecting an unstable plaque phenotype. SAA levels from ApoE+/2-TLR2+/+ mice were significantly higher than from ApoE+/

2-TLR2+/2 and ApoE+/2-TLR22/2 mice. Serum cytokine analysis revealed increased levels of pro-inflammatory cytokines in
ApoE+/2-TLR2+/+ mice compared to ApoE+/2-TLR2+/2 and TLR22/2 mice, irrespective of diet or bacterial challenge. ApoE+/2-
TLR2+/+ mice injected weekly for 24 weeks with FSL-1 (a TLR2 agonist) also demonstrated significant increases in
atherosclerotic lesions, SAA and serum cytokine levels compared to ApoE+/2-TLR22/2 mice under same treatment
condition. Finally, mass-spectrometry (MALDI-TOF-MS) of aortic samples analyzed by 2-dimentional gel electrophoresis
differential display, identified 6 proteins upregulated greater than 2-fold in ApoE+/2-TLR2+/+ mice fed the high fat diet and
inoculated with P.g compared to any other group.

Conclusion: Genetic deficiency of TLR2 reduces diet- and/or pathogen-associated atherosclerosis in ApoE+/2 mice, along
with differences in plaque composition suggesting greater structural stability while TLR-2 ligand-specific activation triggers
atherosclerosis. The present data offers new insights into the pathophysiological pathways involved in atherosclerosis and
paves the way for new pharmacological interventions aimed at reducing atherosclerosis.
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Introduction

Atherosclerosis is a multifactorial chronic inflammatory disease

characterized by the accumulation of cells of both the innate and

acquired immune systems within the intima of the arterial wall [1,2].

In atherosclerosis, the normal homeostatic functions of the

endothelium are altered, promoting an inflammatory response that

results in increased expression of adhesion molecules. This in turn

leads to recruitment of leukocytes, including monocytes, which

penetrate into the intima, predisposing the vessel wall to lipid

accretion [1,3,4]. Inflammatory mediators enhance uptake of

modified lipoprotein particles and formation of lipid-laden macro-

phages. The adaptive immune response in atherosclerosis is

mediated by T cells that enter the intima and secrete cytokines,

which subsequently amplify the inflammatory response and promote

the migration and proliferation of intimal smooth muscle cells. [2,5].

The innate immune system involves several different cell types,

most importantly those of the mononuclear phagocyte lineage

[6,7,8]. Macrophages and endothelial cells (EC) express receptors

that recognize a broad range of molecular patterns foreign to the

mammalian organism but commonly found on pathogens. These

molecules include lipopolysaccharides and lipoproteins from Gram-

negative bacteria, peptidoglycan and lipoteichoic acids from Gram-

positive bacteria, lipoproteins from mycoplasma, and zymosan from

yeast [9]. These pattern-recognition receptors include various

scavenger receptors (ScRs) and Toll-like receptors (TLRs).

TLRs are members of a large superfamily containing the

interleukin-1 receptors (IL-1R) that share significant homology in

their cytoplasmic domain, which is known as the Toll/IL-1R

(TIR) domain [10]. Ligation of most TLRs transmits transmem-

brane signals that activate the NF-kB and mitogen-activated

protein kinase (MAPK) pathways [8,11,12,13].

Both in vitro and in vivo knockout mouse studies have implicated

TLRs in neointima formation and intimal hyperplasia involving

modulation of inflammatory responses to exogenous and endog-

enous stimuli [14]. Although TLRs mediate protection against
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infection, various studies have demonstrated increased expression

of TLR1, 2, and 4 in human atherosclerotic lesion, mechanistically

linking TLRs, inflammation and atherosclerosis [6,15,16] with

downstream signaling of TLR directly regulating inflammatory

genes. In vitro stimulation of TLRs in human fibroblasts with a

synthetic fibroblast stimulating lipopeptide (FSL-1; Pam2CGDPK-

HPKSF) leads to activation of NF-kB and the production of

inflammatory cytokines in a MyD88-dependent manner [17,18].

Two important observations suggest TLR2 as a novel target to

consider for therapeutic intervention in atherosclerosis. One is that

TLR2 mediates responses to lipoproteins derived from multiple

pathogens. Its unique ability to heterodimerize with TLR1 or

TLR6 thus results in a relatively broad range of ligand specificity

[19,20,21] which may contribute to atherogenesis in the context of

exposure to a variety of pathogens.

The potential importance of infectious agents of oral/periodon-

tal origin, such as Porphyromonas gingivalis (P.g) in the development of

atherosclerosis has recently been described [22,23,24,25,26,27].

To our knowledge, the direct role of TLR2 in the bacteria-

enhanced atherogenic process had never been addressed and

warranted further investigation. Therefore, in the work reported

here, we examined the effect of genetic deletion of TLR2 on the

progression of atherosclerosis driven by a high fat diet and/or P. g

infection in the ApoE+/2 murine model. Stimulation by the

specific agonist FSL-1 was used to further establish the role of

TLR2 in modulating the progression of diet and/or bacteria

enhanced atherosclerosis in mice with normal expression of TLR2.

Results

Levels of Glucose, Total Serum Cholesterol, LDL, and HDL
Mice were monitored for metabolic status by measuring blood

glucose and lipids. No significant differences in body weight were

observed in mice in connection to genotype or treatment, (e.g. P. g,

FSL-1). Total serum cholesterol, LDL, HDL or glucose levels also

revealed no significant differences among ApoE+/2-TLR2+/+,

ApoE+/2-TLR2+/2 and ApoE+/2-TLR22/2 mice that received

similar treatments and were maintained on a similar diet.

However, we observed a tendency of increased cholesterol, LDL

and decreased HDL level in ApoE+/2-TLR2+/+ mice injected

with P. g as compared to vehicle injected group. Furthermore, the

lipid and glucose profiles did not reveal any differences between

mice of the same genotype that were injected with P. g or FSL-1

(supplemental data: Table S1 and Table S2).

En face and Histomorphometric Analysis of Atheroma
Lesions

Quantitative en face analysis revealed statistically significant smaller

lesions in ApoE+/2-TLR2+/2 mice compared to ApoE+/2-TLR2+/+

mice after 24 week treatments (p,0.05): High fat diet inoculated with

P. g (HP) demonstrated 12.561.7%, High fat diet injected with vehicle

(HS) 5.261.8% and Chow diet inoculated with P. g (CP) demonstrated

2.660.8% of the aorta occupied by lesion. Interestingly, we did not

observe any lesions on the aortic surface in ApoE+/2-TLR22/2 mice,

irrespective of the diet or inoculum (Figs 1A–J). We also did not

observe any lesions in any of the mice that were maintained on a chow

diet and injected with vehicle (CS), regardless of their genetic

backgrounds. We previously observed similar results from en face

analysis performed after 14 weeks of these inoculation treatments of

mice these same three genotypes (data not shown).

Similarly, FSL-1 treatment for 24 weeks failed to induce any

atherosclerotic changes in the aortas of ApoE+/2-TLR22/2 mice

maintained on standard lab chow (data not shown). However, in

ApoE+/2-TLR2+/+ mice maintained on a high fat diet and treated

with FSL-1 for 24 weeks,11.260.6% of the aorta was covered by

lesion. In contrast, in mice maintained on standard chow, FSL-1

treatment for 24 weeks resulted in significantly smaller atheroscle-

rotic lesions that occupied only 1.94%60.39% of the aorta

(Fig. 2A). No statistically significant differences could be observed

in the extent of aortic lesions in ApoE+/2-TLR2+/+ mice injected

with P.g or FSL-1, irrespective of the diet (Fig. 2B).

Histomorphometric analysis revealed significantly smaller lesions

in the proximal aortas of ApoE+/2-TLR2+/2 mice compared to

ApoE+/2-TLR2+/+ mice and ApoE+/-TLR22/2 mice. In mice fed

with high fat diet and injected with P.g the proximal aorta occupied

by lesion was 46.266.6% in ApoE+/2-TLR2+/+, 18.662.4 in

ApoE+/2-TLR2+/2 and 3.0460.8 in ApoE+/-TLR22/2 mice. In

mice fed with high fat diet and injected with saline the proximal

aorta occupied by lesion was 22.762.9% in ApoE+/2-TLR2+/+,

11.762.5 in ApoE+/2-TLR2+/2 and 2.260.6 in ApoE+/-TLR22/2

mice. In mice fed with chow diet and injected with P.g the proximal

aorta occupied by lesion was 16.163.2% in ApoE+/2-TLR2+/+,

7.662.3 in ApoE+/2-TLR2+/2 and 1.560.5 in ApoE+/-TLR22/2

mice. (Fig. 3) Similar results were obtained at 14 weeks post

inoculation also (data not shown). However, we did not observe any

lesions in the chow-fed, vehicle-treated mice (CS), irrespective of

their TLR2 genotype. Histomorphometric analysis of the proximal

aortas revealed that 37.564.6% of the aortic lumen was occupied by

lesion in ApoE+/2-TLR2+/+ mice injected with FSL-1 and

maintained on a high fat diet, compared with only 10.461.3% of

ApoE+/2-TLR2+/+ mice kept on a chow diet (Fig 4A). No lesions

were observed in ApoE+/2-TLR22/2 mice after 24 weeks of FSL-1

injections and a standard chow diet (data not shown). Furthermore,

there was no statistically significant difference in the percentage of

aortic lumen occupied by lesions in mice injected with P. g when

compared to FSL-1 treatment, irrespective of diet (Fig 4B).

Imunohistochemical Analysis of Proximal Aorta
After establishing the involvement of TLR2 in diet/bacteria

induced atherosclerosis, we performed a detailed examination of

plaque compositions by immunofluorescence staining. Five

sections of the proximal aorta per animal (n = 8) each separated

by 80 mm, were selected and staining specific for macrophages,

smooth muscle cells, and apoptotic cells using MOMA-2, a-SMA

and TUNEL were performed, respectively. Significant differences

in the plaque composition were observed between atherosclerotic

lesions of all ApoE+/2-TLR2+/+ mice when compared to those

from ApoE+/2-TLR2+/2 and ApoE+/2-TLR22/2 mice, irrespec-

tive of the treatment. The atherosclerotic lesions in ApoE+/2-

TLR2+/+ mice exhibited a greater percentage of infiltrating

macrophages than smooth muscle cell accumulation. In contrast,

in ApoE+/2-TLR2+/2 and ApoE+/2-TLR22/2 mice, macro-

phage content was either less than or equal to the smooth muscle

cell accumulation in plaques (Figs. 5A–5G). Furthermore, the

marked increase in the inflammatory component of the lesions in

ApoE+/2-TLR2+/+mice was associated with a substantial increase

in the occurrence of apoptosis within their plaques. In ApoE+/-

TLR2+/+ mice we observed: 6.3%, 5.2% and 4.9% inflammatory

component in the HP, HS and CP groups, respectively (Figs. 5I–L)

Serum Amyloid A Level
At the conclusion of the 24 week treatment period, SAA levels

were highest in mice on high fat diets and also inoculated with P.g.

High fat mice inoculated only with saline had the next highest

SAA levels, followed by mice on a normal diet but challenged with

weekly inoculations of P.g. Mice from all genetic backgrounds

maintained on standard chow and inoculated with vehicle had the

lowest SAA levels, regardless of genotype (Fig 6A). The serum

TLR-2 Mediated Atherosclerosis
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SAA levels were undetectable in ApoE+/2-TLR22/2 mice

maintained on a chow diet and injected with FSL-1 (data not

shown). Also, there was no significant difference in serum SAA

levels between ApoE+/2-TLR2+/+ mice injected with FSL-1 when

compared to the P. g injected group, irrespective of the diet

(Fig 6B).

Serum Cytokine Levels
To further correlate the serum cytokine levels within advanced

stage atherosclerotic lesions, serum samples were analyzed for 32

cytokines. Statistical significance was evaluated by ANOVA

followed by the post-hoc Scheffe test. A level of p,0.05 was

considered significant. Significantly altered cytokine levels were

observed as a consequence of the high fat diet and of inoculation

with P. g. These are presented in supplement sheet Fig-3.

Compared to ApoE+/2-TLR2+/2 and ApoE+/2-TLR22/2 mice,

ApoE+/2-TLR2+/+ mice displayed profoundly higher levels of

most proinflammatory cytokines and chemokines, including IL-1a,

IL-1b, IL-6, IL-12p40, IL-12p70, TNF-a, MCP-1, VEGF, M-

CSF, and GM-CSF in high fat diet and/or bacterial-challenged

animals. No significant differences were observed in the cytokine

levels between all 3 genetic background mice fed the chow diet

and saline-inoculated. The most significantly elevated cytokine

levels were seen in ApoE+/2-TLR2+/+ mice fed the high fat diet

and also inoculated with P.g (HP) (Fig. 7).

Cytokine profiling in serum samples obtained from ApoE+/2-

TLR2+/+ mice treated for 24 weeks with FSL-1 or wild type P.g.

were compared. The expression of cytokines was increased with

both stimuli in ApoE+/2-TLR2+/+ stimulated with FSL-1 or wild-

type P.g. irrespective of the diet (Fig. 3 and 4 Supplemental Data

S1). FSL-1 did not stimulate cytokine expression in ApoE+/2-

TLR22/2 mice (Fig. S3 and S4 Supplemental Data S1).

Two-dimensional Protein Maps of Aortic Tissues from
ApoE+/2-TLR2+/+ and ApoE+/2-TLR22/2 Mice

Protein extracts from aortic tissues of ApoE+/2-TLR2+/+ and

ApoE+/2-TLR22/2 mice maintained on a high fat diet and/or

inoculated with P. g were separated using 2-DGE. An example of

the overall 2-DGE patterns of aortic protein extracts of ApoE+/2-

TLR2+/+ mice fed a high fat diet and inoculated with P. g is shown

in Fig 8. A total of 34 different protein spots were detected in

response to P.g challenge: 21 protein spots increased least by 2-fold

(Fig 8 red); 3 protein spot decreased at least by 2-fold (Fig 8 green)

and 10 unmatched protein spots (Fig 8 black). Out of the 21

Figure 1. P. g and/or high fat diet increases aortic atherosclerotic lesions in ApoE+/2-TLR2+/+ mice when compared to ApoE+/2-
TLR2+/2, and ApoE+/2-TLR22/2 mice. En face analysis: (1A–1I): Representative en face view of aortic surface lesions in ApoE+/2-TLR2+/+, ApoE+/2-
TLR2+/2, and ApoE+/2-TLR22/2 mice after 24 weeks of treatments. (1J): Calculated percentages of aortic surface area covered by lesions after 24
weeks of treatments (bacterial challenge or vehicle control) among mice of three genotypes maintained on standard chow or high fat diets. Values
represent means6SD; *p,0.05 for ApoE+/2-TLR2+/+ mice compared to ApoE+/2-TLR2+/2 mice and **p,0.05 for ApoE+/2-TLR2+/+ mice compared to
ApoE+/2-TLR22/2 mice in the same treatment condition and maintained on the same diet. Abbreviations are as defined in the text.
doi:10.1371/journal.pone.0003204.g001
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protein spots with at least 2 fold increase 6 proteins: Vesl-2

protein, Sod-2 protein, fumarate hydratase, myosin light chain

polypeptide 3, aconitase, and gelsolin were identified (Table 1).

Out of the 10 unmatched spots a protein: Hb was identified

(table 1) only in ApoE+/2-TLR2+/+ mice maintained on the high

fat diet and inoculated with P. g. Magnified gel regions

corresponding to Hb from mice of both genotypes maintained

on high fat diets after challenge with P.g or vehicle are compared

in Figs 8A–D.

Discussion

In the present study we demonstrate that TLR2 plays an

important role in the pathogenesis of bacteria-enhanced diet-

dependent atherosclerosis in the ApoE+/2 murine model,

establishing a key link between atherosclerosis and immune

defense against foreign pathogens and/or endogenous inflamma-

tory ligands. Both en face and histomorphometric data revealed that

a greater percentage of the aorta and aortic lumen was occupied

by the atherosclerotic lesions in ApoE+/2-TLR2+/+ mice as

compared to either ApoE+/2-TLR2+/2 or ApoE+/2-TLR22/2

mice. ApoE+/2-TLR2+/+ mice fed a high fat diet and inoculated

with P. g (HP) exhibited larger lesions compared to mice fed a high

fat diet and inoculated only with saline vehicle (HS) or mice fed the

standard lab chow diet and inoculated with P. g. (CP). Increased

cholesterol, LDL and decreased HDL level seen in ApoE+/2-

TLR2+/+ mice injected with P. g in current work, corroborates well

previous studies showing that periodontal pathogens can influence

the systemic lipoprotein profile [33].

Our data support previous studies showing that both endoge-

nous (diet) and exogenous (Pam3CSK4) TLR2 ligands play

important roles in the modulation of atherosclerosis [14,28].

Indeed, mice deficient in TLR4, TLR2 and MyD88 all have

reduced atherosclerosis which establishes that TLR-dependent

pathways contribute to disease development. Although it is likely

that total ‘‘infectious burden’’ contributes to atherosclerosis

progression, endogenous ligands may also initiate and modulate

Toll-like receptor signaling pathways [29,30,31].

The unstable plaque phenotype is characterized by increased

vulnerability to rupture and thrombosis. Histologically, an

unstable plaque is identified by its thin fibrous cap, low smooth

muscle cell count, high macrophage content, increased apoptosis

and large lipid core [32,33,34,35,36]. The loss of the smooth

muscle cells in particular is thought to be detrimental for plaque

stability since most of the interstitial collagen fibers, which are

important for the tensile strength of the fibrous cap, are produced

by these cells [37]. Our detailed immunohistochemical analysis of

atherosclerotic lesions for smooth muscle cells, macrophages, and

apoptotic regions found that all the signs of plaque instability were

consistently observed in ApoE+/2-TLR2+/+ mice, while ApoE+/2-

TLR2+/2 and ApoE+/2-TLR22/2 mice showed lesions more

characteristic of stable plaque, with less macrophage content, less

apoptosis, smaller lipid cores, and higher smooth muscle cell mass

(Fig. 5). A significant increase of apoptosis in the lesions of ApoE+/

Figure 2. TLR2 activation through FSL-1 demonstrated no significant difference in aortic lesions when compared to P. g in ApoE+/2-
TLR2+/+ and ApoE+/2-TLR22/2 mice. (2A) Percentage of aortic surface area covered by lesions in chow-fed groups for mice from two genetic
backgrounds (ApoE+/2-TLR2+/+ and ApoE+/2-TLR22/2) injected with P. g or FSL-1 for 24 weeks. Values represent means6SD; *p,0.05 between
ApoE+/2-TLR2+/+ mice and ApoE+/2-TLR22/2 mice injected with P. g; **p,0.05 between ApoE+/2-TLR2+/+ mice and ApoE+/2-TLR22/2 mice injected
with FSL-1. No lesions were detected in ApoE+/2-TLR22/2 mice irrespective of the treatment. (2B) Percentage of aortic surface area covered by lesions
in ApoE+/2-TLR2+/+ mice maintained on either diet and injected weekly with P. g or FSL-1 for 24 weeks. Values represent means6SD.
doi:10.1371/journal.pone.0003204.g002
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2-TLR2+/+ mice, along with upregulation of proinflammatory

cytokines which regulate the release of the matrix-degrading

proteinases and may favor the unstable plaque phenotype [38].

SAA, the mouse counterpart of human C-reactive protein, is an

acute phase reactant known as a marker for systemic inflamma-

tion. It has been demonstrated that CRP is produced in the liver in

response to IL-6, IL-1b, and TNF-a [39]. A strong association has

also been shown between circulating levels of SAA and the extent

of atherosclerosis in the aorta [23,26,27]. Our data demonstrated

significantly higher serum levels of SAA, IL-6, IL-1b, and TNF-a
in ApoE+/2-TLR2+/+ mice compared with ApoE+/2-TLR22/2

mice, irrespective of the diet or bacterial challenge treatment.

Furthermore, SAA levels significantly correlated with the extent of

aortic lesions examined after 24 weeks of challenge. Interestingly,

significantly lower levels of SAA in ApoE+/2-TLR22/2 mice

suggest that TLR2 deficiency may also lead to a lower overall

systemic inflammatory status.

We performed cytokine profiling in order to further investigate

the systemic inflammatory status associated with TLR2 deficiency

and the involvement of TLR2 in atherosclerosis. Our data show

that TLR2 elicits differential expression of inflammatory cytokines

and co-stimulatory molecules upon challenge with atherogenic

stimuli (P.g. and/or high fat diet). Maximum induction of a host of

proinflammatory cytokines (IL-1a, IL-1b, IL-6, IL-18, IFN-c, IL-

12p40, IL-12p70, TNF-a, MCP-1, VEGF, M-CSF, and GM-CSF)

was observed in ApoE+/2-TLR2+/+ mice maintained on a high fat

diet and challenged with P. g. Most of these cytokines and

chemokines are proinflammatory factors, favoring cell migration,

proliferation [40,41] and chemo-attraction of inflammatory cells,

such as monocytes/macrophages and T cells [42,43,44]. These

results further implicate an aspect of antigen-specific adaptive

immunity mostly characteristic of a Th1 response, including

cytokines IL-2, IL-18, IFNc and TNF-a [9]. The differential

cytokine induction also implies that P. g and/or a high fat diet can

activate different receptors to mediate intracellular signaling. It is

known that the formation of heterodimers between TLR2 and

other TLRs (TLR1 or TLR6) dictates the specificity of ligand

recognition, thereby diversifying the possible outcomes of TLR2

Figure 3. P.g and/or high fat diet increases atherosclerotic lesions in proximal aorta of ApoE+/2-TLR2+/+ mice when compared to
ApoE+/2-TLR2+/2, and ApoE+/2-TLR22/2 mice. Microscopic cross-sections (10 mm) of the proximal aortic root were stained with Sudan IV and
counterstained with hematoxylin to reveal lipid deposition, which was quantified by digital morphometry. (3A–D): results from mice maintained on a
standard chow diet and inoculated weekly with P. g (CP). (3E–H): results from mice maintained on a high fat diet and inoculated weekly with vehicle
(HS) (normal saline). (3I–L) results from mice maintained on a high fat diet and inoculated weekly with P. g (HP). (3D, H, l): data are presented
graphically as percentage of total lumen of the proximal aorta occupied by lesions after 24 weeks of injections. Values represent means6SD; *p,0.05
between ApoE+/2-TLR2+/+ mice and ApoE+/2-TLR2+/2 mice; **p,0.05 between ApoE+/2-TLR2+/+ mice and ApoE+/2-TLR22/2 mice in the same
condition and maintained on the same diet. Abbreviations are as defined in the text. Photomicrographs shown are representative images obtained at
the end of the 24 week treatment period. Original magnifications 206. Scale bar represents 0.5 mm.
doi:10.1371/journal.pone.0003204.g003
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activation [20]. In this context, it is noteworthy that the ApoE+/2-

TLR22/2 genotype conferred atheroprotective effects, which may

result in part from reduced systemic inflammation as shown by

reduced expression of proinflammatory cytokines and chemokines

in all treatment groups.

To further establish the role of TLR2 in modulating the

progression of atherosclerosis, we stimulated mice with the TLR2

agonist known as FSL-1. En face and histomorphometric analysis

revealed that systemic exposure to FSL-1 dramatically increased

lesion severity in a manner similar to P. g. In contrast, the absence

of TLR2 resulted in complete prevention of lesions in mice on the

chow diet and injected with FSL-1. Furthermore, the percentage

of the lesions observed both in aorta and aortic sinus were

comparable to the lesions observed in ApoE+/2-TLR2+/+ mice

injected with P. g irrespective of the diet after 24 weeks. FSL-1

stimulation also altered the systemic inflammatory status as

monitored by increased serum SAA levels in the ApoE+/2-

TLR2+/+ mice when compared to the ApoE+/2-TLR22/2 mice.

It is noteworthy that the levels of serum SAA in ApoE+/2-TLR2+/+

mice stimulated with FSL-1 were comparable to the levels

obtained when mice were challenged with P. g irrespective of the

diet, thus confirming the role of TLR2 in upregulation of systemic

inflammation produced by P. g challenge. Cytokine profiling

showed that both FSL-1 stimulation and P.g challenge resulted in a

relatively similar expression of proinflammatory cytokines.

Our expression proteomic approach extends the growing body

of literature linking TLR2 and atherogenesis by identifying

proteins involved in P. g- and/or diet-induced atherosclerosis in

ApoE+/2 mice. Using 2D gel electrophoresis (2-DGE) in

combination with mass spectrometry (MS), we found that in

ApoE+/2-TLR2+/+ mice, P. g stimulation in combination with a

high fat diet up-regulated the expression of a set of proteins (Hb,

Vesl-2 protein, Sod-2 protein, fumarate hydratase, myosin light

chain polypeptide 3, aconitase and gelsolin) compared to high fat

diet alone. Some of these proteins were found of interest in

improving our understanding of the mechanisms linking athero-

genesis to infection, inflammation, and immune response.

Hemoglobin (Hb) is known to enhance the biological function of

bacterial endotoxins [48] and therefore increased Hb can

contribute to aheightened systemic response. Furthermore in-

creased Hb content in the blood leads to increased viscosity, with

detrimental effects on blood flow. Moreover, intraplaque hemor-

rhage seen in advanced lesions also causes the deposition of Hb. In

our study, the detection of Hb only in ApoE+/2-TLR2+/+ mice fed

a high fat diet and injected with P. g indicates that elevated Hb

levels may be useful as a biomarker for an unstable plaque

Figure 4. TLR2 activation through FSL-1 demonstrated no significant difference in proximal aortic lesions when compared to P. g in
ApoE+/2-TLR2+/+ and ApoE+/2-TLR22/2 mice. Microscopic cross-sections (10 mm) of the proximal aortic root were stained with Sudan IV and
counterstained with hematoxylin to reveal lipid deposition, which was quantified by digital morphometry for samples from ApoE+/2-TLR2+/+ and
ApoE+/2-TLR22/2 mice. (4A): percentage of total lumen of the proximal aorta occupied by lesions after 24 weeks of treatment in ApoE+/2-TLR2+/+ and
ApoE+/2-TLR22/2 mice maintained on a standard chow diet and injected weekly with P. g or FSL-1. Values represent means6SD; *p,0.05 for
differences between mice injected with P. g; **p,0.05 for differences between mice injected with FSL-1. No lesions were detected in ApoE+/2-TLR22/

2 mice irrespective of the treatment. (4B): percentage of total lumen of the proximal aorta occupied by lesions in ApoE+/2-TLR2+/+ mice maintained
on a chow diet or a high fat diet after 24 weeks of injections with P. g or FSL-1. Values represent means6SD.
doi:10.1371/journal.pone.0003204.g004
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phenotype. Its presumed mechanism of vascular injury would

include both oxidative heme toxicity caused by its ineffective

clearance and also the subsequent consumption of nitric oxide, an

important mediator of vascular homeostasis.

Vesl-2 (Homer 2) is a post-synaptic adaptor protein that has

been shown to be present in multiple tissues such as brain and

heart. It may be linked to atherogenesis through its associations

with glutamate receptor complexes and also the actin cytoskeleton.

These glutamate receptors are coupled with G-proteins and

activate phospholipase C, ultimately activating the IP3 receptor

(IP3R) to release intracellular calcium, which can alter the

function of ECs. Endothelial dysfunction typically results in

platelet aggregation at the damaged site. Elevated intracellular

calcium also leads to increased uptake of macromolecules in

plasma such as fibrinogen and LDL, eventually forming

atherosclerotic plaque. Thus it may be speculated that increased

vesl-2 protein in ApoE+/2-TLR2+/+ mice fed a high fat diet and

injected with P. g may lead to an increase in intracellular calcium,

contributing to the increased atherosclerosis in this group of mice.

Our observation of increased SOD-2 along with reduced

smooth muscle cell content in ApoE+/2-TLR2+/+ mice fed a high

fat diet and injected with P. g agrees well with a recent report in

which SOD-2 deficient smooth muscle cells can exhibit a

hypertrophic and hyperplastic phenotype. Thus we may speculate

that P.g challenge upregulates mitochondrial SOD-2 and affects

downstream pathways involving MAP kinases. Thus, increased

SOD-2 may play a crucial role in determining plaque phenotype

as it directly affects smooth muscle cell phenotype.

Gelsolin is an actin-binding protein that is a key regulator of

actin filament assembly and disassembly. It is regulated by Ca2+-

and polyphosphoinositide 4, 5-bisphosphate (PIP2) and plays an

important role in actin remodeling by regulating actin filament

severing and capping. It has also been shown to play a role in

apoptosis [45] and in sepsis-induced cell injury. Increased gelsolin

Figure 5. P. g and/or high fat diet results in unstable plaque in ApoE+/2-TLR2+/+ mice when compared to ApoE+/2-TLR2+/2, and
ApoE+/2-TLR22/2 mice. Representative photomicrographs of atherosclerotic plaques from the aortic sinus of ApoE+/2-TLR2+/+, ApoE+/2-TLR2+/2

and ApoE+/-TLR22/2 mice maintained on a high fat diet and inoculated weekly with P. g (HP) for 24 weeks. Stains identify sections of macrophage
infiltration (MOMA-2 red staining) (5a, 5b&5c); smooth muscle cells (a-SMA red staining) (5E, 5F&5G); TUNEL positive cells (green spots coinciding
with nuclear stain DAPI) (5I, 5J&5K). Quantitative computer-assisted image analysis (as described in Materials and Methods) was used to quantify the
percentage of macrophage-positive areas (5D), smooth muscle cell area (5H) and TUNEL/DAPI positive cells (5I) in proximal aortic lesions in ApoE+/2-
TLR2+/+, ApoE+/2-TLR2+/2 and ApoE+/-TLR22/2 mice of all the groups at the conclusion of the 24 week treatment period. Data represent means6SD;
*p,0.05 for ApoE+/2-TLR2+/+ mice compared to ApoE+/2-TLR2+/2 mice, and **p,0.05 for ApoE+/2-TLR2+/+mice compared to ApoE+/2-TLR22/2 mice
in the same treatment condition and maintained on the same diet. Abbreviations are as defined in text. Original magnifications 1006 for
macrophages and smooth muscle and 2006 for TUNEL/DAPI staining. Scale bar represents 0.5 mm.
doi:10.1371/journal.pone.0003204.g005
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activity has also been shown in failing human hearts [46] probably

in reaction to the cell injury. Thus, increased level of gelsolin seen

in ApoE+/2-TLR2+/+ mice fed a high fat diet and injected with P.

g may be linked to the increased apoptosis and atherosclerosis

observed in this group.

Aconitase and fumarate hydratase are Krebs cycle enzymes.

These enzymes area lso known to play important roles in the

response to oxidant stress, which can inactivate aconitase and

other Krebs cycle enzymes [47]. We observed increased aconitase

and fumarate hydratase levels in ApoE+/2-TLR2+/+ mice fed a

high fat diet and injected with P. g. These proteins probably

represent an adaptive response to increased oxidative stress but

they are also important predisposing factors in the progression of

the atherosclerotic process.

Taken together, our results confirm the important role for

TLR2 signaling in diet and/or bacteria enhanced atherosclerosis

in an ApoE+/2 mouse model, providing a link between innate

immunity, inflammation and atherosclerosis. Due to TLR2 central

role in the disease process, it represent a target of immunomod-

ulatory therapy with the goal of tipping the balance from excessive

chronic inflammation towards resolution of inflammation, while

not compromising host defenses or atheroprotective immune

functions. Therefore manipulation of TLR2 pathways has great

therapeutic potential. TLRs inhibitors or their associated signaling

molecules hold great promise in the prevention of atherosclerosis.

Materials and Methods

Please refer to the supplemental data and Fig. S1 and S2 for

details. Briefly, all animal protocols were approved by the Boston

University Medical Campus Institutional Animal Care and Use

Committee. To investigate the role of TLR2 in inflammation-

and/or infection-associated atherosclerosis, 10 week-old ApoE+/2-

TLR2+/+, ApoE+/2-TLR2+/2 and ApoE+/2-TLR22/2 mice

were fed either a high fat diet or a regular chow diet. All mice

were inoculated intravenously, once per week for 24 consecutive

weeks, with 50 ml live P. g (107 CFU) or vehicle (normal saline).

Animals were euthanized 24 weeks after the first inoculation.

Histomorphometric analysis of the aortic lesions and the proximal

aorta using Sudan red stain were performed. Immunofluroscent

staining for macrophage, smooth muscle cell and apoptosis were

performed on the proximal aortic sections. Metabolic profile,

Figure 6. TLR2 activation through FSL-1 demonstrated no significant difference in SAA levels when compared to P. g in ApoE+/2-
TLR2+/+ and ApoE+/2-TLR22/2 mice. (6A) SAA levels in serum samples obtained after 24 weeks of inoculations, as determined by ELISA. Data
represent means6SD; *p,0.05 between ApoE+/2-TLR2+/+mice and ApoE+/2-TLR2+/2 mice; **p,0.05 between ApoE+/2-TLR2+/+mice and ApoE+/2-
TLR22/2 mice maintained under the same conditions and on the same diet. Abbreviations are as defined in the text. (6B) SAA levels in serum samples
obtained at the end of the study, determined by ELISA. Data represent means6SD in ApoE+/2-TLR2+/+ mice maintained on either standard chow or a
high fat diet, and injected weekly with P. g or FSL-1.
doi:10.1371/journal.pone.0003204.g006
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serum amyloid A and serum cytokine levels were also performed

for all the three genotypes. For the TLR2 agonist study a second

set of four week old male ApoE+/2-TLR2+/+ fed either a HFD or

a regular chow diet for 6 weeks (n = 10) were used. All mice were

inoculated intravenously, once per week for 24 consecutive weeks,

with 5 mg FSL-1in 50 ml saline or vehicle (normal saline). Animals

were euthanized 24 weeks after the first inoculation. To compare

and further establish an absolute effect of TLR2 in bacteria-

enhanced atherosclerotic lesions, a third set of experiments

involved only ApoE+/2-TLR22/2 mice fed only the standard

Figure 8. P.g and/or high fat diet demonstrated changes in the aortic protein in ApoE+/2-TLR2+/+ mice when compared to ApoE+/2-
TLR22/2 mice. Two-dimensional electrophoresis gel image of the proteins extracted from aortas (n = 5) from ApoE+/2-TLR2+/+ mice fed a high fat
diet and injected weekly with P. g. Enlarged spots representing Hb were observed in aortas proteins from ApoE+/2-TLR2+/+ mice maintained on a high
fat diet and injected with P. g (8B). Corresponding gel regions from aorta proteins from ApoE+/2-TLR2+/+ mice maintained on a high fat diet alone (8A)
or ApoE+/2-TLR22/2 mice fed a high fat diet alone (8C) or also injected with P.g. (8D) did not exhibit the spots. Gels were stained by SYPRO RUBY
stain. The spot numbers correspond to proteins listed in Table 1.
doi:10.1371/journal.pone.0003204.g008

Figure 7. P. g and/or high fat diet results in increased proinflamatory cytokines in ApoE+/2-TLR2+/+ mice when compared to ApoE+/

2-TLR2+/2, and ApoE+/2-TLR22/2 mice. Serum cytokine levels (pg/ml) in mice maintained on a standard lab chow diet and inoculated weekly for
24 weeks with P. g. (Fig 7A&7B). Serum cytokine levels (pg/ml) in mice maintained on a high fat diet and injected with saline weekly for 24 weeks
(Fig 7C&7D). Serum cytokine levels (pg/ml) in mice maintained on a high fat diet and inoculated weekly for 24 weeks with P. g (Fig 7E&7F).
doi:10.1371/journal.pone.0003204.g007

Table 1. 1 Protein identified by MALDI TOF.

Spot number Protein Expectation Accession no. ApoE+/2 TLR2+/+

HFD+P.g

111,108,109 Gelsolin 5.30E-05 8606238 .2fold increase

104,95,80 Aconitase 1.20E-07 18079339 .2 fold increase

599,597,596,595 Hemoglobin 8.30E-06 31982300 Unmatched

689 SOD-2 6.05E-06 17390379 .2 fold increase

682 Vesl-2 2.00E-04 3766297 .2 fold increase

404 Fumarate hydratase 1.30E-05 33859554 .2 fold increase

417 Myosin, light polypeptide 3 5.70E-04 33563264 .2 fold increase

Identification of proteins differentially expressed in ApoE+/2-TLR2+/+ mice fed a high fat diet and inoculated with P. g as compared to other groups.
doi:10.1371/journal.pone.0003204.t001
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chow diet. Four week old ApoE+/2-TLR22/2 mice maintained

on a regular chow diet for 6 weeks (n = 10), were inoculated with

50 ml saline vehicle or 5 mg FSL-1 in 50 ml saline. All groups were

analyzed for atherosclerotic lesions, metabolic profile, serum

amyloid A and serum cytokine levels after 24 weeks of

inoculations.

Statistical Analysis
All histomorphometric measurements were made by an

examiner blinded to the identity of the samples. All quantitative

measurements were confirmed by random analysis of one fourth of

the specimens by the same examiner (R.0.92) and by another

independent examiner (a pathologist) to ensure consistency. The

intra-examiner and inter-examiner variation were each ,10%. All

histomorphometric and serum assay data were analyzed by

ANOVA followed by the post-hoc Scheffe test. A level of

p,0.05 was considered significant.

Supporting Information

Data S1 Supplemental material document

Found at: doi:10.1371/journal.pone.0003204.s001 (0.08 MB

DOC)

Figure S1 Animal grouping and experimental time schedule for

P.gingivalis expeiments. Four week old male ApoE+/2-TLR2+/

+, ApoE+/2-TLR2+/2 and ApoE+/2-TLR22/2 mice were

fed either a HFD or a regular chow diet for 6 weeks (n = 8), then

inoculated once per week for 24 weeks with 50 ml of either vehicle

(normal saline) or 107 CFU) P. g while maintained on the chosen

diet. Thus, there were 4 groups for each genotype of mice: Group

1 was fed a standard chow diet and inoculated weekly with 50 ml

saline vehicle (CS); Group 2 was fed a standard chow diet and

inoculated with 50 ml (107 CFU) P. g. (CP); Group 3 was fed a

high fat diet and inoculated with 50 ml saline vehicle (HS); Group

4 was fed a high fat diet and inoculated with 50 ml (107 CFU) P. g

(HP). In summary, mice (n = 8) in each group received 24 tail vein

injections of either vehicle or P. g once weekly.

Found at: doi:10.1371/journal.pone.0003204.s002 (0.83 MB TIF)

Figure S2 Animal grouping and experimental time schedule for

FSL-1expeiments. Effects of FSL-1 were tested in two sets of

experiments. In the first, four week old male ApoE+/2-TLR2+/+
were fed either a HFD or a regular chow diet for 6 weeks (n = 10)

then inoculated once per week for 24 weeks with 50 ml of either

vehicle (normal saline) or 5 mg FSL-1 while maintained on the

chosen diet. The resulting 4 groups were: Group 1a was fed a

standard chow diet and inoculated with 50 ml saline vehicle (CS);

Group 2a was fed a standard chow diet and inoculated weekly

with 50 ml (5 mg) FSL-1; Group 3a was fed a high fat diet and

inoculated weekly with 50 ml saline vehicle (HS); Group 4a was fed

a high fat diet and inoculated with 50 ml (5 mg) FSL-1. All groups

were tested after 24 weeks of their diet and inoculation regimens.

For the second set of experiments, four week old ApoE+/2-

TLR22/2 mice maintained on only a regular chow diet for 6

weeks (n = 10), then were divided into 2 groups: Group 1b was

inoculated weekly with 50 ml vehicle saline (CS); Group 2b was

inoculated weekly with 50 ml (5 mg) FSL-1. All groups were tested

after 24 weeks of inoculations.

Found at: doi:10.1371/journal.pone.0003204.s003 (0.53 MB TIF)

Figure S3 TLR2 activation through FSL-1 demonstrated similar

expression of increased proinflamatory cytokines as compared

chow fed and injected with P. g in ApoE+/2-TLR2+/+ mice.

Serum cytokine levels (pg/ml) in ApoE+/2-TLR2+/+ mice fed a

standard chow diet and injected weekly with P. g or FSL-1. Data

represent mean+SD.

Found at: doi:10.1371/journal.pone.0003204.s004 (0.78 MB TIF)

Figure S4 TLR2 activation through FSL-1 demonstrated similar

expression of increased proinflamatory cytokines as compared

high fat fed and injected with P. g in ApoE+/2-TLR2+/+ mice.

Serum cytokine levels (pg/ml) in ApoE+/2-TLR2+/+ mice fed a

high fat diet and injected weekly with P. g or FSL-1. Data

represent mean+SD.

Found at: doi:10.1371/journal.pone.0003204.s005 (0.77 MB TIF)

Table S1 Metabolic profiles of ApoE+/2-TLR2+/+, ApoE+/

2-TLR2+/2 and ApoE+/2-TLR22/2 mice maintained on a

standard lab chow diet or a high fat diet, and injected weekly with

either saline or with P. g, at 24 weeks. *Significance between

ApoE+/2-TLR2+/+, ApoE+/2-TLR2+/2 and ApoE+/2-

TLR22/2 for respective groups. Abbreviations are as defined

in the text.

Found at: doi:10.1371/journal.pone.0003204.s006 (0.07 MB

DOC)

Table S2 Metabolic profile of ApoE+/2-TLR2+/+ and

ApoE+/2-TLR22/2 mice fed with either a standard lab chow

diet or a high fat diet, and injected weekly with either P. g or FSL-

1; measurements were obtained after 24 weeks of treatments.

Found at: doi:10.1371/journal.pone.0003204.s007 (0.04 MB

DOC)
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