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Abstract

Background: Models of honest advertisement predict that sexually selected calls should signal male quality. In most
vertebrates, high quality males have larger body sizes that determine higher social status and in turn higher reproductive
success. Previous research has emphasised the importance of vocal tract resonances or formant frequencies of calls as cues
to body size in mammals. However, the role of the acoustic features of vocalisations as cues to other quality-related
phenotypic characteristics of callers has rarely been investigated.

Methodology/Principal Findings: We examined whether the acoustic structure of fallow deer groans provides reliable
information on the quality of the caller, by exploring the relationships between male quality (body size, dominance rank,
and mating success) and the frequency components of calls (fundamental frequency, formant frequencies, and formant
dispersion). We found that body size was not related to the fundamental frequency of groans, whereas larger males
produced groans with lower formant frequencies and lower formant dispersion. Groans of high-ranking males were
characterised by lower minimum fundamental frequencies and to a lesser extent, by lower formant dispersions. Dominance
rank was the factor most strongly related to mating success, with higher-ranking males having higher mating success. The
minimum fundamental frequency and the minimum formant dispersion were indirectly related to male mating success
(through dominance rank).

Conclusion/Significance: Our study is the first to show that sexually selected vocalisations can signal social dominance in
mammals other than primates, and reveals that independent acoustic components encode accurate information on
different phenotypic aspects of male quality.
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Introduction

Male vocalisations are often subject to sexual selection and can

be used to assess the quality and condition of the caller in various

vertebrates [1–4]. The reliability of the information encoded in

sexually selected acoustic signals is maintained by constraints

imposed on the caller, which make cheating costly [5].

Alternatively, vocalisations that are physiologically or physically

constrained carry some characteristics that are directly related to

intrinsic properties of the caller and therefore cannot be faked [6].

The relationships between the body size of callers and the

acoustic parameters of vocalisations are of particular interest in

species in which body size determines fighting ability and

reproductive success [7–10]. In toads, frogs, and birds, body size

is negatively related to the fundamental frequency of calls [11–13].

In mammals, and within a given species, body size is related to

fundamental frequency across age categories and among adult

females but not among adult males [9,14–16]. Fundamental

frequency corresponds to the rate at which the vocal folds of the

larynx open and close and is determined by different factors such

as the length of the vocal folds, longitudinal stress on the vocal

folds, and the tissue density of the vocal folds [17]. For example,

longer vocal folds result in lower fundamental frequency. Because

the larynx is not constrained by the bones of the skull, the vocal

folds may grow independently of the rest of the head or body [18].

Moreover, vocal folds are highly sensitive to changes in

testosterone [19,20] and they may grow longer in males with

higher testosterone levels. Thus, fundamental frequency is a poor

indicator of male body size in mammals.

Formant frequencies or resonances of the vocal tract probably

represent the key acoustic variables linked to variation in body size

in mammals [16,18,21–24]. Formants frequencies and their

average spacing (formant dispersion) depend upon tissue structure,

and the shape and length of the vocal tract [25]. Longer vocal

tracts produce lower formant frequencies. In contrast to the vocal

folds, the length of the vocal tract is constrained by skeletal

structures (e.g. dimensions of the skull) and therefore closely tied to

overall body size [18].

In addition to male body size, sexually selected calls might

convey information about other indirect measures of male fitness,

such as social dominance. Dominance rank and acoustic

parameters can be indirectly related as they are both not fixed
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traits of the caller, but instead vary according to individual

physical and physiological attributes [19,26,27]. The perception of

these characteristics based on acoustic cues by competing males

may affect the outcome of agonistic interactions. Females

evaluating the relative quality of males might rely on acoustic

cues related to dominance because high-ranking males often have

better survival, and overall reproductive success than low-ranking

males [7,28,29]. While there is now strong evidence that some

acoustic parameters of vocalisations represent body size, the

relationships between vocal parameters and other characteristics

linked to male quality, such as dominance rank and mating

success, have rarely been examined.

Fallow deer are ideal for investigating the role of acoustic signals

as indicators of male quality. Fallow deer are characterised by a

polygynous mating system with high male-male competition and

skewed reproductive success [30,31]. Larger males are generally

higher ranked than smaller males, and rank is also closely

associated with mating success [7]. Males only vocalise during the

breeding season and the sexually selected call they produce is

known as a groan [32,33]. In the northern hemisphere, males start

groaning approximately three weeks before the first matings take

place (late September) and continue until the vast majority of

matings have occurred (early November, [34]). Vocalisations are

directed both towards males during agonistic encounters and

towards females during chasing or herding behaviour, suggesting a

potential role of groans in both male-male competition and female

choice [35]. Vocalization rates appear to convey information to

other males, and therefore to play a role in male mutual

assessment [35]. However, acoustic components are salient to

mammals and have a strong biological significance independent of

the vocalization rate [36–38]. When males vocalise, the larynx is

pulled down towards the sternum and the length of the vocal tract

increases [39,40]. As a consequence, the formant frequencies

decrease and reach a minimum value that could reveal

information related to male quality [16,40]. The groans of fallow

bucks are individually distinctive [41] and as is the case with red

deer (Cervus elaphus), conspecifics are likely to discriminate between

males based on the sound of their calls [42].

We investigated the relationships between the acoustic structure

of fallow deer groans and male quality. We first determined

whether body size is related to the fundamental frequency

parameters, formant frequencies, and formant dispersion of

groans. We then examined the relationships between the acoustic

parameters (minimum fundamental frequency and minimum

formant dispersion) and dominance rank and mating success,

while also considering the role of body size.

Results

Relationships between Body Size and the Acoustic
Parameters

The segment of the hind leg that we used as indicator of male

body size ranged from 30.0 to 33.5 cm (mean = 32.160.3, N = 17).

Body size was not significantly related to fundamental frequency

parameters (GLMM: F0min, F1,15 = 0.0002, P = 0.990, F0mean,

F1,15 = 0.0462, P = 0.833, F0max, F1,15 = 0.0520, P = 0.823). With

increasing body size, the first four minimum formant frequencies

tended to decrease, but none of the relationships were significant

(GLMM: F1min, F1,15 = 1.16, P = 0.298; F2min, F1,15 = 3.21,

P = 0.094; F3min, F1,15 = 2.08, P = 0.171; F4min, F1,15 = 3.13,

P = 0.097). There was a tendency for body size to be negatively

related to the minimum frequency of the fifth formant (GLMM:

F5min, F1,15 = 3.92, P = 0.066). Body size varied negatively with

the minimum frequency of the sixth formant and the formant

dispersion (GLMM: F6min, F1,15 = 4.58, P = 0.049; Dfmin,

F1,15 = 18.93, P,0.001; Fig. 1).

Relationships between Acoustic Parameters and
Dominance Rank

Model selection favoured the model incorporating the mini-

mum fundamental frequency (F0min), (lowest AICc; Table 1,

model 2). This model shows that groans characterised by lower

F0min are produced by higher-ranking males (Fig. 2: F1,12 = 8.43,

P = 0.013). A close competitor of model 2 was model 4, which only

included the minimum formant dispersion (Dfmin), (Table 1,

Model 2 and 4: DAICc,2). The two models with the lowest AICc

(model 2, 4) were together 64.8% supported by the data (combined

Akaike weights, 0.443 and 0.205). However, the evidence ratio

reveals that the model with the F0min (model 2) was more than

twice as good as the second best model (model 4). The addition of

Dfmin or body size to the best model did not result in a better

supported model (Table 1, comparing model 2 with model 5: LRT

x2
1 = 1.82, P = 0.18; comparing model 3 with model 2: LRT

x2
1 = 2.27, P = 0.13). The model which includes only body size as

a parameter was considerably less supported by the data (Table 1,

model 13: ,DAICc.7). Thus, F0min was the factor more

strongly correlated with dominance rank. Dfmin is also related to

dominance rank, but to a lesser extent. Body size was not related

to rank.

Relationships between Acoustic Parameters and Mating
Success

The model with only the rank included, was 61.9% supported

by the data and clearly selected as the best model (lowest AICc;

Table 1, model 7). This model was more than four times as good

as the second best model in which body size was also included

(model 8). The addition of body size did not significantly improve

the best model (Table 1, comparing model 7 with model 8: LRT

x2
1 = 1.19, p = 0.28). The models in which Dfmin, F0min were

included together with rank, had considerably less support than

the best model (Table 1, model 13: 3,DAICc,7). All other

models were poorly supported by the data (Table 1, model 6, 9,

10, 11, 12). Thus, dominance rank appears to be the crucial factor

Figure 1. The negative relationships between body size and
minimum formant dispersion (Dfmin). Bigger males emit groans
characterised by lower minimum formant dispersion.
doi:10.1371/journal.pone.0003113.g001
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which determines male mating success in fallow deer, with higher-

ranking males having higher mating success (F1,12 = 8.43,

P = 0.003). Any relationship between the acoustics parameters

and mating success appears to be mediated by rank.

Discussion

We examined the relationships between the acoustic structure of

fallow deer groans and male quality. We found that body size was

negatively related to the minimum formant dispersion and not

related to the fundamental frequency parameters of groans. We also

found that minimum fundamental frequency and to a lesser extent,

minimum formant dispersion, were related to dominance rank.

Dominance was in turn strongly related to male mating success. The

acoustic structure of sexually selected calls often contains informa-

tion on different phenotypic traits of the caller that is potentially

available to other individuals [4,16,24,43]. Recent research has

shown that both fundamental frequency-related and formant-

related parameters are important in determining the individuality of

fallow deer groans [41]. The results of the current study suggest that

the same acoustic parameters also have the potential to reliably

signal male fitness-related traits, and highlight a role for

fundamental frequency (F0) in broadcasting information on social

dominance previously only demonstrated in primates [4,44].

Body size was not related to the fundamental frequency

parameters of groans. This is similar to results for other mammals

(rhesus macaques, Macaca mulatta, [18]; red deer, [16]; lions,

Panthera leo, [45]; elephant seals, Mirounga leonina, [24]) and

confirms that the growth of male larynx (and resulting fundamen-

tal frequency) is therefore at least partially dissociated from the

growth of overall body size. In fallow deer, F0 is lower in males

than in females [41,46] and decreases as fawns mature [46].

Therefore, F0 variation still reflects sexual size dimorphism in the

vocal apparatus and may be used to distinguish sex and possibly

stage of development of the animal.

We found that body size was strongly negatively related to the

minimum formant dispersion even though earlier research has

shown that fallow bucks do not pull the larynx all the way down to

its physiological limit during groaning (the sternum, [40]). Fallow

deer males can groan more than 60 times per minute and call rate

could be used as an assessment cue in competitive interactions

[35,47]. Thus, pulling down the larynx to an extent that is not

maximal might be adaptive for fallow bucks if this allows senders

to reach high calling rates when a correct indication of body size is

still provided. Similarly to red deer, conveying information about

body size through formant dispersion might play an important role

in both agonistic interactions and mate attraction [38,48,49].

Body size was related to individual formants to a lesser extent

than to the minimum formant dispersion (Dfmin). Body size was

also more strongly related to higher formants (F5min and F6min)

than to lower ones (F1min–F4min). These results clearly agree

with those of other studies in which the relationships between

individual body size and formants were mainly attributed to the

higher formant frequencies and formant dispersion, because these

reflect vocal tract length more precisely than lower ones

[16,18,24,50].

Higher ranking males produced groans with lower minimum

fundamental frequency (F0min). The F0 of groans is relatively

stable within individuals before the peak of the rut and accounts

for a large proportion of vocal individuality [41]. Therefore,

during the early phase of the rut, F0 is likely to represent a cue to

the physical characteristics of the caller rather than to the

motivational state or vocal effort of the animal. In humans (Homo

Figure 2. The negative relationship between F0min and
dominance rank (log-transformed). Lower values of dominance
rank indicate higher ranking males. Higher ranking males produced
groans with lower minimum fundamental frequency.
doi:10.1371/journal.pone.0003113.g002

Table 1. Results of the AIC model selection procedure used
to investigate the relationships between acoustic parameters
and dominance rank and mating success in male fallow deer.

Model
Log
likelihood K AICc DAICc wi

Evidence
ratio

First set of models:

Dominance rank

1 Body 23.86 3 16.12 5.82 0.024 18.33

2 F0min 20.95 3 10.30 0.00 0.443 1.00

3 Body+F0min 0.19 4 12.07 1.77 0.183 2.43

4 Df 21.72 3 11.85 1.55 0.205 2.17

5 F0min+Df 20.04 4 12.52 2.22 0.146 3.04

Second set of models:

Mating success

6 Body 211.41 3 31.22 8.16 0.012 59.22

7 Rank 27.33 3 23.06 0.00 0.682 1.00

8 Body+Rank 26.73 4 25.91 2.85 0.163 4.17

9 F0min 211.15 3 30.70 7.64 0.015 45.64

10 Df 210.95 3 30.31 7.25 0.018 37.53

11 F0min+Df 210.48 4 33.40 10.34 0.004 176.27

12 Body+F0min 29.55 4 31.54 8.48 0.010 69.69

13 Rank+Dfmin 27.27 4 26.98 3.93 0.096 7.11

Body size was also included as predictor in some of the models to check for its
effect on dominance rank and mating success.
The fit of the models is assessed by Akaike’s information criterion (AICc): the
lowest value indicates the best fit (in bold). K is the number of estimated
parameters included in the model. DAICc gives the difference in AICc between
each model and the best model. The Akaike’s weights (wi) assess the relative
support that a given model has from the data, compared to other candidate
models in the set. The evidence ratio is the ratio between the Akaike’s weight of
the best model and that of a competing one. This value is used to determine to
what extent the best model is better than another. The covariates were: body
size (Body), dominance rank (Rank), minimum fundamental frequency (F0min),
and minimum formant dispersion (DFmin).
doi:10.1371/journal.pone.0003113.t001
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sapiens), men with high androgen levels have voices with low F0

(pitch) and women preferred these males, especially close to

ovulation [44,51]. Sexual selection may also have favoured the

evolution of vocal cues to the hormonal state (and therefore

competitive ability) in fallow deer males, and led to the selection of

lower pitch vocalisations indicating higher-quality individuals. Our

results suggest that the acoustic parameters are indirectly related to

mating success through social dominance. In humans, males with

lower F0-voices have higher reproductive success and this is likely

to be due to greater access to mates [52]. Therefore, in fallow deer,

the negative relationships between the minimum fundamental

frequency (F0min) and minimum formant dispersion (Dfmin) with

mating success, are probably mediated by the dominance rank and

body size of males, respectively [7]. These characteristics along

with a large investment in vocal display are crucial in determining

access to females and in turn mating success in fallow deer [7,34].

We therefore suggest that females could use multiple cues from

male vocal behaviour when trying to choose the best mate among

those of similar quality.

The minimum formant dispersion (Dfmin) was only marginally

related to dominance rank and body size was not related to rank.

The sample size we used in our study was probably not sufficient

to reveal an effect of body size on rank [7]. Assuming that a large

body size is important for winning contests and therefore reaching

high-ranking positions, males should use Dfmin as a cue to body

size. This has been recently shown in red deer in which males

perceive the differences in the Dfmin of roars produced by

different competitors and use them to adjust their vocalisations

and behaviour accordingly [38].

It is important to note that the majority of social dominance

relationships between males were established through non-contact

interactions before the rut and therefore before males became vocal

[30]. During this time, males live in bachelor herds, and direct

assessment of body size and body mass of the competitors is likely to

play the major role in determining the outcome of the interactions

and therefore the dominance ranks of males [7]. During the rut, the

dominance relationships previously established are modified by

fights, and males are expected to assess the status of their opponents

[30]. Reliable assessment cues are those physically or physiologically

linked to fighting ability and males may rely on several of these to

assess each other during contests [5]. The use of acoustic cues

reflecting the social dominance and therefore the overall resource

holding potential of the individual, would then be crucial, especially

when the opportunity for visual and olfactory assessment is poor

such as at long distances and at night.

We found that dominance rank was the factor that was most

strongly related to male mating success and body size appeared to

play a secondary role. This result confirms that in fallow deer, as in

several other ungulates, reaching a high ranking position is

important for males to gain matings [53,54,55].

Minimum formant dispersion (Dfmin) and fundamental frequen-

cy (F0min) are among those variables that contain most of the

information about individuality in fallow deer [41]. According to

Dale et al. [56], traits signalling individuality should be char-

acterised by different properties from those coding for male quality.

However, some traits can have a role in both individual recognition

and assessment of male competitive abilities [57]. Additional

investigations together with playback experiments are needed to

elucidate the independent role of the acoustic components of groans

in conveying identity and quality assessment cues.

In conclusion, this study shows for the first time that the

fundamental frequency (F0) of sexually-selected male vocalisations

contains reliable information about social dominance in a non-

primate species. Our study also confirms the role of formants in

revealing male body size in mammals. F0 and formant frequencies

may therefore represent acoustic cues to male quality that have

primarily evolved in response to intrasexual selection. Other

aspects of male vocal behaviour such as the long-term investment

in vocal display [34], are instead likely to influence mate choice

more directly in fallow deer.

Materials and Methods

Study Site and Population
The study was conducted on a herd of European fallow deer in

Phoenix Park (53u 229 N, 6u 219 W), Dublin, Ireland. Since 1971

the majority of fawns were ear tagged each year in June, by the

park authorities and others. All males used in this study were

tagged, of known age and therefore individually recognisable.

Morphological Measurements
We used body size measurements taken from 17 different males

(five in 1996, one in 1997, one in 1999, three in 2001, six in 2002

and one in 2003). Males were caught immediately before (third

week of September) or after the breeding season (third week of

November). The males were sedated by a veterinary surgeon using

a mixture of etorphine hydrochloride (18–20 mg/kg21, C-Vet

Veterinary Products) and xylazine (360–420 mg/kg21, Rompun

Dry Substance, Bayer), which was administered intramuscularly

by gas-propelled darts. We measured a segment of one hind leg for

each male using callipers and this was used as an indicator of

skeletal size [7,58]. Additional measurements (distance from the

pre-orbital gland to the tip of the nose on both sides of the head)

were also taken for a different study [40]. The handling time was

generally less than 10 mins. Immobilisation was reversed by

intravenously injection of an antidote containing a combination of

antagonistic drugs, diprenorphine hydrochloride, (Revivon, 24–

28 mg/kg21, C-Vet Veterinary Products) and antipamozole

hydrochloride (50 mg/kg, Antisedan, Pfizer) in a total volume of

less than 2 ml. We then monitored the males until they were fully

alert and they generally ran away from the area where the

handling had been carried out. The males did not show any

adverse effects as a result of the handling and many of them

(n = 11) later gained matings during the rut. All procedures were

approved by the University of Zurich and comply with the laws of

Ireland.

Observations
We conducted behavioural observations during the rut in 1997,

2000, 2002 and 2003. The rut refers to the period when matings

occur. During this time, all-event recording of agonistic interac-

tions and matings was carried out every day from dawn to dusk

(circa 11 hours per day). There were 7–13 observers in the field at

all times and the coverage of animals was maximised. The

measure of male mating success was based on the number of

observed copulations, and this provides a very good estimator of

their reproductive success [59].

Dominance Relationships
The outcomes of the agonistic interactions were used to

calculate the dominance rank of each male by applying the

David’s score method [60]. This method is the most appropriate

when interactions are recorded over a long period of time, because

it takes into account repeated interactions between dyad members

that may determine win/loss asymmetries [61]. Dominance ranks

were calculated for males that interacted with at least 10% of other

mature males.
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Recording and Selection of Groans
Recordings were made using a Sennheiser MKH 70 directional

microphone connected to a Sony digital audio tape recorder

DAT-TCD D100. Groans were recorded between dawn and

sunset at a distance of 10 to 50 m from the vocalizing animal.

Vocalisations were imported into a computer using Avisoft-

SASLab Pro 4.38 at a sampling rate of 22.05 KHz and saved in

WAV format, and at 16-bit amplitude resolution [62]. The

recordings that did not contain energy above 8 KHz were down-

sampled to 16 KHz for a better frequency resolution. Narrow-

band spectrograms of groans (Fig. 3a, FFT method, window

length = 0.03 s, time step = 1000, frequency step = 250, frequency

resolution = 20 Hz, Gaussian window shape, dynamic ran-

ge = 35 dB) were edited using Praat 4.5.01 DSP package (P.

Boersma and D. Weenink, University of Amsterdam, The

Netherlands). Vocalisations with high levels of background noise

were not considered for analysis.

During the breeding season, fallow deer males feed very little

and lose approximately 26% of their body weight [63], and there

is some evidence from primates and deer that the acoustic

structure of vocalisations can be affected by exhaustion [4,64]. We

therefore analysed recordings taken between October 8 and

October 20 when only a small proportion (15% or less) of the total

number of matings had usually occurred [7], and the majority of

agonistic interactions among males were non-contact displace-

ments [30]. This minimised the possibility that variation in the

phonic structure of groans could have occurred due to exhaustion

of the animals.

For each male, we selected groans from different bouts that

were recorded during one or more days. We included in our

analysis males between five and eight years of age because they

had reached their asymptotic size and were not undergoing

changes associated with senescence. Moreover, this range of ages

includes the males that account for the vast majority of matings

[28].

Acoustic Analysis
Groans are low-pitched vocalisations and therefore a pulse-train

structure is generally visible in the spectrograms (Fig. 3a). The

pulses represent the vibrations of the vocal folds and determine the

fundamental frequency (F0) of the call. Fundamental frequency is

equivalent to the inverse of interpulse interval and this can be

measured as the distance between consecutive pulse onsets

(Fig. 3b). Distances between pulses were measured automatically

from the envelope (amplitude vs. time) of the signal by using Pulse

Train Analysis (Fig. 3b; method = rectification+exponential decay;

pulse detection = peak search with hysteresis; time con-

stant = 1 ms; threshold = 0.1 V; hysteresis = 16–19 dB) in Avisoft-

SASLab Pro 4.38. We calculated the values of the F0 along the

groan and then averaged these values to obtain the mean F0

(F0mean). Because all groans showed at least a modest frequency

inflection, the minimum and the maximum F0 (F0min and

F0max) were also included in the analysis.

In the spectrogram of groans, six formants are evident as

horizontal frequency bands (F1–F6 in Fig. 3a). The decrease of

these formant frequencies along the groan reflects the elongation

of the vocal tract occurring during vocalisation [40]. Formants

were estimated using Linear Predictive Coding analysis (LPC),

(Sound: To Formant (burg) command) in Praat 4.5.01 DSP

package. By performing a single LPC analysis on each groan,

higher formants (F4–F6) were better detected and therefore more

accurately measured than lower formants (F1–F3). We therefore

conducted a double or a triple LPC analysis on each groan in

order to get the best estimations of all formants. We first carried

out an LPC analysis (time step = 0.01–0.02 s, maximum number

of formants = 3–4, maximum formant = 700–850 Hz, window

length 0.07–0.26 s) to measure the frequencies of the first three

formants (F1–F3). Then we performed a second LPC analysis

(time step = 0.01–0.02 s, maximum number of formants = 6–7

maximum formant = 1800–2600 Hz, window length 0.07–0.26 s)

to estimate the last three formant frequencies (F4–F6). When the

sixth formant was not detected by the second LPC analysis, we

conducted a third LPC analysis (time step = 0.01–0.02 s, maxi-

mum number of formants = 5–6 maximum formant = 1800–

2600 Hz, window length 0.07–0.26 s). We calculated the mini-

mum frequencies of the six formants (F1min–F6min) from each

groan by averaging the values over the last part of the call when

formants become flat. This is the time when the larynx is pulled

down at the maximum extent. Finally, we also estimated the

minimum spacing of the formants (known as minimum formant

dispersion, (Dfmin), according to [16].

We analysed the vocalisations of 17 different males recorded

during five breeding seasons between 1997 and 2004 (six in 1997,

three in 2000, two in 2002, four in 2003, and two in 2004).

Vocalisations analysed in relation to male dominance rank and

mating success were carried out in the same year of the

behavioural observations (1997, 2000, 2002, 2003). Recordings

from 2004 were only analysed in relation to male body size

because data on matings and agonistic interactions were not

collected during that breeding season. For three males, vocalisa-

Figure 3. Narrow band spectrogram of a common groan and its
relative envelope. On the spectrogram (a), the pulses and the first six
formants are indicated. On the envelope of the signal (b), each peak of
frequency is detected and indicated as ‘‘pulse’’.
doi:10.1371/journal.pone.0003113.g003
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tions were recorded and body size measurements taken during the

same breeding season. For most of the males (N = 14), recordings

were performed one (N = 12) or two years (N = 2) before or after

their body size measurements were taken. We assumed that the

body size measurement that we used (hind leg length) did not

change in fully grown mature males.

The low fundamental frequency that characterises fallow deer

groans is still detectable and measurable on the spectrogram of

groans recorded at more than 100 meters from the source (E.

Vannoni, unpublished data). By contrast, formant frequencies are

frequently lost or distorted in recordings taken in suboptimal

conditions, such as when the microphone is far from the vocalizing

animal or when it is not facing the microphone [62]. Therefore,

because of the variety of the recording conditions, it was not

always possible to measure the fundamental frequency and the

formants on the same groans and for all males. As a result, sample

sizes (number of groans and number of males) varied among

analyses.

Statistical Analysis
We used a general linear mixed effect model (GLMM)

procedure fitted with residual maximum likelihood estimation

(REML, lme function; [65] to investigate the effect of body size on

the acoustic parameters of groans (F0-related parameters: 186

groans; 10.961.1 per individual; Formant frequencies and Dfmin:

144 groans; 8.560.8 per individual; N = 17). We conducted a

univariate GLMM for all the acoustic parameters. Individual

identity was fitted as random term so that we controlled for

repeated measurements of the same individual. Body size was

fitted as a fixed effect.

We used a model selection procedure [66] based on Akaike

Information Criterion (AIC) to examine the relationships between

the acoustic parameters and dominance rank and mating success

of the males, while controlling for body size. Observational studies,

such as ours, are better suited to the model selection than to null

hypothesis testing [66–68]. All models were fitted with maximum

likelihood implemented in the program R (ML, lm function; [65].

Pooling males across different years may potentially require

standardization of male ranking positions and mating success.

However, we did not standardize these variables for several

reasons. First, we initially included ‘‘Year of recording’’ as a factor

in all models but as it never had a significant effect, we did not

considered it further in the analyses (E. Vannoni and A.G.

McElligott, unpublished data). Secondly, standardized ranks have

been used in a similar study and the results were not affected if

relative ranks were replaced with absolute ranks [4]. Finally, as the

ratio between the total number of matings and the number of

mature males involved in the rut was relatively constant across

different years (E. Vannoni and A.G. McElligott, unpublished

data), it was not necessary to standardize the mating success.

The model selection technique identifies the model that best

describes the structure in a data set among all a priori fitted models

considered, controlling for the number of parameters (K), included

in each model. Because each model is associated with a biological

hypothesis, model selection identifies the hypothesis that is best

supported by the data. We applied the AIC criteria adjusted for

small sample size (AICc, [65]). This implies the selection of a few

simple models that are most biologically meaningful [69].

Therefore, we limited our analyses to the factors that we

considered most important on biological grounds. We included

body size and dominance rank in the models because they are

known to play crucial roles in male mating success in many

mammals, including fallow deer [7,70]. Among the measured

acoustic parameters, we selected those that are most biologically

meaningful [38,41,48]. The minimum fundamental frequency

(F0min) has the highest degree of inter-individual variation, among

the acoustic parameters used to describe the phonic structure of

fallow deer groans [41]. It represents the lowest rate of vocal fold

vibration and among the F0 parameters, is the only one to be

physiologically constrained [17,18]. The minimum formant

dispersion (Dfmin) is constrained by the length of the vocal tract

and is used by red deer males to assess competitors, and by females

to choose their mates [18,38,48]. Moreover, both F0min and

Dfmin are related to reproductive success in red deer [16].

We formulated two sets of candidate models. The fitted models

for dominance rank (First set of models: model 1 to 5, Table 1)

included the effects of body size, minimum fundamental frequency

(F0min), and minimum formant dispersion (Dfmin). The fitted

models for mating success (Second set of models: model 6 to 13,

Table 1) included the effects of body size, dominance rank, F0min,

and Dfmin. Then, we applied the model selection procedure based

on AICc to each of the two sets. The value of AICc for a given

model is a measure of the loss of information resulting from the use

of the model to explain a particular pattern. Therefore, the model

with the smallest AICc value is estimated to best fit the data set

relative to other models considered [66]. When the difference

between the AICc values of two models (DAICc) is less than 2

units, both models have support and can be considered

competitive. Models with DAICc ranging from 3 to 7 have

considerably less support by the data, whereas models with

DAICc.10 are poorly supported and therefore very unlikely [66].

Akaike weights (wi) indicate the probability that a particular model

is supported by the data among those included in the set of

candidate models [66]. Akaike weights are normalized across the

selected models to sum to one, and are interpreted as probabilities.

For instance, an Akaike weight of 0.75 for a model, indicates that

given the data, it has a 75% chance of being the best one in the set.

For each model, we also calculated the evidence ratio, defined as

the ratio between the Akaike weight of the best model and the

Akaike weights of the competing model, to determine to what

extent it is better than another. We used the likelihood-ratio tests

(LRT) to compare nested models and to assess statistical

significance of the factors. The LRT statistics follows a x2-

distribution with degrees of freedom equal to the difference in the

number of parameters.

Data on dominance ranks and mating success were not

available for three of the males for which we had body size

measurements. Therefore, to investigate the relationships between

acoustic parameters and dominance rank and mating success, we

used data from 14 males (F0-related parameters: 156 groans,

11.161.3 per individual; Formant frequencies and Dfmin: 115

groans, 8.260.9 per individual). We log-transformed dominance

rank and mating success to achieve normality. One unit was added

to the mating success of all individuals before applying the log-

transformation. In this way, we were able to transform the value of

those individuals who did not get any matings (value = 0). All

analyses were performed using R statistical software [71]. All tests

were 2-tailed and factors were considered to have a statistically

significant influence if p,0.05. All means are given with standard

errors.
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