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André Boorsma1, Xiang-Jun Lu2, Anna Zakrzewska1, Frans M. Klis1, Harmen J. Bussemaker2,3*

1 Swammerdam Institute for Life Sciences, University of Amsterdam, BioCentrum Amsterdam, Amsterdam, The Netherlands, 2 Department of Biological Sciences,

Columbia University, New York, New York, United States of America, 3 Center for Computational Biology and Bioinformatics, Columbia University, New York, New York,

United States of America

Abstract

Background: A key goal of systems biology is to understand how genomewide mRNA expression levels are controlled by
transcription factors (TFs) in a condition-specific fashion. TF activity is frequently modulated at the post-translational level
through ligand binding, covalent modification, or changes in sub-cellular localization. In this paper, we demonstrate how
prior information about regulatory network connectivity can be exploited to infer condition-specific TF activity as a hidden
variable from the genomewide mRNA expression pattern in the yeast Saccharomyces cerevisiae.

Methodology/Principal Findings: We first validate experimentally that by scoring differential expression at the level of gene
sets or ‘‘regulons’’ comprised of the putative targets of a TF, we can accurately predict modulation of TF activity at the post-
translational level. Next, we create an interactive database of inferred activities for a large number of TFs across a large
number of experimental conditions in S. cerevisiae. This allows us to perform TF-centric analysis of the yeast regulatory
network.

Conclusions/Significance: We analyze the degree to which the mRNA expression level of each TF is predictive of its
regulatory activity. We also organize TFs into ‘‘co-modulation networks’’ based on their inferred activity profile across
conditions, and find that this reveals functional and mechanistic relationships. Finally, we present evidence that the PAC and
rRPE motifs antagonize TBP-dependent regulation, and function as core promoter elements governed by the transcription
regulator NC2. Regulon-based monitoring of TF activity modulation is a powerful tool for analyzing regulatory network
function that should be applicable in other organisms. Tools and results are available online at http://bussemakerlab.org/
RegulonProfiler/.
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Introduction

About a decade ago, simultaneous measurement of the

transcript level of all genes in a genome using DNA microarrays

became technically feasible [1,2]. Since then, a large amount of

data from such experiments has been accumulated in public

repositories [3,4]. More recently, the marriage between chroma-

tin-immunoprecipitation and microarray technology (‘‘ChIP-

chip’’) [5,6] has made it feasible to measure the genomewide

profile of in vivo binding by transcription factors (TFs) [7,8].

Methods for measuring in vitro TF-DNA binding affinities have

also been developed [9–11]. Finally, a number of large-scale TF

deletion and over-expression studies have been performed [12–

14]. Consequently, genomewide information about the connec-

tivity between TFs and their target genes is increasingly available.

The rate at which a gene is transcribed is controlled by

transcription factors (TFs) binding to its upstream promoter region.

Knowledge about how TF activity is modulated in a condition-

specific manner by signaling pathways is therefore crucial for

understanding gene regulatory network function. It is widely

recognized that TF activity is often regulated at the post-

translational level. First, the regulation of translation or of protein

turnover rate may cause the protein abundance to not be

proportional to mRNA abundance. Experimental quantification

of protein abundance may depend on antibody availability and is

not easily done on a high-throughput scale. Second, ligand binding

or non-covalent modification and subsequent translocation between

nucleus and cytoplasm can affect TF activity even at constant total

cellular protein abundance. For all these reasons it is challenging to

measure TF activity directly. Network inference algorithms

therefore often use the mRNA expression level of the gene that

encodes a TF as a proxy for that TF’s regulatory activity [15,16].

If prior knowledge about which genes are the targets of a

specific TF is available, an alternative and potentially more

accurate approach can be taken. As several studies have shown, it

is possible to infer modulation of the ‘‘hidden’’ activity of a TF
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from the genomewide changes in mRNA expression, using either

motif analysis of upstream promoter sequences [17,18] or ChIP-

chip data [19,20] to estimate the connectivity between a TF and its

target genes (for a recent review, see [21]).

We previously developed a simple web-based tool named T-

profiler that scores differential expression of predefined gene sets

using the two-sample t-test [22,23]. Conceptually similar to Gene

Set Enrichment Analysis [24], T-profiler was originally developed

for scoring differential expression of Gene Ontology categories

[25]. However, it can also infer condition-specific modulation of

post-translational TF activity when used in conjunction with gene

sets consisting of putative TF targets. These ‘‘regulons’’ can be

defined either based on upstream matches to a consensus binding

motif or based on the results of a ChIP-chip experiment.

In this paper, we perform a detailed assessment of the biological

utility of our regulon-based approach. We first validate experi-

mentally that RegulonProfiler can detect modulation of TF activity.

Next, we create a database containing t-values that quantify the

differential expression of a large number of regulons across a

compendium of expression data for the yeast S. cerevisiae. Querying

this database allows us to determine which TFs are modulated in a

given experiment, or conversely, by which environmental

conditions a given TF is modulated. We quantify the degree to

which the mRNA expression level of each TF is predictive of its

regulatory activity, and find a wide range of behaviors. We also

organize TFs into ‘‘co-modulation networks’’ based on their

inferred activity profile across conditions, and find that this reveals

functional and mechanistic relationships. Finally, we present

evidence that the PAC and rRPE motifs antagonize TBP-

dependent regulation, and function as core promoter elements

governed by the transcription regulator NC2. Taken together,

these results demonstrate the value of regulon-based, TF-centric,

analysis of the yeast regulatory network.

Results

Creating a database of inferred TF activities
We used T-profiler [22] to populate a database of t-values that

quantify the change in mean expression for a large number of

predefined gene sets across a large number of experimental

conditions (Figure 1A). For genes sets, we used both ‘‘motif-based’’

regulons, defined based on matches to specific consensus motifs in

their 600-base pair upstream regions, and ‘‘ChIP-based’’ regulons,

defined based on measurements of promoter occupancy in different

conditions by Harbison et al. [7]. We analyzed a wide variety of

experiments, including cell cycle [26], various stress response time

courses [27], and a collection of gene deletion and gene suppression

experiments [28,29]; see Materials and Methods and Supplemen-

tary Figure S1 for details. The full results of our analysis are

available at http://bussemakerlab.org/RegulonProfiler/.

Validation of inferred condition-specific TF activity
modulation

We first tested the ability of T-profiler to infer changes in TF

activity by analyzing experiments in which a transcription factor-

encoding gene was either deleted or over-expressed. Yap1p

activates genes involved in the response to oxidative stress, while

Rox1p represses genes upon oxygen limitation. We monitored the

t-values of the ChIP-based Yap1p (YPD condition) regulon (72

genes) and the motif-based (YCTATTGTT) Rox1p regulon (95

genes); see Figure 1B. In a YAP1 deletion strain, significant down-

regulation (t-value = 24.0; E-value = 0.015) of the Yap1 regulon is

observed, while over-expression of YAP1 results in its upregulation

(t-value = 5.6; E-value = 6*1026). Conversely, deletion of the

repressor gene ROX1 results in upregulation of the Rox1p regulon,

while overexpression of ROX1 causes downregulation. The

specificity of our method is demonstrated by the lack of a Yap1p

regulon response in H2O2-stressed Dyap1 cells.

We also tested T-profiler predictions concerning the time-

dependent modulation of Crz1p, which is known to translocate

to the nucleus in response to activation by calcineurin [30].

Figure 1C shows the activity of the motif-based (GAGGCT)

Crz1p regulon in response to CaCl2 [31] and dithiothreitol (DTT)

[27], respectively. Upon both CaCl2- and DTT-induced stress,

Crz1p is activated, but with CaCl2 an immediate response (within

Figure 1. Validation of inferred TF activity modulation. (A)
Schematic diagram showing how T-profiler [22] was used to convert
each genomewide mRNA expression profile to a set of t-values that
quantify the change in regulatory activity for each TF for which a set of
putative targets (‘‘regulon’’) was available. The results are available at
http://bussemakerlab.org/RegulonProfiler/. (B) Change in regulatory
activity of the activator Yap1p and the repressor Rox1p when the
corresponding factors are deleted or overexpressed, as inferred by T-
profiler. The t-values for Yap1p are based on the ChIP-based regulon
(rich medium), while for Rox1p a motif-based (YCTATTGTT) regulon was
used. As expected, a Yap1p regulon response is observed for wild-type
cells stressed using H2O2, but not for Dyap1 cells in the same condition.
(C) Timing of the activation of the Crz1p motif-based gene set during
CaCl2 [31] and DTT [27] stress. Note that the t-value for each time point
is derived from a distinct genomewide expression profile. (D) Cellular
localization of Crz1p during CaCl2 (upper panel) and DTT stress (lower
panel) assayed using fluorescence microscopy. We used DAPI staining
(data not shown) to confirm that the small bright spots to which GFP-
tagged Crz1p has translocated are the nuclei of the cells.
doi:10.1371/journal.pone.0003112.g001

Regulon-Based Profiling

PLoS ONE | www.plosone.org 2 September 2008 | Volume 3 | Issue 9 | e3112



5 minutes) is seen, while with DTT the response is considerably

delayed. To validate these predictions, we used a GFP-tagged

Crz1 protein and fluorescence microscopy (see Materials &

Methods). In both cases, we were able to confirm the timing of

the measured responses (Figure 1D).

Condition-specific modulation of Hac1p regulatory
activity

Our database can be used to perform queries that reveal

condition-specific activation of specific TFs. We illustrate this for

the Hac1 regulon. Cells treated with DTT have to cope with

reductive stress resulting in accumulation of misfolded proteins in

the endoplasmic reticulum [32]. This leads to the activation of the

unfolded protein response, which is governed by the transcription

factor Hac1p [33]. Figure 2A shows the temporal profile of

activation of the ChIP-based Hac1 regulon under DTT stress [27].

This response is independent of the aforementioned Crz1p

response and therefore does not occur during CaCl2 stress. Next,

by ranking all experiments according to the t-value of the Hac1p

regulon, we found that the Hac1p is specifically activated in DTT-

stressed cells or in cells in which specific essential genes have been

partially suppressed [29] (Figure 2B). GPI2 and GWT2 function

in GPI-anchor biosynthesis, whereas GPI16 and GAB1 are

involved in transferring pre-assembled GPI-anchors to a specific

class of secretory proteins called GPI-proteins; when these

processes do not function properly, defective GPI-proteins

accumulate in the endoplasmatic reticulum (ER). PGA1 codes for

a protein that localizes to the nuclear periphery, a subregion of the

ER; when its activity is repressed, maturation of the GPI-protein

Gas1p and of Pho8p, which also follows the secretory pathway, is

affected [34], likely resulting in their accumulation in the ER. In

other words, activation of the Hac1p regulon seems to occur

specifically when defective proteins accumulate in the ER. The

condition-specific activation of the Hac1p regulon is just one of

many discoveries that can be made about the transcription

network by exploring our database of inferred TF activities.

Relationship between mRNA expression level and
regulatory activity of a TF

Having established that regulon-based analysis using T-profiler

allows us to quantify the post-translational regulatory activity of

TFs, we explicitly addressed the question to what extent mRNA

expression level can be used as a proxy for activity. The results

shown in Figure 1d indicate that the activation of Crz1p is

regulated by translocation to the nucleus. Indeed, only a marginal

correlation (r = 0.08; P = 0.015) exists between the mRNA

expression and inferred activity of Crz1p over all conditions in

our database. Using ChIP-based regulons, we were able to

quantify the degree to which mRNA expression level is predictive

of post-translational activity for 83 distinct TFs. Figure 3A shows

Figure 2. Condition-specific activity of the Hac1p regulon. (A) Transcriptional response of the Hac1p regulon (ChIP-based) during DTT [27]
and CaCl2 [31] stress. (B) The top ten expression profiles (out of 936), ranked by the t-value for the Hac1p regulon. These expression profiles are either
from DTT-stressed cells [31] or from cells with a partially suppressed essential gene under control by the TET-promoter [29].
doi:10.1371/journal.pone.0003112.g002
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an example where the mRNA level is a poor predictor of TF

activity (Mbp1; r = 0.05, P = 0.14). By contrast, Figure 3B shows

that the mRNA levels of Hap4 are a good predictor for its inferred

activity (r = 0.47; P,10212). In Figure 3C the distribution of

mRNA level vs. regulon activity correlations across all TFs is

shown, revealing that whether or not mRNA expression is a valid

proxy for activity strongly depends on the identity of the TF (see

Supplementary Table S1 for full results).

Organizing TFs into ‘‘co-modulation networks’’ based on
their activity profile

For each TF, the inferred activity profile over roughly a

thousand conditions represents a highly specific regulatory

signature. It is highly unlikely for two such activity profiles to be

similar, unless (i) they are derived from strongly overlapping

regulons, or (ii) the corresponding TFs are modulated by the same

signaling pathway. The latter case suggests a way of organizing the

TFs into a network based on co-modulation of their post-

translational activity. To illustrate this, consider the cell cycle

regulators Stb1p and Mbp1p. The correlation between their

mRNA expression values (r = 20.03; P = 0.36) (Figure 4A) over

all conditions in our database is not statistically significant.

However, the t-values scoring the differential expression of the

ChIP-based regulons for Mbp1p (188 genes) and Stb1p (63 genes)

are highly correlated (r = 0.75; P,10212) (Figure 4C). Even when

we exclude the 23 genes that occur in both regulons, the

correlation remains high (r = 0.54; P,10212) (Figure 4B).

The cumulative distributions in Figure 4d show how the three

methods of quantifying TF co-modulation compare across all pairs of

TFs (see Supplementary Table S2 for full results). As expected,

the regulons with overlapping genes included show the strongest

correlation, but only on the positive end of the distribution. Despite

the very strict treatment of removing all overlapping genes, the

correlation of regulons with overlapping genes removed is slightly

better than the mRNA-based correlation at the positive end of the

distribution, and are dramatically better at the negative end. Taken

together, these results indicate that implicit information about the

connectivity between signal transduction pathways and transcription

factors can be obtained by comparing the activity profiles of TFs.

Starting from ChIP-based activity profiles for a large number of

TFs, and drawing connections between pairs of TFs only when the

correlation between their activities exceeds a stringent threshold

(r.0.5), we organized all TFs into a ‘‘co-modulation network’’

consisting of eight disjoint sub-networks (Figure 5A; see Supple-
mentary Table S3 for full results in Cytoscape format). In

agreement with findings by Luscombe et al. [35], the cell-cycle sub-

network and the pheromone response sub-network are found to be

separated from the other sub-networks, whereas the oxidative/heat

stress sub-network takes a central position. The most highly

connected transcription factors are Msn4p (with 21 interactions)

and Msn2p, Gcn4p, and Skn7p (each with 20 interactions). Within

the oxidative-heat stress sub-network (Figure 5B) there is a

separation between transcription factors involved in oxidative stress

(Yap1p, Yap7p and Cad1p) and heat stress (Hsf1p). This sub-

network also contains Skn7p, which has been previously described

as being involved in oxidative, heat and osmotic stress [36].

One of the other sub-networks in Figure 5a contains Sut1p,

Nrg1p, Phd1p, Rim101p and Sok2p (Figure 5C). These TFs are

Figure 3. Relationship between mRNA expression level and regulatory activity of a TF. Shown are Pearson correlations between the
normalized mRNA expression log-ratio and inferred activity (ChIP-based regulon) across all 936 expression profiles of (A) MBP1 (marginal correlation:
r = 0.05; P = 0.14) and (B) HAP4 (strong correlation: r = 0.47; P,10212). (B) Distribution of the correlations shown in part (a) and (b) over all 83 TFs
analyzed.
doi:10.1371/journal.pone.0003112.g003
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involved in a variety of stress responses. However, a shared feature

is that most of them are known to repress gene transcription by

interacting with the co-repressor Tup1p-Cyc8p (Ssn6p). We

analyzed the expression profiles of both the tup1 and cyc8 deletion

mutant [28], and found that almost all of the ChIP-based regulons

in this sub-network are indeed de-repressed in both the tup1D/wt

and the cyc8D/wt expression profiles (Table 1). One of the

members of the Tup1p-Cyc8p sub-network is Cin5p, a poorly

characterized basic leucine zipper transcription factor of the yAP-1

family, which mediates pleiotropic drug resistance [37]. It is

constitutively located in the nucleus. The Cin5p regulon is de-

repressed in a cin5 deletion mutant [28] included in our database.

We therefore predict that Cin5p interacts with the Tup1p-Cyc8p

co-repressor complex to negatively regulate its target genes.

The sub-network shown in Figure 5D reveals the co-

modulation of Rap1p, Sfp1p and Fhl1p, known to control the

expression of ribosomal protein genes, and Hir1p, Hir2p, and

Hir3p, which are co-repressors involved in the cell-cycle-regulated

transcription of histone genes. While ribosome biogenesis has been

linked to cell division via Sfp1p [38], the parallel activation of the

Hir regulon detected by our co-modulation approach provides

additional clues about the coupling between these two processes.

PAC and rRPE may serve as NC2-dependent core
promoter elements

Besides the specific response of the Hac1p gene set to DTT

stress, a general transcriptional program known as the Environ-

mental Stress Response (ESR) is triggered [27]. Motifs associated

with the ESR include the stress-response element (STRE) motif

(AGGGG/CCCCT) bound by the transcription factor Msn2p

[39], PAC (CGATGAG) [40], and rRPE (AAAATTT), which is

associated with genes required for rapid growth [41]. Figure 6A
shows activity profiles for the corresponding gene sets during DTT

stress. Further analysis of the activity profiles of the ESR motifs

reveals that the antagonism between STRE and PAC/rRPE

observed during DTT stress holds over a wide range of cellular

states (Figure 6B,C). The TATA-box gene set (TATAWAWR)

correlates strongly positively with STRE (r = 0.80), consistent with

recent observations by Basehoar et al. [42] that TATA-box

containing genes are activated in response to various stresses.

The strongly coupled, but opposing transcriptional behavior of

the STRE/TBP and PAC/rRPE gene sets across many conditions

suggests a mechanistic relationship. Currently, it is not known

which gene specific transcription factors bind to the PAC element.

Although Stb3p has been found to bind the rRPE element, this

only applies for a small portion of the rRPE containing genes [43].

Similar to the TBP motif, the PAC and rRPE elements are

predominantly found in the first 150 bp upstream from the

translational start site [44]. Promoter regions of genes containing

PAC and rRPE elements are generally TATA box-less. Beer and

Tavazoie [44] found that PAC and rRPE elements correlate with

expression only when the PAC element is located downstream of

the rRPE element. Similar motif characteristics have been

described for regulatory sequences in Drosophila named DPE

(Downstream core Promoter Element), which serve as core

Figure 4. Co-modulation of transcription factors. (A) There is no significant correlation between the normalized mRNA log-ratios (z-scores)
over all experiments of the transcription factor genes STB1 and MBP1 (r = 20.03; P = 0.36). (B) By contrast, the inferred activities of the ChIP-based
regulons (t-values) of Stb1p and Mbp1p over all experiments are highly correlated (r = 0.53; P,10212) when overlapping genes are removed (‘‘n.o.’’
indicates no overlap). (C) As expected, the correlation is even stronger (r = 0.75; P,10212) when overlapping genes are included (‘‘w.o.’’ indicates with
overlap). (D) Cumulative distribution of pairwise correlations across all transcription factor pairs, for each of the co-modulation detection metrics
used in parts A–C, as indicated by the color of the graph.
doi:10.1371/journal.pone.0003112.g004
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promoter elements [45]. The DPE is bound by NC2, a bi-

functional general transcription factor that differentially regulates

gene transcription through DPE or TATA-box motifs [46]. NC2 is

a heterodimer of two histone-fold subunits. In S. cerevisiae, the a-

NC2 subunit consists of Bur6p and Ydr1p, while the b-NC2

subunit consist of Ncb2p. Figure 6D shows that expression

profiles of bur6D [47] cells show strong induction of the TBP

(TATAWAWR) (t-value = 12.3) and STRE (AGGGG) gene sets (t-

value = 10.8) and strong repression of the PAC (CGATGAG) and

rRPE (AAAATTT) gene sets (t-values = 27.9 and 211.2,

respectively). The expression profile of a TBP mutant (F182V;

[48]) that is unable to bind NC2 shows similar behavior. The

opposite pattern is observed for TBP mutants V71E and N69R,

which are unable to dimerize. Since TBP dimers are inactive, this

will increase the amount of NC2-TBP complex, which in turn

represses transcription of TATA-box regulated genes and induces

transcription via the PAC and rRPE element (Figure 6E).

Together, these observations suggest that the PAC and rRPE

sequences may function as core promoter elements with similar

properties as DPE, and that in S. cerevisiae, NC2 may play a similar

role as in Drosophila, where it activates DPE-driven promoters and

represses TATA-box driven promoters [46].

Discussion

In this study we scored differential expression at the level of gene

sets to infer changes in the activity of transcription factors from the

mRNA expression levels of the genes predicted to be under their

control, based either on upstream sequence matches to cis-regulatory

elements (motif-based regulons) or on occupancy by a specific

transcription factor (ChIP-based regulons). We created a database of

inferred regulatory activities for a large number of TFs under a wide

Figure 5. Co-modulation networks derived from inferred TF activity profiles. (A) The network obtained by connecting all ChIP-based
regulons whose t-profiles across the 936 conditions in our database are strongly correlated (r.0.5). To visualize the network, we applied the yFiles
organic layout setting of Cytoscape [56]. Colors represent functionally related transcription factors (see legend). Eight separate sub-networks can be
distinguished. (B) The oxidative and heat stress sub-network. In the label of each node, the condition used in the ChIP-chip experiment on which
each regulon is based [7], is indicated in addition to the name of the TF. The color-coding is as follows. In green: regulons that mainly contain heat
stress genes; in orange: regulons that mainly contain oxidative stress genes; the Msn2/4 ChIP- based regulons (blue) interconnect both; in purple: the
Skn7 regulons; the regulons shown in yellow do not have a clear functional bias. (C) The ‘‘Tup1p-Cyc8p’’ sub-network (lower left cluster in Figure 4),
in which TFs that rely on this co-repressor to control their transcriptional targets are connected. (D) The ‘‘ribosomal protein’’ sub-network (upper left
cluster in Figure 4). The histone-regulating factors Hir1p/Hir2p/Hir3p are connected to the ribosomal protein-regulating factors Rap1p-Fhl1p-Sfp1p. In
(b) and (c), similar colors again represent similar biological function.
doi:10.1371/journal.pone.0003112.g005
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variety of stress conditions and gene deletion mutants in budding

yeast, and used it to perform TF-centric analysis of the yeast

regulatory network.

Whether the ChIP-based or motif-based regulon performs

better depends on the identity of the TF and possible also the

expression profile analyzed. It is difficult to make a general

statement. However, the t-values reported by our website make it

easy for the user to compare the performance for any TF/

experiment combination of interest.

We have validated our computational approach both compu-

tationally and experimentally. First, we confirmed that deletion

and over-expression of two transcription factors (an activator and a

repressor) resulted in the expected up- and down-regulation of

their accompanying gene groups. Second, using fluorescence

microscopy we were able to observe the translocation of two

transcription factors to the nucleus during calcium and DTT

treatment, in agreement with the T-profiler predictions.

DTT stress also activates a specific response of a gene group

regulated by the Hac1p transcription factor, a response that does

not occur in cells treated with calcium. In fact, querying our

database for experiments, in which the Hac1p-based gene group is

activated, only revealed 11 experiments with significant t-values.

Four of those originate from the DTT time course, while the

others are from transcription profiles of partially suppressed

essential genes. Interestingly, these genes are either involved in

GPI-anchor biosynthesis, GPI-anchor addition, or in GPI-protein

maturation. Another example is that the Rlm1p-based gene group

is mainly activated in experiments related to cell wall perturbation,

caused by, for example, Calcofluor white or Zymolysase [49], or in

deletion mutants defective in cell wall formation [50]. Such use of

our database to query for condition specific activation bears some

resemblance to the ‘‘connectivity map’’ approach [51], which

related a compendium of drug related gene expression signatures

(represented as gene sets) to the expression profiles of gene

deletions and disease.

To further analyze functional relationships between TFs, we used

inferred activity TF profiles across a large number of conditions to

organize TFs into a ‘‘co-modulation network’’ consisting of a

number of disjoint sub-networks. In agreement with the results of

Luscombe et al. [35] we found the cell-cycle and pheromone sub-

network to be separated from the other sub-networks. The

advantage of inferring TF activities as hidden variables was

illustrated for the transcription factors Mbp1p and Stb1p, which

show poor correlation at the mRNA level but strong correlation at

the regulon activity level. Recognizing that such correlation might

be caused by overlap between the regulons, we removed the 23

genes that occurred in both regulons and recomputed the

correlation, which remained high. Tomlins et al. [52] were able to

use a method purely based on the overlap between gene groups

from various sources to build an interaction network that yielded

new insights on prostate cancer progression. This suggests that while

our co-modulation network approach provides useful biological

information about TF-TF associations even if there is no overlap

between regulons, the contribution to the regulon-regulon correla-

tion from the overlapping genes is also biologically meaningful.

In contrast to the condition-specific activity of many regulons,

those based on the STRE motifs (AGGGG/CCCCT) and TBP

(TATAWAWR) are activated in 50% of all conditions and are

therefore regulated in a more general manner. Compared to the

STRE and TBP-regulons, the PAC and rRPE regulons show

opposite transcriptional behavior. The observed bipolar transcrip-

tional regulation in Saccharomyces cerevisiae is also found by others

[42].We propose that there is a mechanistic relationship between

the regulation of these motif gene groups and provide evidence

that NC2, a bi-functional transcriptional regulator that binds TBP,

could serve as the mechanistic link. Basehoar et al. [42] showed

that approximately 20% of yeast genes contain a TATA box, and

similar numbers have also been found for higher eukaryotes [53].

It might be interesting to determine to what extent this form of

regulation is conserved in higher eukaryotes.

While the results reported here are limited to the yeast S. cerevisiae,

we expect our approach to be valid in other organisms as well,

including human. Whenever prior information about which genes

are directly targeted by a TF is available, regulon-based analysis of

differential expression using T-profiler should allow the ‘‘hidden

variables’’ that represent the true post-translational activity of the

TF to be estimated from the genomewide expression profile.

Materials and Methods

Definition of gene sets
We performed T-profiler analysis as described in [22] using motif

and ChIP-chip based regulons. Motif-based regulons were defined

Table 1. Regulon analysis of the tup1D and cyc8 (ssn6)D
transcription profiles.

tup1D/wt cyc8D/wt

TF (condition) t-value TF (condition) t-value

NRG1 (YPD)* 14.8 SOK2 (BUT 14)* 9.6

RIM101 (H2O2 low)* 14.5 NRG1 (YPD)* 9.6

CIN5 (H2O2 low)* 13.9 YAP6 (YPD)* 8.6

NRG1 (H2O2 low)* 13.6 NRG1 (H2O2 low)* 8.6

YAP6 (H2O2 low)* 12.2 PHD1 (BUT 90)* 8.5

SOK2 (BUT 14)* 11.6 CIN5 (H2O2 low)* 8.4

YAP6 (YPD)* 11.0 RIM101 (H2O2 Low)* 8.1

PHD1 (BUT 90)* 10.6 NRG1 (H2O2 high)* 8.1

MIG1 (YPD)* 10.6 CIN5 (YPD)* 8.0

PHD1 (YPD)* 10.6 YAP6 (H2O2 low)* 7.9

NRG1 (H2O2 high)* 9.7 SUT1 (YPD)* 7.5

SUT1 (YPD)* 9.6 PHD1 (YPD)* 7.5

CIN5 (H2O2 high)* 9.3 CIN5 (H2O2 high)* 6.8

YAP6 (H2O2 high)* 8.6 MIG1 (YPD)* 6.7

CIN5 (YPD)* 8.5 AFT2 (H2O2 low) 6.5

YJL206C (H2O2 low) 7.5 SKN7 (H2O2 low) 6.4

SKN7 (H2O2 low) 7.2 XBP1 (H2O2 low) 5.6

AFT2 (H2O2 low) 7.0 SKN7 (H2O2 high) 5.5

XBP1 (H2O2 low) 6.5 YAP6 (H2O2 high)* 5.4

CUP9 (YPD) 5.9 SKN7 (YPD) 5.3

SKN7 (YPD) 5.7 RCS1 (H2O2 high) 4.6

SKO1 (YPD) 5.7 PUT3 (H2O2 low) 4.5

SKN7 (H2O2 high) 5.6 ROX1 (YPD)* 3.9

YJL206C (YPD) 5.6 YJL206C (YPD) 3.8

ROX1 (YPD)* 4.8

YAP1 (H2O2 low) 4.1

Shown are ChIP-based regulons with a significant t-score (E-value,0.05) for
tup1D and cyc8 (ssn6)D mutant vs. wild-type expression data [28]. Regulons
scoring significantly in both mutants are shown in bold. The transcription
factors that are part of the Tup1-Cyc8 co-modulation sub-network (Figure 5c)
are marked with an asterisk. The condition of the ChIP-chip experiment [7] is
shown in parentheses.
doi:10.1371/journal.pone.0003112.t001
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as sets of genes with a match to a particular consensus motif within

the 59 600 base pairs upstream of the ORF [54], allowing no

overlap between neighboring ORFs. The consensus motifs used in

T-profiler [22] are derived from three different sources. First,

motifs were extracted from the SCPD database (http://rulai.cshl.

edu/SCPD/). Next, motifs were found by comparing the genome

sequence of highly related yeast species [27,55]. Finally, motifs

discovered in various microarray experiments by the REDUCE

algorithm [17] were added. Most of these motifs are similar or

identical to motifs described in the literature. In total, 115 motif

sets have been included in T-profiler calculations. To define the

ChIP-based regulons, we used the transcription factor binding

data obtained by Harbison et al. [7]. This data set contains ChIP-

chip results of 203 transcription factors from experiments

performed in rich medium (YPD). In addition, 84 of these

transcription factors were also assayed in one or more of 12 other

environmental conditions; therefore, multiple ChIP-chip regulons

may be defined for the same TF. A gene was considered to be part

of the regulon if the p-value reported by the authors was smaller

than 0.001. ChIP-based regulons were required to have at least 7

members, yielding a total of 252 gene sets that were used for T-

profiler analysis.

Expression library of transcription profiles
Our compendium of S. cerevisiae expression profiles contains data

for 936 cellular conditions from 19 publications, obtained using

different microarray platforms such as Genefilter, Affymetrix, and

spotted slides. Details can be found at (http://bussemakerlab.org/

RegulonProfiler/).

Figure 6. Motif-based dissection of the Environmental Stress Response. (A) Transcriptional response during DTT stress [27] of four regulons
based on motifs (see text) associated with the Environmental Stress Response (ESR). (B) Scatter plot of the t-values for the 936 experiments in our
database for the STRE versus the PAC regulon, showing a strong negative correlation (r = 20.85). (C) Strongly coupled antagonism between STRE/
TBP and PAC/rRPE motifs. Shown are Pearson correlation coefficients for all pairwise comparisons of the t-value profiles for the four motifs. All r-
values correspond to an E-value,10214. (D) Evidence for interaction between PAC/rRPE and the factor NC2. Shown is the response of the four motif-
based regulons to deletion of one of the components of NC2 (bur6D), as well as mutations to TBP that affect its dimerization (V71E and N69R) or its
interaction with NC2 (F182V). (E) Hypothetical binding of TBP/NC2 to the TATA and PAC-rRPE (core) promoter. The left panel illustrates the inability of
the TBP mutant F182V and the NC2 mutant Dbur6 to form a TBP/NC2 complex, as a consequence of which more TBP is available to bind and initiate
transcription at TATA-containing promoters. The right panel illustrates the inability of the TBP mutants V71E and N69R to form the inactive
homodimeric TBP complex, causing more TBP/NC2 complexes to be formed, which (directly or indirectly) stimulates transcription from PAC/rRPE
promoters.
doi:10.1371/journal.pone.0003112.g006
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Co-modulation network
To quantify the similarity of pairs of inferred TF activity, we

computed the Pearson correlation r between the t-values for the

corresponding regulons across all conditions in our expression

library. For each value of r, the test statistic

t~r

ffiffiffiffiffiffiffiffiffiffiffi
G{2

1{r2

r

was computed, and a two-tailed P-value was determined by using

the t-distribution with G-2 degrees of freedom, where G is the

number of genes. We only considered regulons that had significant

t-values (P,0.05) in at least 5 experiments. We used the yFiles

organic layout setting of Cytoscape [56] to create and visualize the

co-modulation network.

Fluorescence microscopy
Strains. GFP-fused strains, YNL027W (GFP-Crz1p) and

YMR037C (GFP-Msn2p) were from Invitrogen. Strain

background: EY0986 ATCC 201388: MATa his3D1 leu2D0

met15D0 ura3D0 (S288C).
Medium and growth conditions. YPD (1% yeast extract,

2% Bactopeptone, 2% glucose) was used. YPD containing either

0.4 M CaCl2 or 5 mM dithiothreitol (DTT; Boehringer,

Manheim) was mixed with an equal volume of YPD to achieve

a final concentration of 0.2 M CaCl2 or 2.5 mM DTT. YPD

containing 0.4 M CaCl2 was buffered to pH 5.0 with 7.5 mM

succinate to prevent precipitation of CaPO4. Cultures were grown

at 30uC and shaken at 250–300 rpm. The culture volume did not

exceed 25% of the flask capacity. Cultures were grown to an OD

of 0.5 before mixing with equal volumes of either CaCl2 or DTT.

For CaCl2-treated cells, samples were taken at 0, 5, 15, 30, and

60 minutes, and for DTT-treated cells, samples were taken at 0, 5,

15, 30, 45, 60, 90, 120, and 180 minutes. For both stress

conditions, the experiments from the original papers were

repeated (CaCl2 [31], DTT [27]).
Cell Fixation and Microscopy. 875 ml of culture were

combined with 16% EM grade paraformaldehyde to a final

concentration of 2% w/v and mixed for 15 minutes at 25uC. The

cells were spun down for 2 minutes. The cell pellet was

resuspended and washed in 1 ml of a 0.1 M KPi (pH = 7.5)/

1 M sorbitol buffer. Finally, the pellet was resuspended in 50 ml of

this buffer and stored at 4uC until use.

Three ml of cell suspension were mounted on a glass slide under

a coverslip. Microscopic imaging was performed using a CoolSnap

fx cooled CCD camera, mounted on an Olympus BX60

fluorescence microscope (Olympus, Tokyo, Japan) using a phase-

contrast 1006 oil-immersion objective with NA = 1.3 (UPlan Fl).

Fluorescence was excited with a 100 W mercury lamp; for GFP-

pictures a U-MNB narrow-band cube (excitation 470–490 nm;

emission .515 nm) was used. For DAPI-stained cells, 49,6-

diamidino-2-phenylindole dihydrochloride hydrate (DAPI) was

added to a final concentration of 0.5 mg/ml. For DAPI pictures, a

U-MWU wide-band cube (excitation 330–385 nm; emission

.420 nm) was used.
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