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Abstract

Background: Alzheimer’s disease (AD) is a progressive brain disease with a huge cost to human lives. The impact of the
disease is also a growing concern for the governments of developing countries, in particular due to the increasingly high
number of elderly citizens at risk. Alzheimer’s is the most common form of dementia, a common term for memory loss and
other cognitive impairments. There is no current cure for AD, but there are drug and non-drug based approaches for its
treatment. In general the drug-treatments are directed at slowing the progression of symptoms. They have proved to be
effective in a large group of patients but success is directly correlated with identifying the disease carriers at its early stages.
This justifies the need for timely and accurate forms of diagnosis via molecular means. We report here a 5-protein biomarker
molecular signature that achieves, on average, a 96% total accuracy in predicting clinical AD. The signature is composed of
the abundances of IL-1a, IL-3, EGF, TNF-a and G-CSF.

Methodology/Principal Findings: Our results are based on a recent molecular dataset that has attracted worldwide
attention. Our paper illustrates that improved results can be obtained with the abundance of only five proteins. Our
methodology consisted of the application of an integrative data analysis method. This four step process included: a)
abundance quantization, b) feature selection, c) literature analysis, d) selection of a classifier algorithm which is independent
of the feature selection process. These steps were performed without using any sample of the test datasets. For the first two
steps, we used the application of Fayyad and Irani’s discretization algorithm for selection and quantization, which in turn
creates an instance of the (alpha-beta)-k-Feature Set problem; a numerical solution of this problem led to the selection of
only 10 proteins.

Conclusions/Significance: the previous study has provided an extremely useful dataset for the identification of AD
biomarkers. However, our subsequent analysis also revealed several important facts worth reporting: 1. A 5-protein
signature (which is a subset of the 18-protein signature of Ray et al.) has the same overall performance (when using the
same classifier). 2. Using more than 20 different classifiers available in the widely-used Weka software package, our 5-
protein signature has, on average, a smaller prediction error indicating the independence of the classifier and the
robustness of this set of biomarkers (i.e. 96% accuracy when predicting AD against non-demented control). 3. Using
very simple classifiers, like Simple Logistic or Logistic Model Trees, we have achieved the following results on 92
samples: 100 percent success to predict Alzheimer’s Disease and 92 percent to predict Non Demented Control on the
AD dataset.
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Introduction

Recently, Ray et al. [1] made a significant contribution to the

quest of finding a superior molecular test for an earlier diagnosis of

Alzheimer’s disease (AD). The method appears to have signifi-

cantly improved on the state-of-the-art and, as a consequence,

their results attracted immediate worldwide attention. Using the

abundance of 120 signalling proteins on a training set of 83

archived plasma samples, they produced an 18-protein signature.

On two separate test sets of 92 (‘‘AD’’ Alzheimer’s samples against

control) and 47 (‘‘MCI’’ mild cognitive impairment samples) the

signature was able to show an overall effectiveness of 81% and

91% for AD predictability.

We started this project by analysing the dataset made available

and we are glad to report that we have been able to perfectly

reproduce their mathematical methods and results from the

available datasets. However, our subsequent analysis also pro-

duced several important facts worth reporting: using an integrative

bioinformatics approach, we identified a 6-protein signature that

halves the number of errors in prediction of the previously

proposed signature (on the ‘‘AD’’ dataset.), when using the same

classifier (PAM). A 5-protein signature (which is a subset of the 18-

protein signature of Ray et al.) has the same overall performance.

Finally, using more than 20 different classifiers available in the

widely-used Weka software package [2], our 5-protein signature

has, on average, a smaller prediction error indicating the
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independence of the classifier and the robustness of this set of

biomarkers (i.e. 96% accuracy when predicting AD against non-

demented control).

The 6-protein signature is composed of the abundances of IL-

1a, IL-3, IL-6, EGF, TNa and G-CSF. We remark that IL-6 was

not selected by Ray et al. in the preliminary gene selection, and as a

consequence it is not part of their 18-protein signature.

Recognising that the importance of IL-6 as a biomarker for AD

is debatable and that many classifiers do not make use of its

abundance to inform decisions, we also present our results of a 5-

protein signature that ignores IL-6.

Results

Base case–analysis of the performance of randomly
selected signatures

Before reporting our experimental results, it was important to

understand the worst possible performance results that a set of k

proteins can have when they are selected at random (from the

available 120 proteins under study). We showed results of two

experiments that aim at quantifying this. We showed the

classification performance of 20 signatures with 18 proteins

selected at random with a uniform distribution (obviously, we

have selected 18 as is the same number of proteins as the signature

proposed by Ray et al.). Analogously, we performed the same

experiment now constrained to select only six proteins chosen at

random (as we will later present comparative results using

signatures that only employ 6 and 5 proteins).

The two different collections of 20 sets of randomly generated

signatures were chosen using an equal probability for each of the

120 proteins in the set (obviously, not allowing repetitions and

constrained to have either 18 or 6 different proteins in total). For

this experiment, we decided to use a random forests algorithm

(RF) as a base classifier (we are using the algorithm implemented

in [3] for reproducibility purposes), generating 150 trees. As the

chosen classifier also has a stochastic nature, for each signature we

ran 10 experiments with different seeds, and the results we found

are quite interesting.

For these twenty 18-protein signatures the average error over

the 92 samples considered on the ‘‘AD’’ test set, is 15.13 meaning

an 84% effectiveness, see Table 1. For the 6-protein case, an

average error of 30.5% was observed meaning that an expected

lower value of 67% effectiveness was found, see Table 2. With

these results we can infer that the original selection of the 120

genes is quite remarkable for revealing biomarkers for prediction

of clinical AD. Since a random selection with a simple, yet robust,

Table 1. Number of errors from the 18-genes randomly selected signatures on the ‘‘AD’’ validation test set.

Seed Number S18-1 S18-2 S18-3 S18-4 S18-5 S18-6 S18-7 S18-8 S18-9 S18-10

76 18 14 11 18 29 18 11 10 4 10

144 18 15 12 19 25 17 13 11 7 13

121 18 15 10 22 25 19 11 8 7 13

83 17 14 11 21 27 18 13 12 6 15

33 20 18 12 20 27 16 11 11 6 15

51 15 16 11 21 26 17 12 8 6 15

162 15 13 13 20 24 21 14 8 7 13

37 13 14 11 21 29 20 10 9 7 11

136 17 16 13 22 23 20 10 10 5 14

60 18 10 11 17 22 18 10 9 7 15

Average Error 16.9 14.5 11.5 20.1 25.7 18.4 11.5 9.6 6.2 13.4

Average Accuracy 81.6% 84.2% 87.5% 78.2% 72.1% 80.0% 87.5% 89.6% 93.3% 85.4%

Seed Number S18-11 S18-12 S18-13 S18-14 S18-15 S18-16 S18-17 S18-18 S18-19 S18-20

76 17 18 18 16 9 20 7 15 20 11

144 18 22 21 17 9 18 9 16 19 11

121 17 18 20 17 8 15 7 15 22 8

83 16 21 18 16 8 18 10 15 19 13

33 20 22 21 14 8 17 8 15 22 9

51 20 22 22 14 8 20 9 17 22 10

162 19 18 21 16 8 18 7 15 23 10

37 18 21 25 15 7 14 8 15 23 13

136 18 21 17 15 9 18 5 14 23 10

60 19 17 20 13 10 16 9 16 21 12

Average Error 18.2 20 20.3 15.3 8.4 17.4 7.9 15.3 21.4 10.7

Average Accuracy 80.2% 78.3% 77.9% 83.4% 90.9% 81.1% 91.4% 83.4% 76.7% 88.4%

The Random forest algorithm was used as classifier. For each signature 10 runs with different seeds were done. We used the WEKA software implementation, and the
algorithm was allowed to generate 150 trees. The best and worst signatures are highlighted in bold text. In two cases we found signatures that classify above 90%,
comparable with the results of Ray et al. that report on 91% AD predictability as a result of their proposed methodology.
doi:10.1371/journal.pone.0003111.t001
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classification method allows us to find ‘‘good’’ 18-protein

predictor with only a random selection procedure restricted to

these 120 proteins. Table 3, Figure 1 and Figure 2 resume the

experiment.

It is remarkable that by choosing 18 proteins at random we were

able to obtain a very good signature, at least for this classifier,

under the conditions explained above. Perhaps the reason of

obtaining such good signatures is that a smaller number of

proteins, that all signatures have in common, is all that it is needed

for predictive molecular signature. Figures 1 and 2 show the

relation between the considered signatures with 18 and 6 proteins

and the random ones.

Computational studies: Results obtained with four
different signatures

We report all the results obtained using a set of 24 classifiers

which have been selected from the Weka software suite [3],

aiming at sampling different algorithmic methodologies in

current practice. These classifiers are applied having as input

the four different signatures with the same training set. To ensure

reproducibility of our reported methods, no parameter was

modified from the classifier’s default setting from Weka’s

downloaded code. In this way we were not biasing the

experiment with ad hoc parameter selection and we ensure the

complete reproducibility of our claims. We are also aware that

better results are possible when adjusting the parameters of each

classifier considering only the samples of the training set.

Table 2. Number of errors from the 6-genes randomly selected signatures on the ‘‘AD’’ validation test set.

Seed Number S6-1 S6-2 S6-3 S6-4 S6-5 S6-6 S6-7 S6-8 S6-9 S6-10

76 40 34 20 31 31 32 29 32 24 34

144 40 32 19 34 32 33 30 31 23 33

121 38 37 18 33 35 30 28 32 27 31

83 40 33 19 31 33 34 27 27 24 31

33 41 33 17 35 33 30 27 28 27 29

51 39 33 19 28 34 30 28 28 24 30

162 41 35 19 31 36 34 28 27 26 33

37 40 33 17 32 31 29 27 35 24 32

136 42 36 19 34 34 32 30 34 24 26

60 40 35 17 28 27 31 29 32 23 29

Average Error 40.1 34.1 18.4 31.7 32.6 31.5 28.3 30.6 24.6 30.8

Average Accuracy 56.4% 62.9% 80.0% 65.5% 64.6% 65.8% 69.2% 66.7% 73.3% 66.5%

Seed Number S6-11 S6-12 S6-13 S6-14 S6-15 S6-16 S6-17 S6-18 S6-19 S6-20

76 32 26 30 16 37 39 33 34 32 24

144 30 29 36 17 41 43 32 36 35 24

121 29 25 30 17 41 37 37 34 35 23

83 31 27 31 17 44 35 30 35 33 23

33 32 24 32 17 40 35 35 36 32 23

51 30 25 34 18 41 38 32 35 33 23

162 33 23 30 17 37 33 35 36 35 23

37 31 25 31 17 40 35 32 37 35 22

136 32 29 31 19 43 35 32 39 34 27

60 31 26 33 15 41 36 31 38 32 24

Average Error 31.1 25.9 31.8 17 40.5 36.6 32.9 36 33.6 23.6

Average Accuracy 66.2% 71.8% 65.4% 81.5% 56.0% 60.2% 64.2% 60.9% 63.5% 74.3%

The Random forest algorithm was used as classifier, for each signature 10 runs with different seeds were done. We used the WEKA software implementation, and the
algorithm was allowed to generate 150 trees. The best and worst signatures are highlighted in bold text. This result shows what it is expected, that a 6-signature, when
the biomarkers are randomly chosen, is performing significantly worse than the panel of 18 biomarkers selected by Ray et. al. Now the best result (81.5%) is worse than
the average result of a random 18-signature (86%).
doi:10.1371/journal.pone.0003111.t002

Table 3. Random experiments report.

18-gene random
signatures

6-gene random
signatures

Average Error 15.14 30.59

Best Signature (average) 6.2 17

Worst Signature (average) 25.7 40.5

Standard Deviation 5.36 6.21

Accuracy Average 83.5% 66.7%

The table shows the average results of the 20 random signatures for each size,
also including the best and worst results and the standard deviation. The
accuracy average is calculated considering the error average over the 92
samples of ‘‘AD’’ validation test set.
doi:10.1371/journal.pone.0003111.t003
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PLoS ONE | www.plosone.org 3 September 2008 | Volume 3 | Issue 9 | e3111



Figure 1. Histograms of the number of errors of the random forest classifier using 20 randomly selected signatures with 18
proteins. The arrow indicates the results under the same conditions of the 18-protein signature proposed by Ray et al.
doi:10.1371/journal.pone.0003111.g001

Figure 2. Histograms of the number of errors considering the random forest classifier and the 20 randomly selected signatures
with 6 proteins. The arrow indicates the results under the same conditions of our 6-protein signature.
doi:10.1371/journal.pone.0003111.g002
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Table 4. Protein name for each signature used in the computational experiment.

Protein Name Entrez GeneID
Official gene name provided by HUGO Gene Nomenclature
Committee (HGNC) In signature

18 10 6 5

ANG-2 285 angiopoietin 2 x

CCL5/RANTES 6352 chemokine (C-C motif) ligand 5 x

CCL7/MCP-3 6354 chemokine (C-C motif) ligand 7 x x

CCL15/MIP-1d 6359 chemokine (C-C motif) ligand 15 x x

CCL18/PARC 6362 chemokine (C-C motif) ligand 18 (pulmonary and activation-regulated) x

CXCL8/IL-8 3576 interleukin 8 x

EGF 1950 epidermal growth factor (beta-urogastrone) x x x x

G-CSF 1440 colony stimulating factor 3 (granulocyte) x x x x

GDNF 2668 glial cell derived neurotrophic factor x

ICAM-1 3383 intercellular adhesion molecule 1 (CD54), human rhinovirus receptor x

IGFBP-6 3489 insulin-like growth factor binding protein 6 x

IL-1a 3552 interleukin 1, alpha x x x x

IL-3 3562 interleukin 3 (colony-stimulating factor, multiple) x x x x

IL-6 3569 interleukin 6 (interferon, beta 2) x x

IL-11 3589 interleukin 11 x x

M-CSF 1435 colony stimulating factor 1 (macrophage) x

PDGF-BB 5155 platelet-derived growth factor beta polypeptide (simian sarcoma viral
(v-sis) oncogene homolog)

x x

TNF-a 7124 tumor necrosis factor (TNF superfamily, member 2) x x x x

TRAIL R4 8793 tumor necrosis factor receptor superfamily, member 10d, decoy with
truncated death domain

x

doi:10.1371/journal.pone.0003111.t004

Table 5. Report of the results of the 24 classifiers when using the 18-Protein biomarker.

Classifier Grand Total OVERALL (‘‘AD’’+‘‘MCI’’) Test Set ‘‘AD’’ Test Set ‘‘MCI’’

AD Er. NAD Er. AD Er. NAD Er. AD Er. NAD Er.

Dataset size 139 64 75 42 50 22 25

PAM 21 7 14 4 6 3 8

SMO 20 5 15 2 6 3 9

Simple Logistic 25 10 15 5 6 5 9

Logistic 27 11 16 6 7 5 9

Multilayer Perceptron* 21.7 10.1 11.6 4 3.3 6.1 8.3

Bayes Net 27 7 20 3 7 4 13

Naı̈ve Bayes 23 4 19 1 5 3 14

Naı̈ve Bayes Simple 23 4 19 1 5 3 14

Naı̈ve Bayes Up 23 4 19 1 5 3 14

IB1 21 5 16 2 3 3 13

Ibk 21 5 16 2 3 3 13

Kstar 28 5 23 2 11 3 12

LWL 28 15 13 5 3 10 10

AdaBoost 23 9 14 4 3 5 11

ClassViaRegression 28 14 14 5 4 9 10

Decorate* 23.1 7.9 15.2 3.3 5.2 4.6 10

MultiClass Classifier 27 11 16 6 7 5 9

Random Committee* 26.1 10.1 16 4.4 5.5 5.7 10.5

Alzheimer
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Table 5. cont.

Classifier Grand Total OVERALL (‘‘AD’’+‘‘MCI’’) Test Set ‘‘AD’’ Test Set ‘‘MCI’’

AD Er. NAD Er. AD Er. NAD Er. AD Er. NAD Er.

Dataset size 139 64 75 42 50 22 25

j48 24 13 11 3 2 10 9

LMT 25 10 15 5 6 5 9

NBTree 26 13 13 5 4 8 9

Part 25 14 11 7 2 7 9

Random Forest* 24.3 9.3 15 4.1 4 5.2 11

Ordinal Classifier 24 13 11 3 2 10 9

Average 24.34 9.02 15.33 3.66 4.79 5.36 10.53

Agreement (%) 82% 86% 80% 91% 90% 76% 58%

18-Protein Signature (Ray et al.)
doi:10.1371/journal.pone.0003111.t005

Table 6. Report of the results of the 24 classifiers when using the 10-Protein biomarker.

10-Protein Signature

Classifier Grand Total OVERALL (‘‘AD’’+‘‘MCI’’) Test Set ‘‘AD’’ Test Set ‘‘MCI’’

AD Er. NAD Er. AD Er. NAD Er. AD Er. NAD Er.

Dataset size 139 64 75 42 50 22 25

PAM 23 5 18 3 8 2 10

SMO 23 7 16 2 6 5 10

Simple Logistic 23 4 19 1 8 3 11

Logistic 24 6 18 1 9 5 9

Multilayer Perceptron* 21.8 4.9 16.9 1.2 6.9 3.7 10

Bayes Net 28 7 21 1 8 6 13

Naı̈ve Bayes 31 6 25 2 12 4 13

Naı̈ve Bayes Simple 31 6 25 2 12 4 13

Naı̈ve Bayes Up 31 6 25 2 12 4 13

IB1 28 6 22 3 9 3 13

Ibk 28 6 22 3 9 3 13

Kstar 39 3 36 0 18 3 18

LWL 28 15 13 5 3 10 10

AdaBoost 22 4 18 1 8 3 10

ClassViaRegression 23 8 15 1 5 7 10

Decorate* 25.1 6.7 18.4 1.6 8 5.1 10.4

MultiClass Classifier 24 6 18 1 9 5 9

Random Committee* 25.8 9.9 15.9 3.3 6.4 6.6 9.5

j48 22 11 11 3 2 8 9

LMT 37 17 20 8 12 9 8

NBTree 19 13 6 5 3 8 3

Part 21 10 11 3 2 7 9

Random Forest* 23.9 9.4 14.5 2.7 5 6.7 9.5

Ordinal Classifier 22 11 11 3 2 8 9

Average 25.99 7.83 18.15 2.45 7.64 5.38 10.52

Agreement (%) 81% 88% 76% 94% 85% 76% 58%

doi:10.1371/journal.pone.0003111.t006
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Table 7. Report of the results of the 24 classifiers when using the 6-Protein biomarker.

6-Protein Signature

Classifier Grand Total OVERALL (‘‘AD’’+‘‘MCI’’) Test Set ‘‘AD’’ Test Set ‘‘MCI’’

AD Er. NAD Er. AD Er. NAD Er. AD Er. NAD Er.

Dataset size 139 64 75 42 50 22 25

PAM 20 8 12 1 3 7 9

SMO 20 9 11 2 2 7 9

Simple Logistic 18 4 14 0 4 4 10

Logistic 21 4 17 0 7 4 10

Multilayer Perceptron* 25.6 3.2 22.4 0.4 9 2.8 13.4

Bayes Net 22 8 14 3 4 5 10

Naı̈ve Bayes 23 8 15 2 5 6 10

Naı̈ve Bayes Simple 24 9 15 3 5 6 10

Naı̈ve Bayes Up 23 8 15 2 5 6 10

IB1 33 9 24 3 11 6 13

Ibk 33 9 24 3 11 6 13

Kstar 33 6 27 1 13 5 14

LWL 29 16 13 6 3 10 10

AdaBoost 27 11 16 3 6 8 10

ClassViaRegression 23 10 13 3 6 7 7

Decorate* 24.7 9.8 14.9 2.4 4.8 7.4 10.1

MultiClass Classifier 21 4 17 0 7 4 10

Random Committee* 26.6 11.5 15.1 3.1 5.6 8.4 9.5

j48 24 10 14 2 5 8 9

LMT 18 4 14 0 4 4 10

NBTree 21 10 11 1 2 9 9

Part 27 13 14 3 5 10 9

Random Forest* 25.6 11.8 13.8 2.6 4.4 9.2 9.4

Ordinal Classifier 24 10 14 2 5 8 9

Average 24.44 8.60 15.84 2.02 5.70 6.58 10.14

Agreement (%) 82% 87% 79% 95% 89% 70% 59%

Using this biomarker it is notable the effectiveness of predicting AD on the ‘‘AD’’ test set using simple classifiers as simple logistic or LMT (Logistic Model Tree) or even
the same classifier used in [1] (PAM).
doi:10.1371/journal.pone.0003111.t007

Table 8. Report of the results of the 24 classifiers when using the 5-Protein biomarker.

5-Protein Signature

Classifier Grand Total OVERALL (‘‘AD’’+‘‘MCI’’) Test Set ‘‘AD’’ Test Set ‘‘MCI’’

AD Er. NAD Er. AD Er. NAD Er. AD Er. NAD Er.

Dataset size 139 64 75 42 50 22 25

PAM 21 10 11 3 2 7 9

SMO 19 8 11 2 2 6 9

Simple Logistic 18 4 14 0 4 4 10

Logistic 20 4 16 0 6 4 10

Multilayer Perceptron* 21.6 5.3 16.3 0.7 5.2 4.6 11.1

Bayes Net 21 4 17 1 5 3 12

Naı̈ve Bayes 19 5 14 1 2 4 12

Naı̈ve Bayes Simple 20 5 15 1 3 4 12

Naı̈ve Bayes Up 19 5 14 1 2 4 12

Alzheimer
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Nevertheless, with these tests our objective is to show the

robustness of our methods to discovery biomarkers, by showing

the independence of the signature performance from the selected

classifier.

It is interesting to note that the mathematical model and

algorithms we have used have pointed at Interleukin-6 and

included it in the 10-protein signature. It is well known that IL-

6 with other cytokines have been the subject of many studies of

Table 8. cont.

5-Protein Signature

Classifier Grand Total OVERALL (‘‘AD’’+‘‘MCI’’) Test Set ‘‘AD’’ Test Set ‘‘MCI’’

AD Er. NAD Er. AD Er. NAD Er. AD Er. NAD Er.

Dataset size 139 64 75 42 50 22 25

IB1 30 10 20 3 7 7 13

Ibk 30 10 20 3 7 7 13

Kstar 26 8 18 3 7 5 11

LWL 29 16 13 6 3 10 10

AdaBoost 31 3 28 1 11 2 17

ClassViaRegression 24 5 19 1 7 4 12

Decorate* 21.8 8.7 13.1 1.7 3.9 7 9.2

MultiClass Classifier 20 4 16 0 6 4 10

Random Committee* 26.1 10.9 15.2 3.1 5.1 7.8 10.1

j48 24 10 14 2 5 8 9

LMT 18 4 14 0 4 4 10

NBTree 21 10 11 1 2 9 9

Part 27 13 14 3 5 10 9

Random Forest* 26.2 12.1 14.1 3.2 4.9 8.9 9.2

Ordinal Classifier 24 10 14 2 5 8 9

Average 23.20 7.71 15.49 1.78 4.75 5.93 10.73

Agreement (%) 83% 88% 79.4% 96% 90% 73% 57%

Removing IL-6 from the biomarker set we have a small gain in predicting AD in both data set, if compared to the 6-protein signature. In this case, the prediction of AD
on the ‘‘AD’’ test set achieves an average of 96% without dropping the accuracy of the prediction of NonAD.
doi:10.1371/journal.pone.0003111.t008

Table 9. Average results for each signature over 24 classifiers.

Size Overall Overall (‘‘AD’’+‘‘MCI’’) Test set ‘‘AD’’ Test set ‘‘MCI’’

AD Er. NAD Er. AD Er. NAD Er. AD Er. NAD Er.

139 64 75 42 50 22 25

18 protein Sig. Error Avg 24.34 9.02 15.33 3.66 4.79 5.36 10.53

Agr % 82% 86% 80% 91% 90% 76% 58%

82% 91% 66%

10 protein Sig. Error Avg 25.98 7.83 18.15 2.45 7.64 5.38 10.52

Agr % 81% 88% 76% 94% 85% 76% 58%

81% 89% 66%

6 protein Sig. Error Avg 24.44 8.60 15.84 2.02 5.70 6.58 10.14

Agr % 82% 87% 79% 95% 89% 70% 59%

82% 92% 64%

5 protein Sig. Error Avg 23.20 7.71 15.49 1.78 4.75 5.93 10.73

Agr % 83% 88% 79% 96% 90% 73% 57%

83% 93% 65%

For each signature the average number of errors is reported and the percentage agreement is calculated over each specific population. The best results are highlighted
in bold text.
doi:10.1371/journal.pone.0003111.t009
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biomarkers for Alzheimer’s disease [4–6]. Using an integrative

bioinformatic approach, described in the next sections, we

draw our attention to a smaller signature. The 6-protein

signature was obtained by the analysis of the protein-relation

graph and interestingly enough, IL-6 is also included in this

new core signature. Finally, in the 5-protein signature, IL-6 is

excluded to provide another comparison and the five proteins

now become a proper subset of the 18 original proteins

uncovered by Ray et al. Table 4 presents the genes included in

each signature, indicating the protein name, Entrez GeneID

and official name.

Tables 5, 6, 7 and 8 show the results of the 24 classifiers for all

the signatures considered. The classifiers marked with a star have a

random component; therefore the average of ten runs with

different seeds is reported. Finally, Tables 9 and 10 summarize the

results.

The results of our 5-protein signature are reported in Table 8.

When considering the ‘‘AD’’ test set, average results (over 24

classifiers) are obtained by the 5-protein signature, 96% when

predicting AD and 90% when predicting non-demented control.

It is also worth mentioning that there are four different

classifiers achieving almost 100% accuracy (i.e. having a

number of errors smaller or equal to 1) for predicting AD on

the ‘‘AD’’ test set. These results are achieved without losing

accuracy when predicting non-demented controls on the same

dataset.

Table 10. The standard deviation of each test is shown on
this table.

Overall
(‘‘AD’’+‘‘MCI’’) Test set AD Test set MCI

AD Er. NAD Er. AD Er. NAD Er. AD Er. NAD Er.

18 protein Sig. 3.580 3.022 1.692 2.087 2.430 1.982

10 protein Sig. 3.546 6.127 1.721 3.893 2.214 2.729

6 protein Sig. 3.165 4.218 1.419 2.798 2.024 1.625

5 protein Sig. 3.520 3.668 1.433 2.175 2.326 1.906

All the signatures show a very similar behaviour with a small standard deviation.
doi:10.1371/journal.pone.0003111.t010

Table 11. Number of errors for each classifier when
considering both test sets together (139 samples).

Method Overall errors

18 10 6 5

Simple Logistic 25 25 18 18

LMT 25 25 18 18

Logistic 27 24 21 20

MultiClass Classifier 27 24 21 20

Bayes Net 27 28 22 21

NBTree 26 23 21 21

Naı̈ve Bayes 23 30 23 19

Naı̈ve Bayes Up. 23 30 23 19

ClassViaRegression 28 25 23 24

Naı̈ve Bayes Simple 23 30 24 20

Kstar 28 41 33 26

Decorate 23.1 28.3 24.7 21.8

SMO 20 23 20 19

Multilayer Perceptron 21.7 21.8 25.6 21.6

PAM 21 22 20 21

Random Committee 26.1 26.3 26.6 26.1

j48 24 24 24 24

Ordinal Class Classifier 24 24 24 24

LWL 28 28 29 29

Random Forest 24.3 24.3 25.6 26.2

Part 25 30 27 27

AdaBoost 23 31 27 31

IB1 21 28 33 30

Ibk 21 28 33 30

Average 24.342 26.821 24.438 23.196

Agreement % 82% 81% 82% 83%

The signature with the best performance on each classifier is highlighted in
bold text.
doi:10.1371/journal.pone.0003111.t011

Table 12. Number of errors for each classifier when
considering the ‘‘AD’’ test set (92 samples).

Method ‘‘AD’’ test set

18 10 6 5

NBTree 9 8 3 3

Simple Logistic 11 9 4 4

LMT 11 20 4 4

Logistic 13 10 7 6

MultiClass Classifier 13 10 7 6

PAM 10 11 4 5

SMO 8 8 4 4

Naı̈ve Bayes 6 14 7 3

Naı̈ve Bayes Up. 6 14 7 3

Bayes Net 10 9 7 6

Decorate 8.5 9.6 7.2 5.6

Naı̈ve Bayes Simple 6 14 8 4

Kstar 13 18 14 10

Multilayer Perceptron 7.3 8.1 9.4 5.9

Random Committee 9.9 9.7 8.7 8.2

ClassViaRegression 9 6 9 8

Part 9 5 8 8

Random Forest 8.1 7.7 7 8.1

LWL 8 8 9 9

j48 5 5 7 7

Ordinal Class Classifier 5 5 7 7

AdaBoost 7 9 9 12

IB1 5 12 14 10

Ibk 5 12 14 10

Average 8.45 10.09 7.72 6.53

Agreement % 91% 89% 92% 93%

The signature with the best performance on each classifier is highlighted in
bold text.
doi:10.1371/journal.pone.0003111.t012
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In Table 9, a feature of the experiments it is worth commenting:

all the signatures drop at least 30% in accuracy when considering

the ‘‘MCI’’ dataset. This is understandable since the classifiers

have no sample labelled ‘‘MCI’’ in the training set.

The best overall result, considering both test sets, is obtained by

the 6-protein and 5-protein signatures. They present 18 errors and

in both signatures this result is obtained twice when using the

LMT and Simple Logistic classifiers (Tables 7 and 8).

In Table 10, the standard deviations of the number of errors are

almost constant for all signatures, in all datasets. This reinforces

our previous claim, the poor performance of the signatures on the

‘‘MCI’’ dataset is related to the fact that the signatures were not

trained to identify between AD and MCI.

To present the experiment results in another form, we

compared the performance of each signature in each test.

Table 11 presents the comparison between the signatures when

considering all the test sets (‘‘AD’’+‘‘MCI’’) totalling 139 samples.

It is remarkable that the 5-protein signature not only has a better

average performance, but also presents the best result on 16 of the

24 algorithms used for classification (the number of errors

highlighted in bold text indicates the best performance for this

particular classifier).

In Table 12, the same comparison is made but only considering

the ‘‘AD’’ test set. Once again, it is possible to visualize the

performance of the 5-protein signature, obtaining not only the best

average result but also the best individual results, presenting 3

errors on 3 occasions.

Finally, Table 13 presents the same analysis for the ‘‘MCI’’ test

set. In this case the most remarkable observation is the lack of

quality to predict MCI-AD. The improved performance of the

largest signatures is related to the fact that the signatures have

more genes, and because they were not trained to distinguish

between MCI patients, the use of more proteins allows a slightly

better performance. Nevertheless, even the best signature for this

case (a 10-protein signature) presents a poor performance when

compared with the previous results.

Discussion

In conclusion, it is clear that the experiment performed by Ray

et al. provided an extremely useful dataset for the identification of

Alzheimer’s disease biomarkers. We have uncovered a robust 5-

protein signature with near 97% of accuracy to predict AD against

non-demented controls using their data. Our signature has less

than one third of the proteins than the one proposed in the

original paper, and at least the same level of prediction

performance.

The next step on this important quest is to set up an

independent experimental procedure that now considers samples

with mild cognitive impairment (but without AD) in the training

set. We do not agree with the methodology of using a training set

without MCI to select biomarkers to differentiate between AD and

MCI [1]. This has not been done and warrants further

investigation. Only in this way we can uncover useful biomarkers

to discriminate between AD and MCI.

On the positive side, our methods reveal the true predictive

potential of testing for Alzheimer’s disease using this panel of

signalling proteins. We also believe that our methods show

promise and warrant their application in other settings. It is clear

that Alzheimer researchers can benefit directly from our

identification of more robust biomarkers. The method is revealed

to be useful, simple yet very powerful, and warrants its application

in other multifactorial diseases.

Methods

Our methodology consisted of the application of an integrative

data analysis method. We used four steps: a) abundance

quantization, b) feature selection, c) literature analysis, d)

selection of a classifier algorithm which is independent of the

feature selection process. These steps were performed without

using any of the test datasets. For the first two steps, we used the

application of Fayyad and Irani’s discretization algorithm [7] for

selection and quantization, which in turn creates an instance of

the (alpha-beta)-k-Feature Set problem [8–10]. Fayyad and Irani’s

method filtered only 14 out of 120 proteins of the training set

(i.e. those proteins for which no threshold was selected were

filtered out). After quantization, samples 7, 43 (AD, ‘‘Alzheimer’s

Disease’’) and 48 (NDC, ‘‘Nondemented Control’’) of the

training set were ‘‘in conflict’’, which means that they have

quantized values (for all 14 proteins selected) which are the same

although they belong to different classes. These conflicts are then

removed, i.e. the three samples of the training set are eliminated

and we apply our algorithms to the remaining 80 samples of the

training set. Numerical solution of the (alpha-beta)-k-Feature Set

problem led to the selection of only 10 proteins, Table 4. For a

detailed explanation of the methods and other applications,

Table 13. Number of errors for each classifier when
considering the ‘‘MCI’’ test set (47 samples).

Method ‘‘MCI’’ test set

18 10 6 5

ClassViaRegression 19 17 14 16

Bayes Net 17 19 15 15

j48 19 17 17 17

Ordinal Class Classifier 19 17 17 17

Naı̈ve Bayes 17 17 16 16

Naı̈ve Bayes Simple 17 17 16 16

Naı̈ve Bayes Up. 17 17 16 16

Simple Logistic 14 14 14 14

Logistic 14 14 14 14

LWL 20 20 20 20

MultiClass Classifier 14 14 14 14

LMT 14 17 14 14

NBTree 17 11 18 18

Kstar 15 21 19 16

Multilayer Perceptron 14.4 13.7 16.2 15.7

Random Committee 16.2 16.1 17.9 17.9

Decorate 14.6 15.5 17.5 16.2

Random Forest 16.2 16.2 18.6 18.1

AdaBoost 16 13 18 19

Part 16 16 19 19

IB1 16 16 19 20

Ibk 16 16 19 20

SMO 12 15 16 15

PAM 11 12 16 16

Average 16.29 16.11 16.78 16.77

Agreement % 65% 66% 64% 64%

The signature with the best performance on each classifier is highlighted in
bold text.
doi:10.1371/journal.pone.0003111.t013
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Figure 3. Classification and prediction of clinical Alzheimer’s diagnosis in subjects with Alzheimer’s disease. (a) An undirected graph,
where each node corresponds a different protein belonging to the 10-protein signature we identified; each edge indicates the existence of a direct
relation as obtained by searching the PubMed database, (using the Pathway Studio software). (b) Identification of the maximum clique of the graph,
uncovering a robust 6-protein signature; each node on the clique has a direct relation with each other. Simple Logistic was used to classify and
predict Alzheimer’s (AD) and non-Alzheimer’s class, in the training set (c), the blinded test set ‘AD’ (d). All the results are shown in a confusion matrix,
for the training set a 10-fold cross-validation was applied 10 times, in both cases Simple Logistic was used with the default parameters of Weka
package. All the p-values were calculated using the Fisher exact test.
doi:10.1371/journal.pone.0003111.g003
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readers can check our referenced publications and references

therein [11–13].

To guarantee the reproduction of all our experiments, we use

algorithms from the Weka Package [3] as classifiers. All the

classifiers were used with the default parameters; we are

convinced that better results could be found if adjustments are

made in each classifier (considering only its result over the

training set).

The first signature we uncovered contains 10 proteins, see

Table 4. Using the Pathway Studio software [3], we generated an

undirected graph of the known ‘direct relations’ of these 10

proteins. Each node in the graph corresponds to a protein and an

edge exists if the Pathway Studio software produced a ‘direct

relation’, indicating important association already observed in the

life sciences literature. On this graph we looked for its maximum

clique (Fig. 3a). We denote this graph as G = (V,E). Each vertex in

V has a one-to-one correspondence with a protein. Each pair of

vertices are connected by an edge in E, if and only if, there are

many direct relations between the proteins reported in the

literature. A clique in G is a subset X of V such that its induced

graph G[X] is complete. In other words, we are looking for the

maximum subset of proteins, in which all pairs of proteins already

have a direct relationship identified between them, thus we

consider this set the core of our 10-protein signature (this core has

the 6-proteins listed above, see Fig. 3b).

Our first benchmark test for this 6-protein signature was done

using Simple Logistic (SL) [14], perhaps the simplest classifier from

the Weka software suite. With our 6-protein signature, SL had a

performance of 86% after applying 10 times 10-fold cross-

validation over the training set (Fig. 3c). When considering the

‘‘AD’’ test set, our 6-protein signature with SL was able to make a

classification with 97% of accuracy. For AD samples we achieved

100% positive agreement and for NDC samples a 92% negative

agreement (Fig. 3d).

When using the second test set (labelled ‘‘MCI’’), that includes

samples that had an initial diagnosis of mild cognitive impairment,

the performance of all signatures increases the number of errors. It

is reasonable to expect that our very trimmed classifiers are going

to have some degradation of performance, as they have not been

trained to distinguish confirmed AD samples from those that have

MCI. When using the same signature to differentiate between AD

and other samples of MCI patients, the occurrence of more errors

is an expected outcome (Table 9). In spite of this fact, the overall

performance of all signatures seems very robust.
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