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Abstract

Background: C-reactive protein (CRP), a marker of systemic inflammation, is associated with risk of coronary events and sub-
clinical measures of atherosclerosis. Evidence in support of this link being causal would include an association robust to
adjustments for confounders (multivariable standard regression analysis) and the association of CRP gene polymorphisms
with atherosclerosis (Mendelian randomization analysis).

Methodology/Principal Findings: We genotyped 3 tag single nucleotide polymorphisms (SNPs) [+1444T.C (rs1130864);
+2303G.A (rs1205) and +4899T.G (rs 3093077)] in the CRP gene and assessed CRP and carotid intima-media thickness
(CIMT), a structural marker of atherosclerosis, in 4941 men and women aged 50–74 (mean 61) years (the Whitehall II Study).
The 4 major haplotypes from the SNPs were consistently associated with CRP level, but not with other risk factors that might
confound the association between CRP and CIMT. CRP, assessed both at mean age 49 and at mean age 61, was associated
both with CIMT in age and sex adjusted standard regression analyses and with potential confounding factors. However, the
association of CRP with CIMT attenuated to the null with adjustment for confounding factors in both prospective and cross-
sectional analyses. When examined using genetic variants as the instrument for serum CRP, there was no inferred
association between CRP and CIMT.

Conclusions/Significance: Both multivariable standard regression analysis and Mendelian randomization analysis suggest
that the association of CRP with carotid atheroma indexed by CIMT may not be causal.
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Introduction

C-reactive protein (CRP) is a non-specific marker of systemic

inflammation, but whether it plays a causal role in atherosclerosis

and its complications remains controversial. Findings examining

potential direct proatherogenic effects of CRP in vitro and in vivo

are mixed [1–3]. Randomised controlled trials specific to CRP are

currently lacking. Several observational studies show high

circulating CRP to be associated with increased risk of coronary

heart disease (CHD) events [4–6] and increased carotid intima-

media thickness (CIMT) [7–9], a subclinical marker of athero-

sclerosis [10,11]. However, these associations may have non-causal

explanations as a result of reverse causality (i.e., CRP levels may be

altered as a result of atherosclerosis rather than being a cause of it)

or confounding (the association of CRP with atherosclerosis may

arise from the common association of the two with other causative

factors). Indeed, CRP is related to many other risk factors, such as

obesity, smoking and socioeconomic adversity, as well as other

‘‘novel’’ risk factors such as fibrinogen and interleukin-6 [7,12–14].

Recent genetic findings offer opportunities for testing the causal

relevance of CRP using the principles of Mendelian randomization

[15–18]. Common genetic variants have been identified that robustly

affect the level of circulating CRP [19–21]. Because of their

randomized allocation at conception (according to Mendel’s Laws),

the genetic variants may be used as unconfounded proxies for CRP.

The ‘‘central dogma’’ of the unidirectional flow of information from
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common genome variation R protein R phenotype over the life

course also means that reverse causality and effect dilution are

overcome in genetic studies. Thus, use of gene variants as an

unconfounded instrument for CRP levels offers the opportunity of

assessing the causal relevance of CRP for atherosclerosis.

To our knowledge two previous studies have examined the

association of genetic variants in the CRP gene with CIMT. The

Cardiovascular Risk Factors in Young Finns study used variation

in the CRP haplotypes as an instrument for unconfounded CRP

levels and found no association between the CRP instrument and

CIMT in young adults aged 24 to 39 years [22]. However, CIMT

may not be as appropriate an indicator of atherosclerosis in that

age group as in older people [23]. In the US population-based

Cardiovascular Health Study, conducted on older adults, there

was also no direct associations between CRP haplotypes and

CIMT although an association of CRP single nucleotide

polymorphisms (SNPs) with CHD events was noted in a subgroup

[24]. However, the study did not directly evaluate the quantititive

associations of CRP genotypes, CRP and vascular outcomes for

their consistency. An instrumental variables analysis using CRP

genotypes or haplotypes as a proxy for CRP would inform whether

CRP levels are causally associated with CIMT [16].

We sought to investigate the potential for a causal association

between CRP and atherosclerosis by standard observational

methods of multivariable analyses, adjusting for confounding by

other risk factors, and also by using haplotypes from 3 variants in

the CRP gene as instrumental variables for the unconfounded and

unbiased (by reverse causation and regression dilution bias) effect

of CRP on CIMT. Analyses were undertaken in a well-established

occupational cohort of British civil servants, the Whitehall II study,

who were at mean age 49 at the first measurement of CRP and at

61 at the second measurement of CRP. In a companion paper

based on Whitehall II and four other cohorts we extend the

instrumental variables analysis to disease endpoints by examining

the associations between CRP genotype, circulating CRP and

manifest CHD [25].

Results

Participants were mostly men and from non-manual position as

the latest occupational status (table 1). As expected, CRP

haplotypes were associated with circulating CRP levels (table 2)

explaining in combination 3.9% of the variation in CRP at age

49 years and 3.3% of the variation in CRP at age 61 years. CRP

haplotypes were not, however, associated with risk factors, such as

high blood pressure, dyslipidaemia, obesity, physical inactivity and

low socioeconomic position (1 of 36 tests statistically significant at

p,0.05; 1–2 would have been expected by chance). In contrast, all

of the risk factors were associated with serum CRP and/or CIMT

(table 3).

After adjustment for age and sex, higher contemporaneous and

previous serum CRP concentrations were associated with

increased CIMT (table 4). However, further adjustment for risk

factors attenuated these associations to the null suggesting that risk

factors may confound or mediate the association between CRP

and CIMT. The total reduction of the magnitude of the CRP-

CIMT association between the two models at the mean age of 61.0

was 75%. Of the separate risk factors, adjustment for BMI alone

reduced the age- and sex-adjusted association between CRP and

CIMT by 57% (p for association = 0.16 after adjustment), the

corresponding reduction being 29% for systolic blood pressure,

27% for HDL-cholesterol and less than 15% for other risk factors

(p, = 0.01). Excluding those with CRP greater than 10 mg/L

(n = 54 at age 49.2; n = 105 at age 61.0) had little effect on the

results presented in table 4. The findings were also replicated in a

subcohort including only individuals with no CHD or diabetes

(n = 2608 for CRP measured at mean age 61, n = 2393 for CRP at

mean age 49).

The analysis of haplotypes in the CRP gene as instrumental

variables for the unconfounded and unbiased effect of CRP on

CIMT, was undertaken using two-stage least squares method [16].

All F-statistics from the first-stage regressions in the instrumental

variable models were greater than 10 (17.4 for contemporaneous

Table 1. Participant Characteristics.

Characteristic Mean (SD) N (%) Median (IQR) Total N

Age, y 61.0 (6.0) 4941

Women 1331 (26.9) 4941

Systolic blood pressure, mm Hg 127 (17) 4939

Diastolic blood pressure, mm Hg 74 (10) 4939

HDL cholesterol, mmol/l 1.58 (0.45) 4939

LDL cholesterol, mmol/l 3.51 (1.75) 4883

Triglycerides, mmol/l 1.39 (0.92) 4939

Body mass index, kg/m2 26.7 (4.2) 4920

Physical inactivity 738 (15.1) 4886

Low occupational status* 400 (8.2) 4903

Ever smoking 2369 (48.0) 4938

Prevalent diabetes 329 (7.2) 4583

Prevalent coronary heart disease 410 (8.3) 4941

Serum C-reactive protein, mg/L 1.22 (0.63–2.59) 4941

Previous serum C-reactive protein, mg/L{ 0.83 (0.42–1.69) 4435

Carotid intima-media thickness, mm 0.79 (0.15) 3299

*Low occupational status refers to clerical position in a three level hierarchy of administrative, professional and clerical employment grade.
{Measured at mean age of 49.2 (SD = 6.0) years
doi:10.1371/journal.pone.0003013.t001

CRP and CIMT

PLoS ONE | www.plosone.org 2 August 2008 | Volume 3 | Issue 8 | e3013



and 16.8 for previous serum CRP) indicating sufficient strength to

ensure the validity of instrumental variable methods in these data.

The second step of the instrumental variables analysis, consistent

with the confounder adjusted standard regression analysis,

suggested no association between CRP and CIMT, though this

was estimated with wide confidence intervals (table 5). This finding

was replicated in a subcohort that included only individuals with

no CHD or diabetes (for contemporaneous association at mean

age 61 age- and sex-adjusted beta = 20.007, 95% CI 20.039 to

0.25, p = 0.68, N = 2660; the corresponding figures where

beta = 20.006, 95% CI 20.039 to 0.027, p = 0.72, N = 2440 for

CRP measured at mean age 49 and CIMT at mean age 61).

Finally, levels of CIMT did not vary by CRP haplotypes (all

p.0.63) suggesting that these haplotypes have no effect on CIMT

although they are consistently associated with serum CRP

concentrations in middle and late adulthood in this cohort.

Discussion

Atheromatous plaques start to progress from childhood and

may eventually become prone to plaque rupture in adulthood

leading to clinical events, such as acute myocardial infarction,

unstable angina or stroke. In this large prospective cohort study,

both a Mendelian randomization approach, in which confounding

is controlled for by using genetic variants as instruments for the

unconfounded association, and standard multivariable regression

analyses (adjusting for a range of potential confounding factors)

were consistent in showing no independent association of CRP

with CIMT. These findings could be explained if CRP does not

itself contribute to the development of atherosclerosis but rather

marks pro-atherogenic exposures, the presence of atheroma, or a

combination of the two.

We used haplotypes in the CRP gene that were constructed on

the basis of tag SNPs rs1205, rs1130864 and rs3093077 that

capture comprehensively the common variability at the CRP locus

in subjects of European descent [19–21]. A recent large-scale

meta-analysis of genetic association studies of 8 CRP polymor-

phisms and CRP concentration used a novel Bayesian approach

that allows integration of informative data from a wide range of

studies, irrespective of the specific CRP polymorphism typed [26].

All the three SNPs we studied were found to mark haplotypes

likely to harbour functional variants in the vicinity of the CRP gene

that could regulate its level. In the present study, these SNPs were

consistently associated with serum CRP levels across two time

points 12 years apart suggesting that the haplotypes defined

groups with long-term differences in circulating CRP. However,

there was no strong statistical evidence that these haplotypes

Table 2. Association Between 4 CRP Haplotypes and Serum
C-reactive Protein (CRP) Concentration.

Median (IQR) CRP, mg/L

Haplotype of +1444, +2302
and +4899 SNPs

At mean age
61.0 years
(n = 4941)

At mean age
49.2 years
(n = 4435)

CAT

0 (n = 2165 at age 61.0/n = 1955
at mean age 49.2)

1.34 (0.72 to 2.75) 0.91 (0.46 to 1.91)

1 (n = 2249/2008) 1.17 (0.61 to 2.50) 0.78 (0.39 to 1.58)

2 (n = 527/472) 1.00 (0.48 to 2.06) 0.73 (0.37 to 1.36)

P for trend* ,0.0001 ,0.0001

CGG

0 (n = 4423/3971) 1.18 (0.62 to 2.51) 0.80 (0.41 to 1.65)

1 (n = 499/447) 1.50 (0.81 to 2.97) 0.98 (0.56 to 1.93)

2 (n = 19/17) 1.97 (1.13 to 4.67) 1.82 (1.47 to 4.36)

P for trend* ,0.0001 ,0.0001

CGT

0 (n = 2383/2126) 1.25 (0.64 to 2.66) 0.87 (0.44 to 1.80)

1 (n = 2101/1901) 1.19 (0.63 to 2.47) 0.78 (0.40 to 1.62)

2 (n = 457/408) 1.21 (0.69 to 2.69) 0.80 (0.40 to 1.68)

P for trend* 0.74 0.006

TGT

0 (n = 2333/2091) 1.15 (0.59 to 2.45) 0.78 (0.39 to 1.56)

1 (n = 2189/1968) 1.26 (0.66 to 2.63) 0.84 (0.43 to 1.76)

2 (n = 419/376) 1.50 (0.76 to 2.86) 1.03 (0.55 to 2.45)

P for trend* ,0.0001 ,0.0001

*Adjusted for age and sex.
doi:10.1371/journal.pone.0003013.t002

Table 3. Contemporaneous Associations of Risk Factors with Serum C-reactive Protein (CRP) Concentration and Carotid Intima-
media Thickness (CIMT) at Mean Age 61.0 Years*.

Log CRP (mg/L) CIMT (mm)

Risk factor N Beta (95% CI) P N Beta (95% CI) P

Systolic blood pressure, mm Hg 4939 0.009 (0.007 to 0.011) ,0.0001 3299 0.001 (0.001 to 0.002) ,0.0001

Diastolic blood pressure, mm Hg 4939 0.017 (0.015 to 0.021) ,0.0001 3299 0.001 (0.000 to 0.001) 0.002

HDL-cholesterol, mmol/l 4939 20.64 (20.71 to 20.57) ,0.0001 3299 20.027 (20.039 to 20.015) ,0.0001

LDL-cholesterol, mmol/l 4883 0.016 (20.001 to 0.033) 0.07 3266 0.003 (0.001 to 0.006) 0.008

Triglycerides, mmol/l 4939 0.21 (0.17 to 0.24) ,0.0001 3299 0.005 (20.001 to 0.011) 0.10

Body mass index, kg/m2 4920 0.10 (0.096 to 0.11) ,0.0001 3291 0.003 (0.002 to 0.005) ,0.0001

Smoking{ 4938 0.22 (0.16 to 0.28) ,0.0001 3297 0.019 (0.009 to 0.029) 0.0003

Physical inactivity{ 4886 0.18 (0.10 to 0.27) ,0.0001 3274 0.000 (20.014 to 0.015) 0.96

Low occupational status{ 4903 0.16 (0.04 to 0.27) 0.009 3282 0.001 (20.019 to 0.022) 0.90

*Based on age- and sex-adjusted linear regression models.
{Binary variables: 0 = never smoker, 1 = ever smoker; 0 = non-sedentary, 1 = sedentary; 0 = non-manual, 1 = manual.
doi:10.1371/journal.pone.0003013.t003
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influencing serum CRP levels were related to CIMT after taking

into account the magnitude of their association with CRP. This

null finding is assumed to represent a non-confounded and

unbiased estimate of the association between CRP and CIMT

because the existence of early stages of atherosclerosis cannot alter

inherited haplotypes [15], and the potential confounders of the

CRP-atherosclerosis association (e.g., obesity, smoking, physical

inactivity or socioeconomic adversity) were distributed evenly

among the different CRP haplotypes.

Our findings are consistent with the null findings in two smaller

studies on CRP genotypes and CIMT, one related to young adults

aged 24 to 39 years [22] and the other to an older cohort than

ours [24]. In combination, these and other genetic studies related

to less direct correlates of atherosclerosis, such as blood pressure

[12] and metabolic syndrome [20] provide evidence against the

status of CRP as a causal factor for atherosclerosis. Lange et al.

[24] suggest that CRP may affect plaque rupture rather than

atherosclerosis in a study reporting an association of CRP genotype

with incident CHD in a subgroup but no association with CIMT

in the same subgroup or in the study population as a whole.

However, the association between CRP genotype and CHD has

not been confirmed by other studies or meta-analyses [19,25,27].

A companion for this study is the largest meta-analysis on this issue

to date, based on Whitehall II and four other general population

cohorts. That study showed no association between a single CRP

polymorphism and incident or prevalent CHD in a total of 18,637

participants (4,610 cases) [25]. However, a very large sample size

(around 20,000 cases and controls), with comprehensive tag SNP

typing, such as that being assembled by the CRP-CHD genetics

collaboration (CCGC) [28], will be necessary to confirm or refute

a causal association of CRP with risk of CHD events.

Several issues may compromise the value of the Mendelian

randomisation approach in determining causality [29]. First, such

an approach requires the existence of genetic variants that have

been shown to be robustly (replicated in several independent

studies) associated with the non-genetic modifiable exposure of

interest. For the haplotypes that we have used here, such a robust

association has been established in multiple independent studies

[20,21,30–38], and was confirmed in our dataset. Furthermore,

the association of the haplotype (instrumental variable) was strong

enough for the instrumental variables analysis to be consistent as

the F-statistic was above the value of 10 suggested as a threshold to

distinguish weak vs. strong instruments [39].

Second, population stratification, resulting from factors such as

ancestral patterns of geographical migration and differences in

mating practices and reproductive behaviors between populations,

may confound genotype-phenotype associations and is often

speculated to be the reason for non-replication of genetic

associations [40]. There is some evidence of such confounding in

relation to ethnic groups, i.e., relationships between genotype and

phenotype that were found in multiethnic populations disappeared

when analysed separately in each ethnic group [41,42]. Population

stratification may not only potentially lead to such false positive

genotype-phenotype associations but can also, in principle, mask

associations. To increase protection against bias from population

stratification we restricted our analyses on white Europeans only.

We also confirmed that there was no stratification in CRP

haplotypes between socioeconomic groups. Furthermore, the null

finding of CRP haplotype and CIMT is replicable as consistent

findings have been obtained from this UK study and studies in a

US and Finnish population [22,24]. For these reasons, it seems

unlikely that population stratification would have masked a causal

association between CRP and CIMT.

Third, the Mendelian randomisation approach may be

compromised if genetic variants used as instruments have multiple

effects on phenotype (pleiotropy) or if the variants are in linkage

disequilibrium with another genetic variant, that influences the

pathway of interest in the opposite direction. We think pleiotropy

is unlikely for the variants that we used to generate the CRP

haplotypes as they are in very close linkage disequilibrium with

variation within a putative transcription factor binding site located

59 of the CRP gene that has been associated with circulating

concentrations of CRP and thought to be functional [43,44]. The

variants also lie in a block of allelic association that does not

contain any other gene with a role in CRP regulation [26,45].

Fourth, developmental compensation (or canalization) in early

life whereby genetically-determined alterations in CRP might be

buffered by compensatory changes in other systems may

Table 4. Associations Between Serum C-reactive Protein (CRP) Measured at Two Time Points and Carotid Intima-media Thickness
(CIMT) Obtained from Standard Multivariable Regression Analysis.

Beta (95% CI) for CIMT (mm) at mean age 61.1

Exposure N Age and sex adjusted Age, sex and risk factor adjusted*

Per doubling of CRP concentration at mean age of 61.0 years 3225 0.006 (0.003 to 0.009) P = 0.0004 0.001 (20.002 to 0.005) P = 0.41

Per doubling of CRP concentration at mean age 49.2 years 2948 0.006 (0.002 to 0.009) P = 0.0006 0.001 (20.002 to 0.005) P = 0.30

Only participants with no missing data in any of the covariates are included.
*Adjusted for age, sex, systolic blood pressure, diastolic blood pressure, HDL-cholesterol, LDL-cholesterol, triglycerides, body mass index, smoking, physical inactivity,
and low occupational status.

doi:10.1371/journal.pone.0003013.t004

Table 5. Associations of C-reactive Protein (CRP) with Carotid Intima-media Thickness (CIMT) Obtained from the Instrumental
Variables Analysis in Which CRP Haplotypes Act as An Instrument for the Non-confounded and Unbiased Effect of CRP.

Exposure N
Age and Sex Adjusted Beta (95% CI) for CIMT (mm)
at Mean Age of 61.0 Years

Per doubling of CRP concentration at mean age 61.0 3299 20.005 (20.031 to 0.021) P = 0.71

Per doubling of CRP concentration at mean age 49.2 3016 20.001 (20.025 to 0.023) P = 0.94

doi:10.1371/journal.pone.0003013.t005

CRP and CIMT
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compromise the validity of the Mendelian randomisation ap-

proach [46]. However, most recognised examples of developmen-

tal compensation relate to dramatic genetic or environmental

insults [46] and it is unclear whether the generally smaller

phenotypic differences induced by common functional polymor-

phisms, as used in our study, will be sufficient to induce

compensatory responses.

Fifth, the most important limitation is that the instrumental

variables analysis provided wide confidence intervals for the effects

of CRP on CIMT suggesting that larger samples are needed to

obtain more precise estimation. Moreover, CIMT, although a

valid non-invasive index of carotid atherosclerosis [11], may not

comprehensively capture the general atherosclerotic process.

Nevertheless, despite these limitations, standard multivariable

regression analyses of CRP levels and CIMT produced converging

support for the conclusions from Mendelian randomization

analyses. The association between serum CRP and CIMT

attenuated towards the null in adjustments for obesity and other

risk factors and this is consistent with several previous studies [7–

9,47]. It has been argued that systemic inflammation (of which

CRP is a marker) might cause increases in blood pressure, BMI

and changes in lipid profiles that might mediate an increase in

CIMT and CHD risk [48]. If so, adjustment for these variables in

a multivariable model might actually be controlling for factors in

the causal pathway. However, adjustment for BMI (which had the

most potent attenuating effect) is unlikely to represent an

overadjustment, since weight gain is associated with an increase

in CRP, and weight loss with a CRP reduction [49–51].

Furthermore, CRP genotypes that are associated with higher

CRP were not associated with BMI, nor with a range of other

established or novel risk factors for CHD [19,20,22].

In conclusion, the consistency of evidence from both the

Mendelian randomisation approach and the multivariable regres-

sion analysis approach (each of which has distinct, but differing

potential limitations) implies that the association of CRP with

CIMT may be better explained by CRP marking the presence of

atheroma, or other risk factors rather than having a direct causal

role itself, as has been suggested [52]. However, much larger

analyses using the genetic approach we and others have described,

as well as intervention studies involving a new, specific CRP-

inhibitor [53] are needed to more definitively assess the potential

causal role for CRP in atherosclerosis and CHD.

Materials and Methods

Participants
In 1985, all non-industrial civil servants aged between 35 and

55, in 20 departments in Central London were invited to a

cardiovascular medical examination at their workplace [54]. With

a 73% participation, the cohort included 6895 men and 3413

women at study entry in 1985–1988. Measurement of CRP was

conducted in 1991–1993 and again in 2003–2004 when variants

in the CRP gene were genotyped and CIMT was assessed. A total

of 5949 individuals participated in the latter clinical screening and

were successfully genotyped for variants in the CRP gene. We

excluded non-white subjects (n = 481), those with missing data on

haplotypes (n = 13) or CRP concentration (n = 514). Thus, the

study sample with complete data on CRP genotype and CRP

levels for the cross-sectional analyses in 2003–2004 included 4941

(3610 men and 1331 women) individuals aged 50–74 years (mean

age 61.0). We additionally performed prospective analyses with

CRP in 1991–1993 as the exposure variable. For these analyses,

the study sample comprised 4435 (3255 men and 1180 women)

individuals, a sub-group of those included in the cross-sectional

analyses, who in addition had measurements of CRP concentra-

tion assessed 1991–1993 when they were aged 39–64 years (mean

age 49.2 years). Participants included in any analyses provided

written informed consent and the study complies with the

guidelines of the Declaration of Helsinki.

Clinical Characteristics
Clinical characteristics included age, sex, systolic and diastolic

blood pressure, HDL- and LDL-cholesterol. triglycerides, body

mass index (BMI, weight in kilograms divided by height in meters

squared), smoking, physical activity, socioeconomic position, and

status of diabetes and CHD, all measured in 2003–2004 at mean

age 61 years. Systolic and diastolic blood pressure were measured

twice using the Hawksley random-zero sphygmomanometer with

the participant sitting after a 5-minute rest. The average of these

two measures was recorded. Systolic was the pressure at which the

Korotkoff sound was first heard clearly and diastolic was the

pressure at which the sound disappeared. Blood samples were

collected after either an 8-h fast (participants presenting to the

clinic in the morning) or at least 4 h after a light fat-free breakfast

(participants presenting in the afternoon). Venepuncture of the left

antecubital vein was performed with tourniquet. Blood was

collected into plain and fluoride Sarstedt (Neumbrecht, Germany)

monovettes. Serum for lipid analyses was refrigerated at 24uC and

assayed within 72 hours. Cholesterol and triglycerides were

measured with the use of a Cobas Fara centrifugal analyzer

(Roche Diagnostics System, Nutley, NJ). HDL-cholesterol was

measured by precipitating non-HDL cholesterol with dextran

sulfate-magnesium chloride with the use of a centrifuge and

measuring cholesterol in the supernatant fluid. LDL-cholesterol

concentration was calculated using the Friedewald formula.

Weight was measured with all items of clothing removed except

underwear. A Soehnle scale was used to weigh individuals to the

nearest 0.1 kg. Height was measured to the nearest mm using a

stadiometer with the participant in bare-feet, standing completely

erect with the head in the Frankfurt plane. Smoking (ever smoker

vs never smoker) and physical inactivity (sedentary vs not) were

recorded. Socioeconomic position was a dichotomy, clerical vs not,

based on employment grade in 2003–2004 or, if retired, the latest

employment grade.

Diabetes status at mean age 61 was assessed on the basis of 75g

oral glucose tolerance test, use of diabetes medication or self-report

of doctor diagnosis, all measured at mean ages 49, 56 and 61.

Diabetes was defined by 2h glucose$11.1 mmol/L or fasting

glucose$7 mmol/L. Prevalent CHD comprised a history of non-

fatal myocardial infarction or definite angina. Potential prevalent

cases of non-fatal myocardial infarction were ascertained by

questionnaire items on chest pain [55] and the physician’s

diagnosis of a heart attack. The confirmation of myocardial

infarction according to MONICA criteria [56] was based on

electrocardiographic findings, markers of myocardial necrosis and

a history of chest pain in the medical records. The assessment of

angina was based on the participant’s reports of symptoms, with

corroboration in medical records or abnormalities in a resting

electrocardiogram (ECG), an exercise ECG, or a coronary

angiogram.

CRP Polymorphism Genotyping
DNA was extracted from blood samples obtained at baseline

using magnetic beads technology (Geneservice Ltd, Cambridge).

Using validated genotype data (minor allele frequency .5%) from

subjects of European descent from the NHLBI PGA database

(http://pga.mbt.washington.edu/), and the human HapMap

database (http://www.hapmap.org/), we examined the pattern
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of linkage disequilibrium across the CRP gene. We then used the

haplotype LD r2 method to select a set of tagging (t)SNPs capable

of capturing maximum haplotype diversity among subjects of

European descent using the programme TagIT (http://popgen.

biol.ucl.ac.uk/software.html). We genotyped 3 SNPs in the CRP

gene [+1444T.C (rs1130864); +2303G.A (rs1205) and

+4899T.G (rs 3093077)] using the ABI Prism 7900HT Sequence

Detection System for both PCR and allelic discrimination (Applied

Biosystems, Foster City, CA). The SNPs were genotyped using

Assays by Design from Applied Biosystems under standard

conditions. Genotype calling was done manually from the PCR

run component tab. The Hardy Weinberg Equilibrium (HWE)

was tested at each SNP and CRP +2303 and +4899 were found to

be in HWE (x2 p.0.05), but +1444 was not in HWE (p = 0.003).

The +1444 SNP was re-genotyped from 678 samples in a different

laboratory and the results called by a researcher who was blind to

the original results. The mismatch rate was 0.5% suggesting that

lacking HWE for +1444 may be due to random residual

genotyping error, but biological selection bias or other popula-

tional inhomogeneity cannot fully be excluded.

Measurement of C-Reactive Protein
CRP was measured in serum stored at 280uC using a high-

sensitivity immunonephelometric assay in a BN ProSpec nephe-

lometer (Dade Behring, Milton Keynes, UK). Values below the

detection limit (0.154 mg/L) were assigned a value of 0.077 mg/L

(n = 333 (7.1%) in 1991–1993 at mean age 49 and n = 104 (2.0%)

in 2003–2004 at mean age 61). Samples from both study phases

were analyzed at the same time. Intra- and inter-assay coefficients

of variation were 4.7% and 8.3%. To measure short-term

biological variation and laboratory error, a repeated sample was

taken from a subset of 150 participants in 1991–1993 and 533

participants in 2003–2004 (average time between samples 32

(SD = 10.5) and 24 (SD = 11.0) days respectively). Reliability

between samples was assessed with intraclass correlation:

r = 0.83 in 1991–1993 and r = 0.57 in 2003–2004.

Measurement of Carotid Intima-media Thickness
Ultrasound vascular measurements in 2003–2004 were taken in

a temperature controlled (22–26 degrees centigrade), quiet room

using a non-invasive, high- resolution ultrasound system, the Aloka

Prosound 5500 with a 7.5 MHz linear array transducer.

Participants were examined in a supine position, with the head

turned to a 45 degree angle away from the side to be scanned.

CIMT was measured in the right and left common carotid

arteries. Longitudinal images of the common carotid artery,

triggered on the R-wave of the ECG, were magnified and

recorded in DICOM format as a cine loop, on the hard drive of

the ultrasound machine for later analysis. The common CIMT

was measured at its thickest part 1 cm proximal to the bifurcation.

A measurement was taken between the leading edge of the intima

and the media adventitia on 3 separate images on each side using

electronic callipers and the mean of the 6 measures was used for

analysis. Three observers conducted CIMT studies with inter and

intra-observer variability measurements ranging between 2.6%

and 5.8%. The overall coefficient of variation for repeated

measures of CIMT was 4.7% (N = 89).

Data Analysis
Standard Regression Analysis. We used age- and sex-

adjusted least square regression analysis to assess (i) the associa-

tions between potential confounding factors (BMI, smoking,

physical activity and socioeconomic position) and circulating

CRP levels and between potential confounding factors and CIMT;

(ii) the association between circulating CRP levels and CIMT (in a

multivariable model, additional adjustment was made for potential

confounding factors); and (iii) the association of haplotypes (see

below) with circulating CRP levels, potential confounding factors

and CIMT. The haplotype-confounder associations were

undertaken to test our underlying hypothesis that genetic

variants in CRP would not be associated with other risk factors

that affect conventional observational epidemiological

associations.

Haplotype Construction. We constructed haplotypes with

the genetic data analysis program SIMHAP (see http://www.

genepi.com/au/project/simhap, obtained May 2, 2007), using

1000 iterations and a posterior probability .0.95. With this

procedure, only one haplotype pair was constructed for each

participants. The 13 individuals with a haplotype with a frequency

less than 1% were not included in our cohort of 4941 individuals.

Thus, 4 haplotypes of SNPs +1444, +2302 and +4899 (CAT,

CGG, CGT and TGT) remained in the analysis in which genetic

variants were used to determine the association of CRP with

CIMT.

Instrumental Variables Analysis. An instrumental

variables analysis, in which haplotypes in CRP were used as

instrumental variables for the unconfounded and unbiased effect

of CRP on CIMT, was undertaken using two-stage least squares

method [16]. In these analyses we used a model for the haplotype-

CRP association that assumes each of a participant’s two

haplotypes contributes additively to his/her value of CRP, as

done in a previous study that used similar CRP haplotypes as

instruments for the effect of CRP on components of the metabolic

syndrome [20]. We used the F-statistics from the first-stage

regressions to evaluate the strength of the instruments (values

greater than 10 are taken to indicate sufficient strength to ensure

the validity of instrumental variable methods) [39]. Instrumental

variable regression analysis was performed with Stata, version 9.2

(Stata Institute, Texas, USA).

General Analytic Procedures. There was no strong

statistical evidence that any of the associations we examined

differed by sex, which is consistent with previous studies in the field

[22,24]. Therefore all results are presented for women and men

combined. Due to skewness, we logarithmically transformed CRP

in the analyses, we used logs to base 2 so that we could present

associations per doubling of CRP, which are easy to interpret and

consistent with previous studies in this area [20,22]. All analyses

(except haplotype construction and instrumental variable analysis)

were performed with SAS statistical software, version 9.1 (SAS

Institute, Cary, USA).
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22. Kivimäki M, Lawlor DA, Eklund C, Davey Smith G, Hurme M, et al. (2007)

Mendelian randomization suggests no causal association between C-reactive

protein and carotid intima-media thickness in the young Finns study.

Arterioscler Thromb Vasc Biol 27: 978–979.

23. Bots ML, Hofman A, Grobbee DE (2007) Increased common carotid intima-

media thickness. Adaptive response or a reflection of atherosclerosis? Findings

from the Rotterdam Study. Stroke 28: 2442–2447.

24. Lange LA, Carlson CS, Hindorff LA, Lange EM, Walston J, et al. (2006)

Association of polymorphisms in the CRP gene with circulating C-reactive

protein levels and cardiovascular events. JAMA 296: 2703–2711.

25. Lawlor DA, Harbord RM, Timpson NJ, Lowe GDO, Rumley A, et al. (2008)

The assocation of C-reactive protein and CRP genotype with coronary heart

disease: Findings from five studies with 4,610 cases amongst 18,637 participants.

PLoS ONE. In press.

26. Verzilli C, Shah T, Casas JP, Chapman J, Sandhu M, et al. (2008) Bayesian

meta-analysis of genetic association studies with different sets of markers.
Am J Hum Genet 82: 859–872.

27. Pai JK, Mukamal KJ, Rexrode KM, Rimm EB (2008) C-reactive protein (CRP)

gene polymorphisms, CRP levels, and risk of incident coronary heart disease in

two nested case-control studies. PLoS ONE 3: e1395.
28. CRP CHD Genetics Collaboration (2008) Collaborative pooled analysis of data

on C-reactive protein gene variants and coronary disease: judging causality by

Mendelian randomization. Eur J Epidemiol 23: 531–540.

29. Davey Smith G, Ebrahim S (2005) What can mendelian randomisation tell us
about modifiable behavioural and environmental exposures? BMJ 330:

1076–1079.

30. Zee RY, Ridker PM (2002) Polymorphism in the human C-reactive protein
(CRP) gene, plasma concentrations of CRP, and the risk of future arterial

thrombosis. Atherosclerosis 162: 217–219.

31. Brull DJ, Serrano N, Zito F, Jones L, Montgomery HE, et al. (2003) Human
CRP gene polymorphism influences CRP levels: implications for the prediction

and pathogenesis of coronary heart disease. Arterioscler Thromb Vasc Biol 23:
2063–2069.

32. Russell AI, Cunninghame Graham DS, Shepherd C, Roberton CA, Whittaker J,

et al. (2004) Polymorphism at the C-reactive protein locus influences gene

expression and predisposes to systemic lupus erythematosus. Hum Mol Genet
13: 137–147.

33. Carlson CS, Aldred SF, Lee PK, Tracy RP, Schwartz SM, et al. (2005)

Polymorphisms within the C-reactive protein (CRP) promoter region are
associated with plasma CRP levels. Am J Hum Genet 77: 64–77.

34. Kovacs A, Green F, Hansson LO, Lundman P, Samnegård A, et al. (2005) A
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