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Abstract

Electroencephalogram (EEG) signals are highly subject-specific and vary considerably even between recording sessions of
the same user within the same experimental paradigm. This challenges a stable operation of Brain-Computer Interface (BCI)
systems. The classical approach is to train users by neurofeedback to produce fixed stereotypical patterns of brain activity. In
the machine learning approach, a widely adapted method for dealing with those variances is to record a so called
calibration measurement on the beginning of each session in order to optimize spatial filters and classifiers specifically for
each subject and each day. This adaptation of the system to the individual brain signature of each user relieves from the
need of extensive user training. In this paper we suggest a new method that overcomes the requirement of these time-
consuming calibration recordings for long-term BCI users. The method takes advantage of knowledge collected in previous
sessions: By a novel technique, prototypical spatial filters are determined which have better generalization properties
compared to single-session filters. In particular, they can be used in follow-up sessions without the need to recalibrate the
system. This way the calibration periods can be dramatically shortened or even completely omitted for these ‘experienced’
BCI users. The feasibility of our novel approach is demonstrated with a series of online BCI experiments. Although
performed without any calibration measurement at all, no loss of classification performance was observed.
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Introduction

A Brain-Computer Interface (BCI) based on electroencephalo-

gram (EEG) signals provides a direct communication channel for

healthy or disabled users from the brain to a technical device.

Through motor imagery or movement intentions brain activity

can be voluntarily modulated in a predictable way. A BCI system

can detect these alterations in the ongoing EEG and control an

application (text-entry system; prosthesis; computer game) accord-

ingly. Since no peripheral nerves or muscles need to be involved in

this process, BCI technology may be used in assistive technology

for paralyzed patients. One classical approach to establish EEG-

based control is to set up a system that is controlled by a specific

EEG feature which is known to be susceptible to conditioning and

to let the subjects learn the voluntary control of that feature in a

learning process that can last several weeks. In contrast, in the

machine learning approach to BCI [1,2] a statistical analysis of a

calibration measurement which is recorded at the beginning of

each session is used to adapt the system to the specificities of the

user’s current brain signals. This approach allows for an effective

performance from the first session on without user training [3,2].

As the signals vary between sessions even for the same user,

machine learning based BCI systems rely on the calibration

procedure for optimal performance (machine training).

To present, the use of machine learning based EEG-BCI

systems involves two time-consuming preparational steps at the

beginning of every new session. The first one, the montage of an

EEG cap, has been largely alleviated by recent hardware

advancements (see [4] and the discussion section of this paper).

The second step is the recording of calibration data, which we will

address with this online study.

Especially for patients with impaired concentration ability, this

initial calibration reduces the valuable remaining time for

controlling a device or computer software in the so called feedback

application phase. But even for healthy users, the calibration is an

annoying procedure.

In an offline study, Krauledat et al. [5] recently proposed a new

method for avoiding subject training under conditions that could

easily be met in practice.

The basic idea of the method is as follows: In the case of long-

term BCI users, who repeatedly perform BCI sessions with the

same mental tasks, one can exploit data from previous sessions in

order to learn most of the calibration parameters. This saves time

in the setup of the next session.

The present study now extends the offline study in [5] by an

online application and evaluation, which will further be called the

Zero-Training method. In more detail, we show how to learn good

spatial filters and classifiers from data of previous sessions which

eliminates the necessity of going through a new phase during each

new session (see Figure 1). The method is tested against the

standard approach where spatial filters and classifiers are trained

anew on the calibration data of a new session.

The structure of the paper is the following: In the first

subsection of the Methods-section, the common spatial pattern

(CSP) method is explained in detail, as CSP is important for our

proposed new Zero-Training method. The second subsection shows

how so-called prototype patterns can be extracted from previous

BCI sessions and how a classifier can be prepared in advance of a
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new BCI session. In the following, we introduce an experimental

setting that allows for the comparison of the Zero-Training approach

with the ordinary approach including calibration. Finally, we show

the results of this comparison, discuss our findings and end with a

conclusion.

Methods

1. Background
A. Neurophysiology. Macroscopic brain activity during

resting wakefulness contains distinct ‘idle’ rhythms located over

various brain areas. Sensorimotor cortices show rhythmic

macroscopic EEG oscillations (m-rhythm or sensorimotor

rhythm, SMR), with spectral peak energies of about 8–14 Hz (a-

band) and/or 16–28 Hz (b-band) localized in somatosensory

cortex [6].

A large class of EEG-based BCI systems relies on the fact that

amplitude modulations of sensorimotor rhythms can be caused,

e.g. by imagining movements. For example, the power of the m-

rhythm decreases during imagined hand movements in the

corresponding representation area which is located in the

contralateral sensorimotor cortex. This phenomenon is called

event-related desynchronization (ERD, [7,8]), while the increase of

band power is termed event-related synchronization (ERS). This

may be observed, e.g., during motor imagery over flanking

sensorimotor areas, possibly reflecting an ‘surround inhibition’

enhancing focal cortical activation, see [9,8]. The exact location

and the exact frequency band of the sensorimotor rhythm is

subject-specific. Hence individually optimized filters can increase

the signal-to-noise ratio dramatically [10]. To this end, the CSP

technique has proven to be useful.

B. Common Spatial Pattern (CSP) Analysis. Common

Spatial Pattern and its extensions (e.g. [11,12,13,14,10]) is a

technique to analyze multi-channel data based on recordings from

two classes (conditions). It is, e.g. used in BCI systems based on the

modulation of brain rhythms. CSP filters maximize the EEG

signal’s variance under one condition while simultaneously

minimizing it for the other condition. Since variance of band-

pass filtered signals is equal to band power, CSP analysis is applied

to band-pass filtered signals in order to obtain an effective

discrimination of mental states that are characterized by ERD/

ERS effects (see above). In the example of left vs. right hand motor

imagery, the CSP algorithm will find two groups of spatial filters.

The first will show high band power during left hand motor

imagery and low band power during right hand motor imagery,

and the second vice versa.

Let Si be the covariance matrix of the trial-concatenated matrix

of dimension [C6T] (where C is the number of electrodes and T is

the number of concatenated samples) belonging to the respective

class iM{1,2}. The CSP analysis consists of calculating a matrix

W[RC|C and a diagonal matrix D with elements in [0,1] such

that

W tS1W~D and W tS2W~I{D ð1Þ

where I[RC|C is the identity matrix. This can be solved as a

generalized eigenvalue problem. The projection that is given by

Figure 1. Sessions 1 to N-1 show a standard BCI procedure: spatial filter and classifiers are learned each session anew from a
calibration recording (e.g. with CSP and LDA) before they are applied during a feedback application. The new Zero-Training method
eliminates the calibration recording: spatial filters and a classifier are predetermined before session N starts. The spatial filters for session N are
extracted from old spatial filters (blue), the classifier for session N is calculated from old calibration recordings (red). The feedback application of
session N is preceded only by a very quick bias adaptation (yellow).
doi:10.1371/journal.pone.0002967.g001
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the i-th column of matrix W has a relative variance of di (i-th

element of D) for trials of class 1 and relative variance 12di for

trials of class 2. If di is near 1, the filter given by the i-th column of

W (i.e., the ith spatial filter) maximizes the variance for class 1, and

since 12di is near 0, it also minimizes the variance for class 2.

Typically one would retain projections corresponding to two or

three of the highest eigenvalues di, i.e., CSP filters for class 1, and

projections corresponding to the two or three lowest eigenvalues,

i.e., CSP filters for class 2.

For a detailed review of the CSP technique with respect to the

application in BCI see [10].

C. Features and Classification. He were describe

generally, how spatial CSP filters are used to calculate features

for classification, and how the ongoing EEG is translated into a

control signal. This method applies to both classical CSP and the

proposed method.

The EEG signals of the calibration measurement are band-pass

filtered (subject-specific frequency band, see Section ‘‘Experimen-

tal Setup’’ and Table 1) and spatially filtered with the selected CSP

filters. From these signals the log-variance is calculated in each

trial of the calibration data (interval is selected subject-specifically,

typically 750 to 3500 ms relative to the presentation of the visual

cue). This procedure results in a feature vector with dimensionality

equal to the number of selected CSP filters (which was in this study

4 for classical CSP and 12 for the proposed method, see Section

‘‘Construction of Classifiers’’). For classification least squares

regression (LSR) was used.

For online operation, features are calculated in the same way

every 40 ms from the most recent segment of EEG (sliding

windows of 1000 ms width). CSP filters calculated from the initial

calibration measurement are not adapted during online operation.

Nevertheless the system allows stable performance even for several

hours [15,16]. But for optimal feedback the bias of the classifier

might need to be adjusted for feedback. Since the mental state of

the user is very much different during the feedback phase

compared to the calibration phase, also the non task related brain

activity differs. For a thorough investigation of this issue cf.

[17,18,19]. With regard to this study, the issue is discussed in

Section ‘‘Experimental Setup’’.

D. Preliminary Study. In [5], we have analyzed data from

the same subjects in repeated BCI sessions, that were recorded

with the same motor imagery paradigms. We could show that the

proposed distance (which will be introduced in detail in Section

‘‘Prototype Filters’’) clearly groups corresponding spatial filters

into clusters, and the clusters themselves could be interpreted as

physiologically relevant groups of filters. We used this concept to

extract prototypical filters from previous sessions of a particular

subject. In an offline analysis, it could be shown that the proposed

method outperforms the usual CSP routine even if the number of

training samples for CSP is increased up to 30 trials per class from

the same session.

The encouraging result was that high classification performance

for longterm BCI users can be established with no or very few

calibration trials from the current session. In the current work, we

expand this finding to the online scenario.

2. Prototype Filters
The CSP filters are not just randomly drawn points from RC ,

but instead represent subject-specific neurophysiological condi-

tions, which suggests that, for a given subject, similar filters should

be found across all sessions. We will first define a meaningful

notion of similarity in this space and then use this relation to

explore the space. We expect that the regions with a high density

of CSP filters contain examples for filters which are particularly

stable and informative across sessions. We will call these regions

‘‘clusters’’, and we will introduce a method how to sample

prototypical filters from the clusters, using a notion of ‘‘inlier’’

points which have a low distance to their nearest neighbors

[20,21].

A. Metric in the Space of CSP Filters and c-Index. CSP

filters are obtained as solutions of a generalized eigenvalue

problem. Since every multiple of an eigenvector is again a solution

to the eigenvalue problem every point in the space of CSP filters

(RC ) on the line through a CSP filter point and the origin form an

equivalence class (except for the origin itself). More precisely, it is

sufficient to consider only normalized CSP vectors on the (C21)-

dimensional hypersphere (cf. figure 2).

This suggests that the CSP space is inherently non-euclidean. As

a more appropriate metric between two points w1 and w2 (column

vectors of a CSP filter matrix W) in this space, we calculate the

angle between the two lines corresponding to these points:

m w1,w2ð Þ~arccos
w12

w1j j1 w2j j

� �
: ð2Þ

When applying this measure to a set of CSP filters (wi)i#n, one can

Table 1. Subject-specific parameters.

Subject #channels #past sessions
#train
trials Classes FQ band Interval

(CSP) (ZT) (CSP) (ZT)

zq 46 7 845 LR [9 14] [9 25] [810 4460] [500 3000]

ay 46 4 324 LR [8 22] [9 25] [710 2650] [500 3000]

zp 46 5 704 LR [10 25] [9 25] [2750 5000] [500 3000]

al 44 9 684 FR [11 25] [9 25] [1600 4690] [500 3000]

aw 44 13 1075 LF [11 17] [10 25] [1500 4500] [500 3000]

zk 46 7 240 LR [8 31] [9 25] [920 4390] [500 3000]

The first until third column report the number of sensors and sessions, as well as the number of trials per class which were available in total from these previous
sessions. The fourth column indicates the two motor imagery classes that have been used (L: left hand, R: right hand; F: right foot). The frequency band (FQ band) for
CSP analysis was chosen for each subject individually. For original CSP (column 5) it was chosen on data of the actual session. For Zero-Training (ZT) (column 6) it was
chosen on data from previously available sessions. The same holds for the time window used for the training of the classifier, denoted in milliseconds after stimulus
presentation: for CSP (column 7), the window was optimized on the training data, while for Zero-Training, a fixed window was used for all subjects.
doi:10.1371/journal.pone.0002967.t001
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generate the distances (m(wi, wj))i,j#n, which can then be used to

find prototypical examples of CSP filters.

Once a suitable distance function is established, it can be used to

find regions in the data space consisting of CSP filters, which are

more densely sampled than others (‘clusters’). In particular, by

identifying points located in the middle of clusters, it is possible to

select them as typical CSP filters. We apply a clustering concept

which has been introduced by [21] and consider the average

distance (according to metric m) of a filter to its k = 5 nearest

neighbors.

Let nn1(w),…,nnk(w) be the k nearest neighbors to point w

according to metric m (Eq. (2)). Then the average distance of w to

its neighbors is called the c-index of w, i.e.

c wð Þ~ 1

k

Xk

i~1

m w,nni wð Þð Þ:

The CSP filter with the lowest c-index can clearly be regarded as

‘‘inlier’’-point of a cluster. In order to find other regions of the

filter space which are also densely populated, we applied a

heuristic which is presented in the next section.

B. Finding Cluster Prototypes. We first calculated the c-

index of each filter to obtain a ranking according to the distance

function explained above. The lowest c-index indicates that the

corresponding filter is inside a region with many other filter

examples and should therefore be chosen as cluster prototype. The

same applies to the second-to-lowest c-index, but in this case it

would not be recommendable to select this filter, since it is highly

probable that the filter is from the same region as the first one. To

ensure that we also sample prototypes from other clusters, an

incremental procedure of choosing and re-weighting is applied to

determine a predefined number of cluster prototype filters.

The search starts with one prototype only, that is chosen as the

filter with the minimal overall c-index. The chosen filter point is

removed from the set of all filter points. Then the average distance

of each remaining filter to its neighbors is re-weighted by the

inverse of the distance to the removed point, as explained in [21].

Due to this re-weighting, all points in the vicinity of the chosen

cluster prototype receive a larger c-index. The re-weighting is

driven by the assumption that these neighboring points belong to

the same cluster with high probability. Due to their increased c-

index, they are less likely chosen as prototypes in the next iteration.

The iterative procedure ends, when a predefined number of

cluster prototypes has been determined.

4. Experimental Setup
To demonstrate the feasibility of the Zero-Training approach, a

BCI feedback study was designed to compare the proposed

approach with the classical CSP approach in terms of feedback

performance. The specific construction of the two classification

setups is described in Section ‘‘Construction of Classifiers’’.

The BCI experiments were performed with 6 healthy subjects, 5

male and one female, aged 26–41. These were all the subjects who

previously had performed at least 5 BCI sessions with the Berlin

Brain-Computer Interface (BBCI). They were members of the

department and volunteered for the participation in this study.

The availability of a large amount of experimental data is a

prerequisite for the extraction of prototypical CSP filters as

described in Section ‘‘Prototype Filters’’, since the cluster density

in the CSP filter space can only be estimated reliably with a

sufficient number of sample points.

The visual feedback consisted of the presentation of a computer

cursor which was controlled by the output of one of two different

classifiers. The goal of each trial was to steer the computer cursor

in eleven feedback runs that were grouped in five experimental

blocks (see Figure 3). In block I, continuous visual feedback was

given by a classifier that had been pre-computed with the Zero-

Training method, see Section ‘‘Construction of Classifiers’’. Data

collected in these initial three runs were used to determine spatial

filters and a classifier using the ordinary CSP method (as described

in Section ‘‘Construction of Classifiers’’) for use in the following

blocks. Blocks II to V each contained one run with Zero-Training

feedback and one run with CSP feedback. Within a block, the

order of the two feedback methods was chosen randomly and

remained unknown to the subject. The use of continuous visual

feedback and no continuous visual feedback alternated regularly

between blocks II to V, as indicated in Figure 3.

During the experiment the subjects were sitting in a comfortable

chair in front of a computer screen. EEG was recorded with 64

Ag/AgCl electrodes, acquired at a sampling rate of 1000 Hz, then

downsampled to 100 Hz. The resulting data was bandpass-filtered

at a subject-specific frequency band (see Table 1), and spatial

filters, as described in Sections ‘‘Prototype Filters’’ and ‘‘Common

Spatial Patterns Analysis’’, were applied. Finally, the logarithmic

band power of the spatially and temporally filtered signals was

estimated by calculating the logarithm of the squared sum of the

filter outputs. These features were fed into a linear classifier. We

used least squares regression (LSR), in order to force the classwise

mean of the linear classifier output to be +1 and 21, respectively.

At a rate of 25 Hz, graded classifier outputs were calculated for

the last 1000 ms, and averaged over 8 samples. A scalar factor was

multiplied to the result, and finally a real-valued bias term was

added.

Guided by our experience with non-stationary bias, a bias

adaptation was performed at the beginning of every run.

Therefore, the subject controlled the cursor for 20 trials (10 per

class), and the bias was adapted at the end of this period. The

procedure corresponds to the initial calibration of the bias as

presented in [18].

In the following 100 trials (50 per class), the subject controlled

the cursor in a feedback application. At the beginning of each trial,

one of two boxes on either side of the screen was visually

highlighted to indicate a new target. After being fixed in the

middle of the screen for 750 ms, the cursor was released (see also

the description in [2]). During these 3.5 seconds, the subjects were

instructed to now imagine the associated motor movement (see

Figure 2. Projection of CSP filters onto the (C21)-dimensional
hypersphere. Distances between filters are defined by the angles
between the projected filters.
doi:10.1371/journal.pone.0002967.g002
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Table 1 for the imagery used by each subject), in order to hit the

target with the cursor. Depending on the block (see Figure 3), the

cursor was either visible during this cursor movement phase

(continuous visual feedback) or a blank screen was presented for

3.5 seconds (no continuous visual feedback).

The graded classifier output was used to control the cursor

position in horizontal direction in a rate-controlled manner. After

3.5 seconds, the cursor was fixed again and the outcome of the

trial was determined by the horizontal position of the cursor. If the

cursor was on the correct side of the screen, the trial was counted

as ‘‘hit’’, and as ‘‘missed’’ otherwise. The target box was then

colored according to the trial outcome in green (for a successful

trial) or red (in the other case). The highlighting of the target box

at the end of the trial was visualized again for all trials, that means

also for blocks where no continuous visual feedback was given.

After a short intertrial break of 1 second the next target was

presented.

4. Construction of Classifiers
The following two sections describe how the spatial filters and

classifier are determined for the proposed new approach and for

the classical CSP approach.

The feedback performance of these two approaches is compared

using the experimental design described in Section ‘‘Experimental

Setup’’. It will become clear, that both approaches will only use a

small number of spatial filters (two or three per class) from the total

set of filters provided by CSP. Although many more could be

chosen in theory, experience with CSP for motor imagery

paradigms has shown that further filters often model the noise of

the data rather than the signals of interest. Thus the restriction to a

small number of filters per class is helpful [10]. For a detailed

discussion of the influence of data dimensionality on classification

results please refer to the ‘‘Discussion’’ section.

A. The Zero-Training Filters and Classifier. For each

subject, data from a number of past sessions (past data) is available

(see Table 1). Based on this data, a set of spatial filters and the Zero-

Training classifier is constructed individually for each subject. This

preparation could take place days before the planned feedback

experiment, as only historic data is involved for the construction of

Zero-Training. For every subject, we performed the following:

For each class and for each historic session of the subject, we

calculated the three filters with the largest eigenvalues using the

CSP algorithm presented in Section ‘‘Common Spatial Patterns

Analysis’’. Depending on the number of past sessions, this

procedure creates a larger set of filters.

Once this set of historic filters is created, 6 so-called prototype

filters are chosen from the set applying the clustering method

described in Section ‘‘Prototype Filters’’. Those filters constitute

the first 6 dimensions of the final feature space for the Zero-Training

method. In addition to these prototypical filters, we also pool all

the data from past experiments of the subject of interest and

calculated the ordinary CSP filters on this collection of historic

data sets. The resulting CSP filters (3 per class) are concatenated to

the 6 prototype filters gained from the clustering approach.

With this approach, filtering the EEG data of the pooled data

set (all past sessions of the subject) results in a 12-dimensional

feature space. Finally, a linear classifier is calculated on the

features using Least Squares Regression (LSR). If necessary we

could also use nonlinear classification here (cf. [22,23]).

B. The Ordinary CSP Filters and Classifier. For each

subject, we also build a set of ordinary CSP filters and a

corresponding classifier. In contrast to the Zero-Training solution,

they can not be prepared beforehand. Their construction is done

on the fly during a new experimental session and does not involve

data from past sessions.

For the training of a regular CSP classifier, we first record three

runs of feedback data (with feedback provided by the output of the

Zero-Training classifier), totalling to more than 150 trials per class.

According to the cross-validation error on this data, the optimal

frequency band is selected, as well as some additional parameters

like length and starting point of the training time interval for

estimating the band power. The Common Spatial Patterns are

computed on this data and the two spatial filters representing the

most extreme eigenvalues are chosen for each class.

Then a linear classifier (LSR) was trained using the prepro-

cessed data from the first three runs.

Results

A. Feedback Performance
The first three runs of feedback showed that all subjects under

study were able to operate the BCI with the pre-computed

classifier at a high accuracy (only 10 trials per class from the

current day were required to update the bias for the classification

scenario). For every subject Fig. 4 shows the percentage of

Figure 3. Overview of the 11 runs and the two methods used for calculating feedback. In block I, continuous visual feedback was given by
a classifier that had been pre-computed with the Zero-Training method, see Section ‘‘Construction of Classifiers’’. Blocks II to V each contained one
run with Zero-Training feedback and one run with ordinary CSP feedback. The order of the two feedback methods was chosen randomly and
remained unknown to the subject. The use of continuous visual feedback and no continuous visual feedback alternated regularly between blocks II to
V.
doi:10.1371/journal.pone.0002967.g003
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successful (‘‘hit’’) trials from each run. After the third run, the

subjects could not know in advance, which one of the two

classifiers (Zero-Training or ordinary CSP) was used for the

generation of the feedback.

For subjects zq, al and zk, the CSP feedback performed better

than the Zero-Training feedback. In ay and aw, the feedback

performance on the four blocks is very similar with both classifiers,

whereas in subject zp, the Zero-Training feedback even outper-

formed the CSP feedback.

The performance over all subjects is shown in Fig. 5, where the

feedback performance in each run of the four blocks is collected in

a single boxplot for each classifier. The CSP performance is

slightly higher on average, although this difference is not

significant: a Wilcoxon ranking test yields a significance level of

p = 0.05.

B. Adaptation of the Classifier Bias
The bias was updated at the beginning of every run. We can

now check if this update was necessary for the accuracy of the

classifiers. For run i and classifier j and movement class k, let mijk be

the mean of the classifier output of the corresponding 50 trials.

Then the value b̂bij : ~
bij

mij2{mij1
relates the optimal bias bij for run i

and classifier j with the actual distance between the class means. A

value of 1 would correspond to shifting the decision boundary by

the entire inter-means distance. The results of this calculation are

shown in Fig. 6. For most subjects, the required shift is moderate

Figure 4. The feedback results for each of the six subjects. The feedback accuracy is denoted for the 100 trials of each run. The initial three
runs, here marked as block ‘‘I’’, were done with the Zero-Training classifier, and in the following the order of the classifiers was randomly permuted in
each block of two runs, here denoted as ‘‘II–V’’. The shift of the blue curve relative to the green curve within the shaded areas indicates the order of
the classifiers within the block.
doi:10.1371/journal.pone.0002967.g004

Figure 5. This figure shows the feedback performance of the CSP and the Zero-Training classifier over all subjects and runs. The
median of the CSP feedback accuracy is slightly higher. This difference is not significant (Wilcoxon ranking test, p,0.05).
doi:10.1371/journal.pone.0002967.g005

Towards Zero Training
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(b̂ij,0.5), but for subjects zp and zk, the Zero-Training classifier

requires a strong update of the bias, since the absolute values

exceed 1. The CSP classifier, trained on data from the same day, is

not as susceptible to bias shift as the Zero-Training classifier, since

the change is comparatively small also for these two subjects. This

finding supports the initial hypothesis that a bias-shift is required

for classifiers that are trained on calibration data without visual

feedback (such as the Zero-Training classifier), whereas the shift

within the session is comparatively smaller. The latter is the case for

the CSP-classifier which is trained on online BCI data with visual

feedback. Besides the check for necessity of the bias update, Fig. 6

also provides a comparison of the ‘‘optimal’’ bias with the actual

bias, both calculated with the same normalization. The dashed

lines indicate the bias, as it was computed on the initial 20 trials

during the feedback. From this figure, it is evident that the

estimated and the optimal bias coincide quite well. Although the

estimation error is sometimes not negligible (as for subjects aw and

zk), the dashed and the corresponding solid lines are highly

correlated. If the classifier had not been adapted (corresponding to

setting the bias to 0 in Fig. 6), the error would have been larger

than is was with the proposed adaptation strategy in nearly all

runs. This proves that the update procedure is in fact stable and

useful in combination with the Zero-Training classifier.

Fig. 7 exemplifies the effect of the bias shift for subject zp. In the

left part, the classifiers are calculated for each of the 1100 trials of

the feedback, without adding any bias term. While CSP

classification (on the x-axis) shows a good separability of the data

into positive and negative values (for right hand and left hand

movement, respectively), the Zero-Training classifier assigns nega-

tive values to almost every point, resulting in a poor classification

rate (near 50%, corresponding to chance level accuracy). This

effect can be alleviated by estimating the bias on the 20 initial trials

that were performed previous to every run. The right part of the

figure shows the result: both CSP and Zero-Training classification

rate now are comparable. Note that an improvement of

classification accuracy by bias adaptation was highly significant

for two subjects.

C. Discriminability owed to Each Prototype Filter
Here we investigate each prototype CSP filter with respect to

the discriminability of the corresponding log-variance feature and

relate it to its c-index, see Section ‘‘Prototype Filters’’. For the

evaluation of the discriminability of each feature, we use as

measure the area under the ROC-curve (AUC, see e.g. [24]). This

value is 0.5 for features that are uncorrelated with the class

affiliation and 1 for features that are perfectly separated. We

regarded the c-index, calculated on the previous sessions, as a

prediction of the performance of the feature in the online

application of the classifier. Fig. 8 confirms this hypothesis by

showing that there is in fact a strong negative correlation between

the c-index and the AUC-value of the features. The higher the

density of the CSP filters, accumulated over many sessions, at a

particular point, the higher the discriminability of the correspond-

ing log-variance feature in the current online session. Note that

below a c-value of 0.7, only features of the three subjects with the

overall highest feedback performances (subjects al, zq and aw) can

be found. These features, on the other hand, have the highest

AUC-values.

Discussion

The final validation of BCI algorithms can only be provided in

online experiments. However, in contrast to offline evaluation,

only one classifier can be applied to the same data set. This makes

a comparison especially hard, since the differences between data

sets (high inter-subject and inter-session variability) add to the

variability of the performance. Therefore it is required to record

all data sets under similar conditions. All presented online

experiments for one subject were therefore carried out on the

same day, which clearly limits the possible number of runs that

Figure 6. At the beginning of each run, the bias for the classifier was adapted using 10 trials per movement imagination class. The
plot shows the optimal bias update, as calculated on the following 100 trials. This value is normalized by the difference between the classifier output
class means. The solid lines show the optimal bias for CSP (green) and Zero-Training (blue) classifier separately. The dashed lines indicate the bias, as it
was actually calculated on the initial 20 trials by the adaptation procedure during the feedback.
doi:10.1371/journal.pone.0002967.g006
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could be performed. We evaluated the performance of our new

classifier by comparing it to the standard CSP method that is

typically used for the classification of band power features in motor

imagery paradigms (see e.g. [3]). In order to keep the subjects

equally motivated under both conditions, we changed the classifier

options randomly between runs, but did not inform subjects about

the currently used classifier. They were instructed to keep trying to

hit the targets given on the screen, irrespective of the possibly

fluctuating performance.

The aim of this study was to construct and evaluate a

classification method that can be applied without a lengthy

calibration measurement. While the features we chose have

proven to be quite discriminative for the classification task at hand,

the bias adaptation was indispensable for two of the six subjects

(and did not degrade the performance for the other subjects).

Possible explanations for the shift of the bias from one session to

another include the differences in electrode impedances as well as

physiological effects like superimposed occipital a-rhythm, see

[18,17,25]. The number of trials per class used for the adaptation

period has to be chosen according to a trade-off between the total

duration of the adaptation period and the precision of the bias

estimation. After preliminary off-line evaluations we found 10

trials per class to be a quite balanced choice. Note that this

number might as well be adjusted according to the predicted

feedback accuracy for the subject. Bias parameter estimation is

clearly expected to degrade with stronger feedback variance

during the adaptation period, and our findings support this

expectation. Therefore, if a low feedback performance is expected

for a subject, one can easily increase the number of trials used for

adaptation. On the other hand the total duration of the adaptation

period should be kept very short, since it is desirable for a real-

world BCI application to operate right from the start. In such a

situation knowledge about class labels is not available and even the

equal probability for the occurrence of class labels is not always a

reasonable assumption.

In this study, the training data for the CSP-classifier are

different from the usual calibration data: in the standard case, no

feedback is given during the presentation of stimuli. Also, the

visual scene now resembles more closely the feedback setup (see

[18]), i.e., the targets are on the left and right side of the screen

and they change their color to indicate the next movement task.

Although one might suspect that this could degrade the

classification performance of the CSP classifier due to the higher

complexity of the mental task, this is not the case. Fig. 9 shows

the development of the cross-validation error over the previous

experiments for each subject. Parameters like the frequency band

and the time interval were optimized specifically for each subject

and each session. The last point (session N) denotes the online

experiment performed for this study, where the first three

feedback runs were taken into account for training. This

corresponds to the data on which the CSP classifier was trained.

The cross-validation performance for this session is on the same

level as the previous performance and hence does not reveal a

systematic disadvantage for the CSP method. On the contrary,

the following application of the classifier might even benefit from

the fact that the task difference between the training data and the

test data is relatively small, as both task have an increased visual

complexity.

Figure 7. The effect of the bias estimation for subject zp (see text for discussion). In the left part of the figure, both Zero-Training and the
original CSP-classifier are computed on the 1100 trials of the feedback session, without adding a bias term. While the CSP method performs already
quite well, the output of Zero-Training (on the y-axis) is negative for almost all samples, which would correspond to a classification error near 50%.
The right part of the figure shows the output on the same trials, after an initial bias adaptation on the 20 initial trials per run. For the CSP
classification, the bias is not changing the result significantly, but Zero-Training clearly profits from the bias update.
doi:10.1371/journal.pone.0002967.g007
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A. About Dimensionality
The Zero-Training method and standard CSP were used with

different data dimensions (12 and 4 resp.). While the absolute

numbers might not be very relevant, we would like to explain the

motivations that lead to this rather unequal choice: For the

standard CSP method, it seems reasonable to expect that it results

with spatial filters that are well-adapted to the data of the current

session. This is a good argument for fixing the number of spatial

filters (and thus the data dimension) to a smaller number. The

Zero-Training method on the other hand might is dependent on a

richer and more robust basis of spatial filters, as the current

session might differ from some or most of the historic sessions.

Providing the new method with altogether 12 historic filters

enhances the probability that one of them is informative also for

the new session. It is an interesting open question, whether the

larger basis for Zero-Training biases the comparison with a

systematic disadvantage for the standard CSP method. To

investigate, whether standard CSP can profit from a richer basis

using more filters, we conducted an offline comparison of

classification performance. Here the Zero-Training method was

fixed to 12 dimensions and compared to standard CSP method

with varying dimensions between 4 and 12. However, the offline

performance of standard CSP (as a variable of CSP’s dimension-

ality) showed only little variation. It was in the same range as the

systematic variance induced by the error estimation technique

itself during different cross-validation folds. Given the perfor-

mance of Zero-Training and CSP at eye level end (as shown in

Section ‘‘Results’’) and furthermore that standard CSP can not

profit from enlarged dimensionality, this argues in favour of the

robust design of our new Zero-Training method.

Figure 8. This figure compares the c-index of a prototypical CSP filter, as calculated on previous sessions, with the discriminability
of this feature in the feedback session. The filters with the lowest c-index have the highest performance. This correlation is highly significant
(p,0.01).
doi:10.1371/journal.pone.0002967.g008
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B. Online Performance and Quality of Adaptation
It has been shown in recent publications [26,10], that the

optimization of spatial and temporal parameters can result in a

significantly increased classification accuracy. For the training of

the Zero-Training classifier however, some of the parameters were

not specifically optimized, such as the frequency band, the training

window for parameter estimation on the previous sessions, and the

movement type combination used for the feedback. These

parameters were fixed beforehand. In contrary to this, the

subject-dependent parameters of the standard CSP method were

selected individually based on the same day’s training data. We are

fully aware, that this comparison strategy may have resulted in a

slight advantage in favor of the standard CSP method, but we

accepted this advantage in order to have a maximally strong

adversary method available for the comparison with our new Zero-

Training method.

Only in subject zk, the CSP classifier clearly outperforms the

Zero-Training classifier. The reason might be due to the smaller

amount of training data which was present for zk from previous

sessions: while the training sessions for all other subjects contained

more than 100 trials per class, only 35 trials per class and session

were recorded for subject zk, see also table 1. This circumstance

leads to a higher variability in the collection of CSP filters and it

explains the low c-index for all features of subject zk, see Fig. 8.

For subject zk, the c-values for the Zero-Training features are

slightly higher than for subject zp. From the feedback performance

in Fig. 4, we can even see a slow positive trend for the Zero-Training

classifier throughout the day. The trend in the performance for the

CSP classifier, on the other hand, is degrading over time. Subject

zp reported that she was trying to control the feedback with

different strategies over time, always switching to the mental

imagery that seemed most reliable at each point in time. This

variability in the mental strategies, induced by the feedback

presentation, is reflected in the brain signals. Fig. 10 shows the

evolution of the scalp topographies related to the discriminability

of the band power features in each electrode. We calculated the

band power features for the 100 feedback trials in each run and

calculated the r2-values between left and right hand imagery class,

as a measure of linear discriminability. The figure shows that

towards the end of the session, the features on the right motor

cortex are more discriminative than the features initially on the left

motor cortex. The feedback performance of the CSP classifier

appears to be more susceptible to this shift, while the Zero-Training

classifier is based on a broader basis of spatial filters, which can

account for this variability in the signals.

Figure 9. The discriminability of the calibration data for each
previous session (N27,…,N21) as calculated by the cross-
validation error of the CSP algorithm. Frequency band and time
window were specifically optimized for each session and each subject.
The cross-validation error on session N is calculated on the three runs
from block I, with the settings shown in table 1.
doi:10.1371/journal.pone.0002967.g009

Figure 10. For each feedback run of the session, this figure shows the scalp topographies of class discriminability of band power
features for subject zp. After bandpass filtering to the frequency band of 10–25 Hz, the log-bandpower was calculated for each electrode in the
window 500–3000 ms after the presentation of the stimulus. Finally, signed r2-values were calculated as a measure of class discriminability.
doi:10.1371/journal.pone.0002967.g010
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C. Long-term variability
BCI performance is known to vary on multiple time scales.

The quality of the presented new classification approach can

only be rated in terms of its immediate applicability when the

subjects are confronted with the specific feedback for the first

time. By limiting the experimental sessions to a single day for

each subject, we ensured that no long-term training effects can

bias our experimental results. On the other hand, significant

positive trends can be observed for static classifier setups when

comparing performance across sessions, see e.g. [27]. Hence, we

expect that the reiterated use of our classifiers on further

experimental sessions will lead to results of a similar or even

higher quality.

Although the complex interaction process of subjects’ long-term

adaptivity with this classifier is beyond the scope of this paper, note

that this setup contains a largely static classifier based on specific

brain signatures of particular subjects. It can be regarded as a

promising starting point for further performance enhancements by

operant conditioning.

D. Adaptive Classification
A possible remedy for the degrading performance is the

adaptive estimation of the linear hyperplane of the classifiers,

[17,28]. Using an adaptation period as short as 10 trials per class,

however, the adaptation of the hyperplane for Zero-Training fails for

almost every subject, as an offline evaluation on the given data

shows. This is mainly due to the fact that for a linear classifier, the

number of parameters to be estimated grows quadratically with

the number of feature dimensions. Since the Zero-Training feature

space has 12 dimensions (6 ‘‘prototype’’ filters and 6 ‘‘CSP’’

filters), 20 trials are too few data. Similar results have been shown

in [17] for classical CSP; the suggested bias update requires only

the estimation of one single parameter and is therefore more

robust. If, however, the feature discrimination performance is

changing over time like in subject zp, this bias update might not be

sufficient any more. Other options, like a continuous adaptation of

the bias throughout the feedback run, require at least the a

posteriori knowledge of all the labels of this run, which can not be

granted in all feedback applications. Moreover, this continuous

adaptation scheme did not prove to be superior to the initial

adaptation of the bias [18].

Fig. 8 suggests a good prediction accuracy for prototypical CSP

filters with a low c-index. However, since the features of some

subjects (e.g. zk and zp) appear to form distinct clusters for each

class, we should consider some reasonable normalization between

these values. The c-index, as formulated above, depends mainly

on the number of dimensions and on the number of samples.

This holds true because the maximally possible c-index is a

monotonic decreasing function in the number of samples, if the

number of dimensions (in this case: the number of electrodes) is

fixed. Not only the maximal, but also the expected minimal c-

index under randomly drawn samples will differ. Therefore, we

estimated this value by a simulation: the number of dimensions

and samples were chosen for every subject according to Table 1.

The minimal c-value was calculated and averaged over 1000

repetitions. The results are displayed in Table 2. Since the values

range from 1.12 for subject aw to 1.22 for subject ay, the

correlation visualized in Fig. 8 is not influenced under the

condition, that each c-value is normalized by the expected

minimal c-value. Note that for subjects zk and ay, some of the c-

values are close to 1 after normalization; this corresponds to a

minimal ‘‘cluster’’ density which is expected to occur even in

random samples. As expected, these features have only very low

AUC-values.

With respect to the cumbersome electrode preparation great

advancements could be achieved in the meantime by newly

developed hardware. In [4] we present a novel dry EEG recording

technology which does not need preparation with a conductive gel.

The study with good BCI subjects revealed that the feedback

performance using the new sensor technology was comparable to

the approach with conventional EEG caps for most subjects. Note

that the system reported in [4] only uses 6 electrodes and can thus

be miniaturized to run with a tiny EEG amplifier and a pocket PC.

E. Conclusion
Brain-Computer Interfacing has seen a rapid development in

the recent years. A main step forward towards a broader usability

of this technology even beyond rehabilitation was the drastic

reduction of user training from 60–150 hours of subject training to

less than 30 minutes of calibration [29,2]. The latter became

possible by virtue of modern machine learning methods for BCI

[30,31].

In this contribution we went one step further towards the goal of

avoiding subject training altogether and proposed novel algorithms

to transfer knowledge between BCI sessions. Our study shows that

the results from prior off-line analysis, successfully carry over to the

present set of online experiments, where subjects use decoders that

were constructed from past data instead of calibrating anew. Our

findings thus show that information from prior session can indeed

be used profitably for constructing better individual mental state

decoders. Note that the loss in performance (bitrate) is negligible

when contrasted to employing a fully calibrated decoder (after

30 minutes of training) in a blind protocol.

Our work opens therefore a highly promising path for the

ultimate goal of Zero-training. While the proposed methods work

well for session to session transfer for an individual subject, it

remains still open, whether inter-subject information could also be

successfully transferred. Ideally a data base consisting of

individualized decoders could be appropriately combined as an

ensemble decoder and thus help to avoid training completely. In

combination with dry electrodes [4], Zero-training would again

provide a large step forward when striving towards more general

applicability of BCI technology for daily use in man machine

interaction.
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Table 2. This table shows the minimal c-index for a collection
of randomly drawn points, together with the standard
deviation.

Subject Expected Minimal c

zq 1.1760.02

ay 1.2260.02

zp 1.2060.02

al 1.1560.02

aw 1.1260.02

zk 1.1760.02

For this calculation, the same dimensionality (corresponding to the number of
electrodes) and the same number of points (corresponding to three times the
number of experiments) was used.
doi:10.1371/journal.pone.0002967.t002
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