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Abstract

Similar brain regions are involved when we imagine, observe and execute an action. Is the same true for emotions? Here, the
same subjects were scanned while they (a) experience, (b) view someone else experiencing and (c) imagine experiencing
gustatory emotions (through script-driven imagery). Capitalizing on the fact that disgust is repeatedly inducible within the
scanner environment, we scanned the same participants while they (a) view actors taste the content of a cup and look disgusted
(b) tasted unpleasant bitter liquids to induce disgust, and (c) read and imagine scenarios involving disgust and their neutral
counterparts. To reduce habituation, we inter-mixed trials of positive emotions in all three scanning experiments. We found
voxels in the anterior Insula and adjacent frontal operculum to be involved in all three modalities of disgust, suggesting that
simulation in the context of social perception and mental imagery of disgust share a common neural substrates. Using effective
connectivity, this shared region however was found to be embedded in distinct functional circuits during the three modalities,
suggesting why observing, imagining and experiencing an emotion feels so different.
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Introduction

‘‘Disgust refers to something revolting, primarily in relation to

the sense of taste, as actually perceived or vividly imagined; and

secondarily to anything which causes a similar feeling, through the

sense of smell, touch and even eyesight’’ Charles Darwin (1872/

1965)

The concept of ‘simulation’ is important for our understanding of

imagination and social perception. For actions, simulation accounts

of imagination propose that we can accurately imagine what it feels like

to perform actions because common brain areas are involved in the

execution and imagination of these actions. Empirical evidence

showing parietal, pre-/supplementary motor cortex activations

during imagination and action-execution supports this account [1–

5]. Simulation accounts of action perception posit that we intuitively

feel what others do and can anticipate their future actions because

our perceptual apparatus links their actions with neural structures

planning our own actions. Empirical support for this comes from the

discovery of mirror neurons in the premotor and inferior parietal

cortex of the macaque monkey responding to perception and

execution of similar actions [6–9] and the observation of human

premotor and inferior parietal responses to observation and

execution of actions [10–16].

Together, evidence for action simulation, perception and

imagination implicates brain areas including the premotor and

posterior parietal regions as neural substrates involved in three

functions: motor execution, observation and imagination. Perhaps

the brain does not need to duplicate the motor expertise stored in

motor areas in order to permit imagination and social perceptive

processes: at least in part, it employs the very hardware of our own

actions. However, it is unclear whether these notions can be

extended to the realm of emotions.

Neuroimaging studies have shown that while individuals view or

become aware of the delight [17], pain [18–21] or disgust

[17,22,23] of others, they activate the anterior insula and adjacent

frontal operculum (IFO) that reacts to experience of similar

emotions and is modulated by empathic tendencies. IFO lesions

also disrupt experience and recognition of disgust, suggesting a

role for this region in emotional simulation/understanding

[24,25].

Interestingly, similar IFO regions have been shown to be

recruited during affective autobiographical recall [26,27], and

taste imagination of pictured food items [28]. In line with these

results, emerging evidence points to the functional significance of

this region in facilitating awareness per se [29]. Thus in addition to

deficits in disgust perception and experience, lesions of IFO has

been shown to result in marked reduction of feelings of craving for

cigarettes in long term smokers [30,31], anosognosia [32] and

amusia [33].

Given the well documented role of the IFO in coding

experience and social observation of disgust (among other feeling

states), an interesting question would be whether this area would

similarly respond to individuals vivid imagination of disgusting
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experiences. Here, we address this question and further examined

how the functional circuitry that includes the IFO differs between

the imagination, observation and experience of disgust. In with the

emerging role of this region in coding awareness of feeling states, it

was hypothesized that a common IFO region involved in the

experience and observation of disgust [17,23], will be involved in

imagination and that the functional connectivity between this

region and the rest of the brain will differ across experience,

observation and imagination of disgust.

Materials and Methods

Participants: 12 healthy right-handed volunteers (6 females)

were recruited for the three fMRI experiments. All 12 individuals

were free of neurological, psychiatric and other physical conditions

with normal or corrected to normal vision. They completed the

consent forms approved by the University Medical Center

Groningen’s institutional review board and were paid 50 euros

in total for their participation to observation, experience and imagination

experiments.

Observation and Experience: The experimental procedures for the

observation and experience conditions of this study have been

described earlier [17], but are briefly illustrated in Figures S2

and S3.

Imagination: Similar to the observation and experience experi-

ments, the script-driven imagery runs consisted of three different

conditions: disgust, neutral and pleasant (but the data of the

pleasant condition is not of interest to the present report). Written

scenarios (scripts) with an approximate reading time of 35 seconds

were developed to induce disgust (9 scripts), neutral (7 scripts) and

pleasant (8 scripts) emotional feeling states, totaling to 25 scripts

(see Supplementary Materials S1 for sample scripts).

Initially, 11 participants that did not take part in the fMRI study

rate all 25 scripts as to the amount of disgust and pleasure they

experience while reading and imagining themselves going through

the scenarios of the scripts and how hard the scripts were to

imagine. We asked two additional participants to tell us which

script they read most quickly, and then measured their reading

time with a chronometer. The shortest reading time was just over

20 s, which is why 20 s was used as the upper limit of the surface

under the curve analysis described below (For additional

information, see Supplementary Materials).

For the final experiment, each of the participants rated all 25

scripts in terms of how disgusting, how pleasant and how hard to

imagine (on a scale ranging from 0 to 6). These ratings served two

purposes: first, to choose on an individual basis the 6 most

disgusting, the 6 most pleasant and the 6 most neutral (i.e. least

disgusting or pleasant) scripts for the fMRI experiment, and

second, to obtained personal ratings of the scripts used in the fMRI

experiment (Figure S1).

During scanning, (Figure S4) each trial begins with a red

fixation cross lasting 6 seconds followed by a script present as a

single screen of text lasting 35 seconds followed by a fixation cross

lasting 6 seconds. The subjects then viewed a screen with a simple

arithmetic task for 6 seconds, and had to indicate their choice by

pressing the right or left button of a response box with their right

index finger. The next trial then begun with 6 seconds of fixation

cross and the next script and so on. We included the arithmetic

task between two scripts to maintain attention and wash out the

emotional state induced by the scripts between two scripts. Each

run contained 9 trials (3 disgust, 3 neutral and three pleasant

scripts, all presented in a fully randomized order) and two such

runs lasting 9.35 minutes each were administered for the

imagination experiment.

Image Acquisition and Analysis: Images were acquired using a

Philips 3T whole-body scanner (Best, The Netherlands) using a

circular sense head coil. T2*-weighted echo-planar sequencing

was performed with 39 interleaved 3.5 mm thick axial slices with

0 mm gap (TR = 2000 ms, TE = 30 ms, flip angle = 80u,
FOV = 224 mm, 64664 matrix of 3.563.563.5 mm voxels). At

the end of each functional scan, a T1-weighted anatomical image

(16161 mm) parallel to the bicommissural plane, covering the

whole brain was acquired.

Statistical Parametric Mapping (SPM2; Wellcome Department

of Cognitive Neurology, London UK; http://www.fil.oin.ucl.ac.

uk) was used for the preprocessing and analysis. All functional

volumes were realigned to the first acquired volume and images

were then coregistered to the participant’s anatomical space and

subsequently spatially normalized to obtain images with a voxel

size of 26262 mm [34]. All volumes were then smoothed with an

8 mm full-with half-maximum isotropic Gaussian kernel. For the

time series on all 12 participants, high-pass filters with cut-off

points at 106 s, 310 s and 380 s for the observation, tasting and

imagination conditions respectively, were included in the filtering

matrix in order to remove low-frequency noise and slow-drifts in

the signal. Condition-specific effects at each voxel were estimated

using the general linear model. Contrast images were then tested

at the group level using a one tailed t-test against zero to

implement a random effects analysis. We extracted the timecourse

from the IFO ROI that was found to be commonly active during

the observation and experience [17] for all three experimental

conditions using marsbar (http://marsbar.scourceforge.net;

M.Brett, J.-L. Anton, R. Valabregue, and J.-B. Poline, ROI

SPM toolbox, Abstract).

Connectivity Analysis: To explore the functional integration

between the shared circuit mechanism in the IFO and other

related regions during the three disgust modalities, we employed

the psychophysiological interaction (PPI) analysis implemented in

SPM to identify voxels whose timecourse correlated more strongly

with the timecourse of activity in IFO during the disgust compared

to the neutral condition for imagination, observation and taste

separately using the procedures advised by Friston and colleagues

[35]. The seed region for this analysis was determined in each

condition and subject separately by opening the relevant contrast

in SPM (e.g. vision of disgust – vision of neutral), placing the

cursor at the center of the IFO ROI (x = 42, y = 18, z = 26) and

defining a 5 mm radius sphere using the function VOI. This

function will automatically move to the closest voxel with a

significant contrast (at p,0.005 uncorrected), and the actual

center of the sphere therefore deviated on average by 4 mm from

the center of the ROI (see Table S2), but their was no significant

difference between the spatial distribution of centers in the three

modalities (two-tailed matched pair t-test performed separately on

the x, y and z coordinates for imagination vs. observation,

imagination vs. taste and observation vs. taste, all p.0.25

uncorrected). The PPI analysis multiplies point by point the

timecourse of activity in the sphere seed region with a

psychological variable containing the value 1 for the condition

disgust, 21 for the condition neutral and zero elsewhere and then

uses this interaction vector, next to both the timecourse of the seed

region and the psychological variable as three regressors in a

subsequent whole-brain GLM analysis. Comparing the parameter

estimate of the interaction term with zero at the second level of

analysis (one-tailed t-test comparing n = 12 parameter estimates

against zero) then identifies voxels in the population of 12

participants that are on average functionally more connected to

the seed region in the disgust condition compared to the neutral

condition (Friston et al., 1997). These PPI maps were then

Imagine Disgust in Your Insula
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thresholded at p,0.001, uncorrected, with an extent threshold of

10 voxels.

Results

Script ratings
Before scanning, the twelve participants included in the fMRI

experiment rated (Figure S1) the 6 disgust scripts as more disgusting

than the neutral ones (two-tailed matched pair t-test, p,0.001

uncorrected for multiple comparisons) but their was no significant

difference between the disgusting and neutral scripts in terms of how

pleasant (p.0.07) or how hard they were to imagine (p.0.87). The

pleasant scripts that served to balance the experimental design but

that were not further analyzed here differed from the other scripts in

that they were less disgusting than the disgust script (p,0.001), more

pleasant than both the other types of scripts (p,0.001). Finally, the

disgusting scripts were slightly more disgusting than the pleasant

scripts pleasant (p,0.04).

Timecourses
In Jabbi et al. [17], a region of the IFO was significantly more

active during the vision and the experience of disgust compared to

their neutral control conditions (p,0.005 vision of disgust – vision

of neutral and p,0.005 taste of quinine – taste of neutral solution,

Fig. 1a). To examine if this region is also recruited during the

imagination of scenarios involving disgust (compared to those

without emotional valence) we extracted the signal from this ROI

in the imagination condition for the 12 participants that returned

to be scanned during the imagination of emotional scripts (Fig. 1b;

Traditional GLM results for all three modalities are specified in

Table S1). Given that it is difficult to know how the emotional state

of the participants fluctuates during the reading of the scenarios,

we did not use a standard GLM approach but instead calculated

the surface under the average difference curve between the disgust

and neutral scenarios for the interval 4 s–20 s for each individual.

The first 4 s were excluded because of the hemodynamic response

delay and time points after 20 s, to exclude volumes in which some

of the participants had finished reading some of the scripts. One of

the core goals of the present study being the examination of a

shared IFO representation of the simulation (imagination),

experience and social observation of emotional feeling states, we

therefore employed a one-sample t-test (one tailed) comparing the

surfaces of the 12 participants against zero and found the disgust

scenarios significantly (p,0.004) recruit the IFO ROI more than

neutral scenarios during imagination. Timecourses of the IFO

ROI during the observation and experience of disgust are also

shown for illustrative purposes [17,23].

Functional Connectivity
To examine the functional circuitry within which the IFO is

embedded in these three disgust modalities (observation, imagi-

nation and experience), we used the time course of the IFO (based

on a 5 mm sphere centered on the voxel with a significant

omnibus test closest to x = 42, y = 18, z = 26, see methods) as the

seed region to map effective connectivity using three separate (one

per modality) psychophysiological interaction (PPI) analysis [35].

This analysis was performed separately for each participant, and

the parameter estimates of the interaction term tested against zero

at the population level using a one-tailed t-test to determine which

voxels consistently increased their functional connectivity with the

IFO during the disgust condition compared to the neutral

condition. Results are shown in Figure 2 and Table 1.

During observation, we found only the ipsilateral right inferior

frontal gyrus (IFG, pars triangularis or BA 45 [36] to be effectively

more connected with the right IFO during the observation of facial

expressions of disgust relative to neutral faces (Table 1).

During experience and imagination condition, a much wider

network involving in particular somatosensory, motor, gustatory and

‘limbic’ regions were shown to be effectively more connected to the

IFO during the disgust compared to the neutral condition (Table 1).

Figure 1. Condition specific IFO time courses. a) coronal slice (y = 18) showing the location of the ROI (white) previously shown to be involved
in the experience and observation of disgust (p,0.005, k.10 voxels) (Jabbi et al., 2007). b–d) time courses of the average disgust-neutral difference
relative to the onset of the movies of facial expressions, script-driven imagery and the administration of the tastants, respectively. Error bars represent
the standard error of the mean.
doi:10.1371/journal.pone.0002939.g001

Imagine Disgust in Your Insula
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Overlap between the functional connectivity networks observed

in these modalities was rare and restricted only to a single two-way

overlapping cluster between imagination and experience in the left

temporal pole.

Discussion

We tested and confirmed the hypothesis that the shared-

circuitry in the IFO, shown earlier to be active during experience

and observation of other people’s disgust [17,23], is also activated

by the imagination of one’s own disgust.

The IFO is thought to play an important role in interoceptive

awareness, i.e. sensing the inner state of the body [30,31,37–39].

This regions’ involvement in both the observation and experience of

disgust and pleasure [17,23] has been speculated to provide a

simulation mechanism of the inner state of disgust during disgust

observation in others. Findings showing IFO involvement in

experience and observation/awareness of other people’s pain [18–

21], suggested that this purported simulatory IFO response may not

be specific for emotions linked to gustatory or olfactory stimulation

but rather more generally linked to the simulation of bodily feeling

states during social cognition [40–41]. Independent evidence

Figure 2. PPI maps of the whole brain. Functional connectivity of the whole brain with the IFO (as seed) thresholded at the t = 4.64
(corresponding to p,0.05 corrected for false discovery rate for the imagination of disgust relative to neutral). The numbers in the
figures shows the corresponding Z-coordinates in MNI space. Left is left and right is right.
doi:10.1371/journal.pone.0002939.g002
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Table 1. Regions of Effective Connectivity with IFO during Observation, Taste and Imagination of Disgust Relative to Neutral at
p,0.001, k.10 voxels, t.4.64.

Observation PPI

Region MNI Voxels t-value z-value

X Y Z

IFG BA45 56 30 12 26 6.35 4.04

Taste PPI

Region MNI Voxels t-value z-value

X Y Z

Temporal Pole 248 5 221 147 7.98 4.5

SI/SII 250 214 31 134 8.32 4.59

255 223 51 12 5.51 3.74

Cingulate Motor 11 212 52 89 7.39 4.35

MI BA/3a/4a/4p 46 213 43 60 7.02 4.24

220 235 64 32 5.83 3.86

246 227 53 17 5.78 3.84

Orbitofrontal Cortex 228 12 215 37 6.67 4.14

MPFG 219 57 9 31 7.14 4.28

Putamen/Lentiform 222 22 12 30 5.18 3.61

Caudate 212 25 14 14 4.64 3.3

Globus pallidus 213 22 22 14 5.9 3.88

Angular gyrus/TPJ 240 262 33 28 5.76 3.83

ITG/MTG 56 2 29 23 5.62 3.78

49 2 230 12 4.98 3.53

ITG 46 258 25 21 6.31 4.02

239 28 231 18 5.57 3.76

Lingual Gyrus 226 267 25 10 5.33 3.67

ITG/MTG/STG 238 24 236 18 5.57 3.76

50 8 238 12 4.98 3.53

Posterior Insula 245 220 8 11 5.09 3.53

Cerebellum 41 258 234 12 4.98 3.53

20 252 228 19 8.5 4.63

224 255 229 14 5.41 3.7

Imagination PPI

Region MNI Voxels t-value z-value

X Y Z

Mid&Post Insula/STG 50 8 24 1754 12.51 5.38

Lingual Gyrus 24 290 2 202 5.19 3.62

211 264 21 102 6.11 3.96

Temporal Pole/MTG 246 4 220 129 7.3 4.32

36 13 225 10 5.99 3.91

52 23 216 13 5.16 3.61

SMA/preSMA BA6 26 3 63 374 6.02 3.92

Amygdala 231 22 213 129 7.3 4.32

Hyppocampus 34 216 24 56 6.5 4.08

MI 19 217 73 28 7.42 4.36

ACC 215 12 37 57 7.24 4.3

IFG BA44/45 247 20 36 44 4.84 3.47

Posterior cingulate 28 0 45 33 4.99 3.54

Prefrontal gyrus/SFG 217 46 46 31 4.9 3.5

221 24 51 24 5.33 3.67

Imagine Disgust in Your Insula
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suggests that some sectors of IFO are also involved in the

imagination of basic emotions and sensations such as taste [26–28].

Our findings of a common IFO activation in the same

participants’ experience, observation and while they imagine

feeling disgust provides to our knowledge, the first direct evidence

indicating that two apparently distinct forms of simulation (social

perception and imagination) actually share a common neural

substrate in the IFO. These findings have two implications: First, it

supports the idea that imagination and social perception of

emotions may share neuroanatomical underpinnings. This is in

line with similar findings in the mirror neuron literature showing

common neural representations for perceived, executed and

imagined motor actions [6–9]. Second, it provides insights into

the neural basis of the captivating experience of reading a book:

While previous studies on social perception used movies of other

people’s experiences or arbitrarily colored symbolic cues, our

combination of movies and written material in the present

experiment demonstrates that reading (mental imagery) as well

as watching other people experience what is imagined recruits

brain regions involved in experiencing an emotion.

The IFO ROI selected in this study appears to be a key location

in the phenomenon of simulation that makes feeling an emotion,

seeing that emotion on someone else’s face and imagining that

emotion somehow shares a similar feeling component. Despite this

partial overlap, these three modalities of disgust however do feel

clearly different, emerge through distinct processes, and are

triggered by different events. During experience: the brain activity

is triggered by an unpleasant taste; during observation: by the sight

of disgusted facial expression; and during imagination: by vivid

mental imagery triggered by written scripts. Interestingly, these

differences seem to be reflected in our connectivity findings.

Our IFO ROI involved in all three modalities includes anterior

aspects of the insula and the adjacent frontal operculum, where the

postmortem cytoarchitectonic analysis of 5 human brains observed

a dysgranular cytoarchitecture [42], probably corresponding to the

dysgranular zone of the frontal operculum/insula [43]. Tracer

injections in the monkey Insula shows it to be highly intercon-

nected with most of the brain [44–46], in particular the motor

cortices (IFG-premotor, SMA/preSMA, M1 and cingulated motor

cortex), regions involved in gustation (basal ganglia, amygdala,

ACC, orbitofrontal cortex), somatosensation (SI, SII and posterior

Insula), high level vision (STS) and memory and semantics

(temporal pole and hippocampus). However, it is worth noting that

the monkey Insula does not have a homologue of IFO [47],

underscoring a likely prominent role for this phylogenetically new

region in higher order physiological awareness ‘‘that might be

absent in monkeys’’. Our effective connectivity findings showed

changes in the temporal correlation between the BOLD signal in

the IFO and a variety of putative human homologues of the

connected structures shown earlier to be connected with monkey

insula [43–46].

During experience, changes in effective connectivity occur

primarily with somatosensory (left SI/SII and posterior Insula)

[48], gustatory/ motivational (basal ganglia, orbitofrontal cortex),

and motor output regions (cingulated and primary motor cortex).

What do these changes in effective connectivity mean? The SI/SII

and the posterior insula are involved in somatosensation [49] and

could represent the tactile experience of tasted fluids - relatively

similar for neutral and unpleasant gustatory stimuli. The IFO

however increases activity as the intensity of the taste of a solution

increases as well as integrates the taste and texture of food [49]. The

observed IFO effective connectivity with somatosensory areas during

disgust experience relative to tasteless artificial saliva may therefore

likely reflect the integration of texture and taste in the IFO. Indeed,

the orbitofrontal cortex, the basal ganglia and motor regions (M1

and cingulate motor cortex) are involved in evaluating the valence of

a taste [49] and regulating behavior accordingly [47]. Thus the

increase in effective connectivity between these regions and the IFO

may underlie the valence-related relevance of taste processing.

During imagination, participants need to (a) transform the

written material involved in the scripts into a mental simulation of

the actions, sensations and feeling states of the protagonists. All

scripts, be they disgust-inducing or neutral involved actions and

sensations, and this processing would therefore not be specific for

the disgust inducing scripts. Unlike the neutral scripts, imagining

the disgust inducing scripts naturally triggers strong feeling states

of disgust. Broca’s area (left BA44/45) and the left temporal pole

are structures that are known to be important for understanding

stories [50]. Thus, the increase of effective connectivity between

the IFO and these regions for the disgust scripts may likely reflect a

cognitive-affective integration mechanism. The SMA/preSMA

plays a key role in the mental imagery of actions [25, 51] and

somatosensory regions (right SI/SII/posterior Insula) play an

important role in the mental imagery of tactile and proprioceptive

sensation [48,51] and would therefore play an important role in

the imagery of actions and sensations in general. The change of

effective connectivity with the IFO however reflects that this motor

and somatosensory imagery seems to be linked to activity in the

IFO and feeling states more strongly, if these actions and

sensations are disgusting. Increases of connectivity with the

hippocampus finally could reflect autobiographic memories

triggered by the scripts [52].

During social observation, the most prominent region with

stronger connectivity during disgust compared to neutral faces was

the ipsilateral right BA45. This region has been shown to be

involved in execution, observation and imitation of facial

Imagination PPI

Region MNI Voxels t-value z-value

X Y Z

Premotor cortex/BA6 38 217 42 67 5.05 3.56

259 28 39 10 4.64 3.38

MPFG 27 44 32 13 5.17 3.61

Putamen 30 8 10 11 5.19 3.62

doi:10.1371/journal.pone.0002939.t001

Table 1. cont.
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expressions [22,53,54]. Together, these findings suggest that vision

of any facial movement triggers a motor simulation of facial

expressions in the BA45 that might be related to the phenomenon

of facial mimicry [55,56]. If the facial expression is emotional

however, and disgusting in particular, an increase in effective

connectivity between this region and the IFO, would link a

simulation of the bodily feeling state of disgust with the simulation

of the disgusted facial expression. Indeed, whereas lesions of the

IFG resulted in widespread deficits in the perception of facial

expressions [57], lesions in the IFO lead to more focused deficits in

disgust recognition [24,25].

Conclusions
Humans can achieve vivid emotional feeling states in the

absence of actual emotional encounters in a myriad of ways,

including the recall of past experiences, the imagination of

hypothetical experiences, reading a good book, watching a good

movie or witnessing a friend’s experience. By making participants

view disgusted facial expression of others, read disgust provoking

scenarios and taste an unpleasantly bitter solution, we found a

modality a-specific involvement of a region of the IFO during

disgust. However, the functional connectivity between this region

and the rest of the brain was orchestrated in a modality specific way.

This suggests that the IFO is a convergence zone where bodily

feeling states relevant for the emotion of disgust are coded

according to a common code [58,59] regardless of stimulus

modality. Our findings of IFO involvement in all three modalities

supports the idea that simulation through both pre-reflective

(viewing someone else’s disgust) as well as reflective (deliberate

mental imagery and language) routes may therefore be comple-

mentary rather than independent of each other [60]. This idea is

supported by evidence showing dampening effect of people’s

expectation on their IFO response during exposure to aversive

tastes, suggesting a role for this region in regulating reflective/

cognitive processes relevant for homeostatic maintenance [61].

The functional relationship between the IFO and interconnected

regions during social cognition, as opposed to imaginary and

actual emotional experience remains an important question for

future work, but the relative lack of overlap between the results of

our effective connectivity analysis between the three modalities

confirms the idea that these modalities feel different despite the

presence of regions that encode them according to a common code

because they are embedded in distinct, and modality specific

neural circuitries [59,60]. In sum, our findings of IFO involvement

in the actual imagination of gustatory disgust are in support of the

important role of this region in regulating awareness and

embodiment of feeling states.

Supporting Information

Supplementary Materials S1

Found at: doi:10.1371/journal.pone.0002939.s001 (0.04 MB

DOC)

Figure S1 Script rating. The 12 participants of the fMRI

experiment rated all 25 available scripts on a scale ranging from 0–

6 according to how disgusting, how pleasant and how hard to

imagine they find them. On an individual basis, the 6 most

disgusting, the six most pleasant and the six most neutral (i.e. least

disgusting and least pleasant) scripts were then chosen for inclusion

in the fMRI experiment, and the average rating of the chosen

scripts shown in this figure (error bars representing the standard

error of the mean over the 12 subjects). * denote significant

matched-pair t-tests (2 tailed, p,0.01 uncorrected). Note that

ratings were only compared within each rating (i.e. the three

scripts were compared separately in terms of how disgusting they

were, how pleasant they were and how hard they were to imagine).

Found at: doi:10.1371/journal.pone.0002939.s002 (5.18 MB PDF)

Figure S2 Frames represent different time points of the 3 s

movies depicting facial expressions of disgust, neutral and pleased

gustatory experiences. See Jabbi et al., 2007 for detailed

description of this part of the methods.

Found at: doi:10.1371/journal.pone.0002939.s003 (1.30 MB PDF)

Figure S3 Sequence of events within a single taste trial. The

person with the headphone represents an experimenter while the

individual lying supine represents a participant in the scanner with

three tubes protruding into a pacifier in the mouth through which

various tastants are delivered. See Jabbi et al. for detailed

description of this part of the methods.

Found at: doi:10.1371/journal.pone.0002939.s004 (0.47 MB PDF)

Figure S4 Structure of an imagination trial in the scanner.

Found at: doi:10.1371/journal.pone.0002939.s005 (1.65 MB PDF)

Table S1

Found at: doi:10.1371/journal.pone.0002939.s006 (0.10 MB

DOC)

Table S2

Found at: doi:10.1371/journal.pone.0002939.s007 (0.05 MB

DOC)
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