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Abstract

Background: Circadian clocks are internal molecular time-keeping mechanisms that provide living organisms with the
ability to adjust their growth and physiology and to anticipate diurnal environmental changes. Circadian clocks, without
exception, respond to light and, in plants, light is the most potent and best characterized entraining stimulus. The capacity
of plants to respond to light is achieved through a number of photo-perceptive proteins including cryptochromes and
phytochromes. There is considerable experimental evidence demonstrating the roles of photoreceptors in providing light
input to the clock.

Methodology: In order to identify genes regulated by diurnal and circadian rhythms, and to establish possible functional
relations between photoreceptors and the circadian clock in tomato, we monitored the temporal transcription pattern in
plants entrained to long-day conditions, either by large scale comparative profiling, or using a focused approach over a
number of photosensory and clock-related genes by QRT-PCR. In parallel, focused transcription analyses were performed in
cry1a- and in CRY2-OX tomato genotypes.

Conclusions: We report a large series of transcript oscillations that shed light on the complex network of interactions
among tomato photoreceptors and clock-related genes. Alteration of cryptochrome gene expression induced major
changes in the rhythmic oscillations of several other gene transcripts. In particular, over-expression of CRY2 had an impact
not only on day/night fluctuations but also on rhythmicity under constant light conditions. Evidence was found for
widespread diurnal oscillations of transcripts encoding specific enzyme classes (e.g. carotenoid biosynthesis enzymes) as
well as for post-transcriptional diurnal and circadian regulation of the CRY2 transcript.
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Introduction

Plants have adapted their growth and development to make use of

the diurnal light/dark cycle. This is manifested at both the

physiological level, with leaf and stomatal movements, modulation

of growth, and photoperiodic flowering, and, at the molecular level,

with diurnal cycles in enzyme and gene activity. The day/night

cycling of gene expression is controlled, primarily, by light and

temperature and, secondarily, by a free-running internal molecular

timekeeper known as the circadian clock. The intimate connection

between light signalling pathways and the circadian oscillator allows

the anticipation of the environmental transitions and the measure-

ment of day-length as an indicator of changing seasons.

Our current understanding of the plant circadian clock derives

mostly from genetic studies in Arabidopsis thaliana and rice [1].

Commonly, the circadian clock system is divided into three parts

[2]: an input pathway that entrains the clock, by transmitting light

or temperature signals to the core oscillator, the central oscillator

(the clock), responsible for driving 24-h rhythms, and the output

signals that generate the fluctuation of a wide range of molecular,

biochemical and developmental responses.

Plants have evolved several classes of photoreceptors to monitor

their environmental light signals. These include red and far-red-

light–absorbing phytochromes (PHYs) and UV-A/blue light–

absorbing cryptochromes (CRYs) and phototropins [3,4]. Recent

evidence shows that UV-B and green light also affect plant

development, but the sensing mechanisms underlying these

responses have not been elucidated. Green light has been shown

to affect plant processes via both cryptochrome-dependent and

cryptochrome-independent pathways [5].

Genetic experiments with Arabidopsis mutants have established

roles for PHYA, PHYB, PHYD, PHYE, CRY1 and CRY2 in the

clock input pathway [6–8]. Light-labile PHYA is the predominant

photoreceptor at low intensities of red and blue light, whereas
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PHYB and CRY1 predominate at high intensities of red and blue

light, respectively [8]. Multiple photoreceptor mutants, such as

cry1 cry2 or phyA phyB cry1 cry2 [6], retain rhythmicity and are still

able to entrain the clock to a light-dark cycle, suggesting that

photoreceptors can provide light input to the clock in a redundant

fashion [9]. Also, novel putative photoreceptor families have been

implicated in circadian responses, such as the ZTL/FKF/ LKP2

family [10–13].

Considerable evidence exists for interaction among photore-

ceptors. For instance, PHYA and CRY1 directly interact at the

molecular level, with CRY1 serving as a phosphorylation substrate

for PHYA in vitro [14]. In vivo, CRY1 is phosphorylated in

response to red light in a far-red reversible manner [14]. A cry1

null mutant shows lengthened period in low intensity red or white

light, and there is no additivity seen in the double phyA cry1 mutant

[6]. This suggests that CRY1 acts as a signal transduction

component downstream from PHYA in the low intensity light

input pathway to the clock [15].

Genetic studies have implicated two other genes, EARLY

FLOWERING 3 (ELF3) and GIGANTEA (GI), in light signalling

to the clock. elf3 loss-of-function alleles result in early flowering,

hypocotyl elongation, and conditional arrhythmicity in continuous

light [16,17]. Genetic experiments suggest substantial redundancy

in ELF3 and PHYB function [18]. ELF3 interacts with PHYB and

seems to act as a negative modulator of PHYB signalling to the

clock, as ELF3 overexpression both lengthens the circadian period

and attenuates the resetting effects of red light pulses, whereas loss

of ELF3 function renders the plant hypersensitive to light signals

[16,17,19].

In Arabidopsis, GI positively regulates expression of the flowering

time genes CONSTANS (CO) and FLOWERING LOCUS T (FT). GI

encodes a nucleoplasmically localized protein that mediates a

number of responses, such as photoperiodic flowering, circadian

rhythms and phytochrome/cryptochrome signalling [20]. The key

roles played by GI are evident when analyzing the effect of gi mutants

over leaf movement and gene expression rhythms of multiple clock

controlled and flowering genes, including GI itself [21,22].

In-depth studies on Arabidopsis have begun to shed light on the

molecular mechanisms underlying the functioning of the circadian

clock. The current best candidates for Arabidopsis clock components

are CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) and its

redundant homolog LATE ELONGATED HYPOCOTYL

(LHY), which are transcription factors containing a single MYB

domain [23–25]. Furthermore, pseudo-response regulators (PRR),

GI, ZEITLUPE/ADAGIO (ZTL/ADO1), LOV KELCH PROTEIN

(LKP2), EARLY FLOWERING 3 and 4 (ELF3 and ELF4), LUX

ARRHYTHMO/PHYTOCLOCK (LUX/PCL1), TIME FOR COF-

FEE (TIC), SENSITIVITY TO RED LIGHT REDUCED (SRR1) and

TEJ [26,27], have also been involved in the circadian machinery.

The clock mechanism in Arabidopsis was first proposed to

comprise a feedback loop, in which two partially redundant genes,

LHY and CCA1, repress the expression of their activator, TOC1

[28]. This circuit cannot fit all experimental data [29], as a short-

period rhythm persists for several cycles both in lhy cca1 [30,31]

and in toc1 mutant plants [32]. Subsequently, many other clock-

associated genes have been identified and incorporated into the

simple model, resulting in a somewhat complicated interlocking

multiloop model, comprising the feedback loop between LHY,

CCA1, and TOC1, and a predicted, interlocking feedback loop

involving TOC1 and a hypothetical component Y [31]. The

model was recently extended, suggesting GI as a candidate for Y

and including a feedback loop between PRR7, PRR9 and

LHY\CCA1, giving rise to a three loop circuit [33]. Analysis of

the three-loop network suggests that the plant clock consists of

morning and evening oscillators, coupled intracellularly, which

may be analogous to coupled, morning and evening clock cells in

Drosophila and mouse [33].

Light signals typically trigger rapid changes in the mRNA levels

of transcription factors, but the position that they occupy in a

putative transcriptional cascade, and the steps interposed between

the photoreceptors and the first row of transcription factors, have

not been fully established [34]. Recent work using an expressed

sequence tag (EST)-based DNA microarray has suggested that

nearly one-third of the genome is regulated in white light. In

addition, the genome expression patterns largely overlap in 6-day-

old seedlings grown under white, far-red, red, and blue light. More

than 26 cellular pathways, ranging from DNA replication to

transcription, metabolism, protein degradation, plant defence, and

developmental regulation, have been found to be redundantly

regulated by all light signals [35].

Furthermore, Schaffer and collaborators observed that 11% of

genes showed differential expression at one or more of the phases

tested during a light/dark cycle [36]. A large fraction of Arabidopsis

genes that showed diurnal regulation was also circadian-regulated, as

revealed by differential transcript abundance under constant light

conditions [37,36]. Oligo-based microarray experiments on Arabi-

dopsis [37] allowed the detection of circadian oscillations in mRNA

abundance of 5–6% of the 8200 genes examined. In tomato, several

photosynthesis-associated genes, including RBCS, LHCI and LHCII,

PSAD, and OEE1, were shown to be regulated in a circadian fashion

through Northern blot and nuclear run-on experiments [38].

Here, we report the characterization of temporal transcript

oscillations within the tomato genome using the novel, long oligo-

based TOM2 microarray. Focused Real Time RT-PCR analyses

over photoreceptor gene transcripts in both wild type tomato and

genotypes with altered cryptochrome gene expression provided

useful information about possible functional interactions between

cryptochromes and the circadian clock machinery, as well as on

regulatory interactions between different photoreceptors.

Results

In order to identify transcripts showing temporal rhythmicity

and to establish possible functional relations between photorecep-

tors and the circadian clock machinery in tomato, we performed

extensive transcription analyses using the TOM2 microarray and

using Quantitative Real-Time PCR (QRT-PCR) of the PHYA,

PHYB1, PHYB2, PHYE, PHYF [39] and CRY1a, CRY1b, CRY2

genes [40,41]. Additional genes, already known to be regulated by

the circadian clock in other plant species, including GI and LHC,

were also investigated by QRT-PCR [21,38].

Wild-type (wt) tomato plants were grown under a light cycle of

16h light/8h darkness (LD), as described in Materials and

Methods, and sampled every 4h for 24 hours. Because diurnal

changes of gene expression frequently reflect an underlying

circadian rhythm, tomato plants entrained in LD were transferred

to light constant conditions (LL), and then gene expression was

monitored for additional 40 h at 4h intervals. Two genotypes with

altered cryptochrome gene expression, cry1a- and CRY2-OX

[42,43], were also included in the experimental scheme.

To classify the time points at which the sampling was carried

out, we used Zeitgeber time (ZT), that is defined as the time in

hours from the start of a normal 16 h light–8 h dark cycle [44].

Transcriptional profiling using the TOM2 microarray
We hybridised the TOM2 microarray with target RNAs

extracted from ZT0 (presumptive dawn), ZT8 (eight hours after

dawn), ZT16 (presumptive dusk) and ZT20 (four hours after dusk),
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in LD conditions (see Materials and Methods). The experimental

design compared three time points to ZT0 used as a common

reference: ZT8 vs. ZT0, ZT16 vs. ZT0 and ZT20 vs. ZT0.

Transcripts corresponding to microarray spots which passed

ANOVA test at ZT8/ZT0, ZT16/ZT0, ZT20/ZT0 and showing

an expression difference greater than three-fold in at least one of

the time points (see Materials and Methods) were classified as

diurnally regulated. According to this criterion, 1016 transcripts

showed a diurnally regulated expression pattern, corresponding to

15% of all spots (6953) which passed quality controls (see Materials

and Methods). Compared to their expression at dawn (ZT0), the

majority of the genes coding for mitochondrial and cytosolic

proteins were up-regulated in the middle of the light phase (ZT8)

while the genes coding for ribosomal, nuclear and thylakoid

proteins were preferentially more expressed at dusk (ZT16)

(Figure 1A). Many genes coding for cytoplasmic membrane, cell

wall and plastid proteins showed an up-regulation in the dark

phase (ZT20) (Figure 1A). Regarding their molecular function,

several genes coding for proteins involved in ‘‘transporter and

transferase activity’’ were preferentially more expressed at dusk

(ZT16), while two thirds of the genes up-regulated at ZT20 are

associated with transcriptional control (‘‘transcription factor

activity and DNA or RNA binding’’ categories) (Figure 1B).

In order to identify representative expression patterns of day/

night regulated genes, we performed cluster analysis according to

similarity of gene expression patterns at ZT8/ZT0, ZT16/ZT0

and ZT20/ZT0. Among transcripts with higher relative accumu-

lation in the middle of the light phase (ZT8) (Figure 2, cluster 1) or

both at ZT8 and at the presumptive dusk (ZT16) (Figure 2, cluster

4), we found many stress-responsive genes, such as genes coding

for peroxidases, caspases, salt tolerance proteins, oxygenases and

some members of the WRKY family [45]. Other transcripts in

these clusters are involved in circadian rhythms, light signal

transduction and flowering - PSEUDO-RESPONSE REGULATOR

7 (PRR7), FLAVIN-BINDING, KELCH REPEAT, F-BOX 1 (FKF1),

CONSTANS-LIKE 1 (COL1), and the flowering time gene GI

[46,11,21]. Finally, these clusters included a number of genes

implicated in the light-harvesting reactions of photosynthesis that,

as expected, are more expressed in the light phase.

The converse clusters (Figure 2, cluster 3 and cluster 2)

represent transcripts relatively more abundant in the dark phase

(ZT20) or up-regulated at dusk (ZT16) and persisting at ZT20.

These clusters contain elements involved in cellular communica-

tion and signal transduction and several transcripts involved in

glycolysis/glycogenolysis and in the tricarboxylic acid cycle. We

have also found some genes involved in the carotenoid pathway

and several transcription factors of the WRKY, MYB, bHLH,

leucine zipper, and zinc finger families.

Transcripts with a peak or a trough at the presumptive dusk

(ZT16) are grouped, respectively, in cluster 6 and cluster 5

(Figure 2). Like for cluster 1, these clusters contain several genes

coding for stress responsive-proteins. In particular protease

inhibitors, endotransglycosylases, the cold stress responsive protein

DREB1A [47] and a cell death-associated protein decreased at

presumptive dusk (ZT16), while transcripts peaking at dusk

comprise the circadian clock related gene, ELF4 [48].

Several transcripts are differentially regulated at least three-fold

simultaneously at all time points (ZT8, ZT16 and ZT20) (Student’s

t test P#0.05) with respect to presumptive dawn (ZT0) (Table 1).

Among the 27 transcripts with higher expression at ZT0 we found

elements related to light signalling and flowering (Table 1B). These

include a MYB-related transcription factor, LATE ELONGATED

HYPOCOTYL (LHY), a member of the YABBY family (ABNOR-

MAL FLORAL ORGANS (AFO)), CONSTANS-LIKE 1 (COL1),

SUPPRESSOR OF PHYTOCHROME A (SPA1), and EARLY LIGHT

INDUCIBLE (ELIP) genes [49–52]. Several of the 37 transcripts

with lower expression at ZT0 are related to stress responses and

hormone pathways (Table 1A). As expected, the PSEUDO-

RESPONSE REGULATOR 7 (PRR7) transcript is also less expressed

at dawn [46].

Transcription of cryptochrome and phytochrome photoreceptor

genes was detected on the microarray. These genes were further

assayed in depth by QRT-PCR with similar results (Figure 3).

Given the higher resolution and sensitivity of the latter assay, we

report the QRT-PCR data below.

Diurnal mRNA oscillations of tomato photoreceptor
genes

We measured, by QRT-PCR, changes of mRNA accumulation

of tomato phytochrome (PHYA, PHYB1, PHYB2, PHYE, PHYF)

and cryptochrome (CRY1a, CRY1b, CRY2) transcripts under LD at

4-h intervals for 24 h. Although with differences in amplitude,

most of the tomato photoreceptor transcripts showed diurnal

fluctuations, reaching maximum expression between ZT8 and

ZT12, and, with the exception of PHYB1, declined significantly

during the dark period (Figure 4). The absolute expression and

amplitude of the fluctuations of PHYF were significantly reduced

relative to the other tomato photoreceptors (Figure 4D). The

expression pattern of CRY1b was somewhat divergent from the

other photoreceptors (Figure 4A). Only in early-morning (ZT4),

CRY1b transcripts showed a trough (Figure 4A). CRY1b was also

the most abundant photoreceptor transcript among those tested,

remaining high throughout the 24h period.

In general, comparative analyses of diurnal expression pattern of

phytochrome and cryptochrome genes showed qualitatively com-

parable oscillation phases, though significant differences in mRNA

abundance were detected throughout the 24h period (Figure 4).

Concerning the overall amplitude of oscillations, photoreceptor

transcripts showed modest fold-changes, ranging from about 26
(PHYF) to 76 (PHYB2) (Figure 4), compared to other diurnally

regulated and circadian genes like LHC4 and GI (see below).

Circadian rhythmicity of tomato photoreceptor
transcripts in LL conditions

One of the diagnostic features of circadian rhythms is that they

persist under constant light or darkness conditions. To determine

whether the rhythmic fluctuations of the photoreceptor transcripts

observed in LD conditions were maintained also in LL conditions,

we measured their transcription in plants transferred to LL, after

entraining the clock in LD. Samples were harvested at 4h intervals

during a period of 40 h.

Under LL, transcript levels of CRY1b, CRY2, and PHYB2

continued to cycle, suggesting that the circadian clock controls the

expression of these genes (Figure 5). PHYB1 and PHYE transcripts

lost any detectable oscillation, while PHYF showed increased

oscillation, compared to LD conditions.

Effects of cryptochrome gene perturbation on expression
of tomato photoreceptor genes in LD and LL

To study possible effects of cryptochrome-mediated light signals

on the expression profiles of tomato photoreceptor genes, we

compared mRNA levels in LD conditions in wt, in a cry1a- mutant

[42] and in a CRY2 transgenic over-expressor (CRY2-OX) [43].

The results indicated that loss of CRY1a as well as the over-

expression of CRY2 influenced the diurnal transcription profiles of

several genes (Figure 6). In cry1a- or CRY2-OX plants, most tomato

photoreceptor transcripts continued to cycle in LD conditions with
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the same phase as the wt, although with reduced or increased

amplitude.

Major alterations involved CRY1a, CRY2, PHYA, PHYB2 and

PHYF transcripts. Interestingly, in the cry1a- background, the peak of

the (non functional) CRY1a and of the CRY2 transcripts was

increased by about 2-fold with respect to the wt (Figure 6A). In

CRY2-OX plants, as expected for the presence of the transgene, the

CRY2 mRNA was about 10–15 fold more abundant relative to the wt

(Figure 6A). Remarkably, the CRY2 transcript, over-expressed under

the control of the 35S promoter still showed vigorous LD cycles

(Figure 6A). PHYA transcripts were altered in a similar way in both

the cry1a- and CRY2-OX backgrounds, showing a decrease of mRNA

abundance especially at ZT12 (Figure 6B). A different effect was

observed for PHYB2, whose oscillation was slightly increased in

cry1a- and reduced in CRY2-OX plants (Figure 6B). Finally, PHYF

mRNA shows a dramatic increase in the cry1a- genotype (Figure 6B).

Figure 1. The impact of diurnal transcript oscillations on different categories of genes based on Gene Ontology. The percentages of
diurnally regulated genes classified by cellular compartment (A) and by molecular function (B). Black bars: ZT20/ZT0. White bars: ZT16/ZT0. Grey bars:
ZT8/ZT0.
doi:10.1371/journal.pone.0002798.g001
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Figure 2. Clustering analysis of diurnally regulated genes (P # 0.05). Idealized graphs, representing patterns of expression at ZT8/ZT0, ZT16/
ZT0 and ZT20/ZT0, are shown.
doi:10.1371/journal.pone.0002798.g002
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Table 1. Transcripts up-regulated (A) and down-regulated (B) at ZT0

zt8/zt0 zt16/zt0 zt20/zt0 A

Ratio P-value Ratio P-value Ratio P-value Gene_ID Annotation

40,676 1,95E-02 37,195 4,81E-02 3,877 1,54E-02 sgn-U216348 APRR7 (APRR1/TOC1 family)

24,081 4,26E-03 46,603 1,13E-03 6,864 2,26E-03 sgn-U227341 short-chain dehydrogenase/reductase family protein

23,893 2,95E-03 5,277 2,44E-05 5,734 8,85E-04 sgn-U243036 unknown protein

21,624 1,73E-02 11,585 1,59E-02 3,264 1,18E-03 sgn-U214829 expressed protein

17,494 5,50E-04 3,399 3,04E-05 3,174 4,03E-03 sgn-U221348 expressed protein

17,069 1,99E-02 6,311 1,08E-02 3,050 2,09E-02 sgn-U231435 O-methyltransferase family 2 [Arabidopsis thaliana]

16,724 1,77E-02 8,194 8,13E-03 3,486 6,39E-03 sgn-U213589 protease inhibitor/seed storage/lipid transfer protein (LTP) family

15,621 3,66E-02 9,834 1,67E-02 8,262 3,62E-03 sgn-U214471 hydrolase, alpha/beta fold family

15,516 8,20E-03 10,086 2,04E-02 5,105 2,61E-02 sgn-U214470 hydrolase, alpha/beta fold family

15,269 1,02E-03 10,456 1,82E-03 5,413 6,03E-03 sgn-U218302 wound-responsive protein -related

12,718 1,21E-03 15,622 1,29E-02 6,601 2,23E-02 sgn-U233539 unknown protein

12,709 2,02E-02 12,884 2,01E-03 3,550 1,60E-03 sgn-U216720 cellulose synthase catalytic subunit

11,701 1,19E-02 3,192 3,78E-02 5,116 2,21E-02 sgn-U215735 heavy-metal-associated domain-containing protein

10,576 2,96E-02 10,126 1,65E-02 7,662 1,66E-03 sgn-U226639 cysteine protease XBCP3

10,292 2,30E-03 3,273 2,51E-02 9,745 1,96E-02 sgn-U222678 ABC transporter family protein similar to ABC1 protein

10,171 3,45E-02 3,181 8,48E-03 3,391 2,79E-02 sgn-U220461 unknown protein

9,650 1,78E-02 3,970 3,15E-03 6,221 2,55E-06 sgn-U213637 WRKY family transcription factor DNA-binding protein 4 WRKY4

9,611 1,51E-03 4,667 2,63E-02 3,541 1,27E-02 sgn-U217986 patatin-like latex allergen [Hevea brasiliensis]

9,092 1,10E-03 11,458 3,00E-04 3,311 6,37E-03 sgn-U220022 CLH2_ARATH Chlorophyllase 2

8,844 1,46E-02 6,183 9,89E-03 3,503 8,60E-03 sgn-U213926 drought-induced protein SDi-6 -

8,427 1,26E-02 6,856 6,09E-04 5,731 3,95E-03 sgn-U212562 glutamate decarboxylase 1 (GAD 1)

8,292 3,03E-02 4,683 1,71E-02 3,999 1,13E-02 sgn-U225595 AUX/IAA family

7,781 3,55E-03 3,635 2,40E-03 3,167 1,91E-04 sgn-U213578 BEL1-related homeotic protein 11 [Solanum tuberosum]

7,479 1,53E-02 6,450 2,52E-02 8,916 4,75E-03 sgn-U222728 senescence-associated protein -related

7,392 1,01E-03 3,554 6,16E-03 3,866 6,33E-03 sgn-U216076 receptor serine/threonine kinase PR5K [Arabidopsis thaliana]

7,323 1,37E-02 3,318 2,05E-02 6,838 9,15E-05 sgn-U224875 heat shock protein family

6,728 2,91E-02 5,074 6,38E-03 3,774 2,95E-03 sgn-U216827 cysteine proteinase

6,554 2,01E-03 8,854 3,68E-03 3,714 1,33E-02 sgn-U216414 unknown protein

5,751 4,52E-02 3,631 7,63E-03 3,077 1,24E-03 sgn-U213519 dehydration-induced protein (ERD15)

5,290 4,44E-03 7,321 2,52E-03 3,511 2,60E-04 sgn-U218536 serine/threonine protein kinase

5,208 4,04E-02 3,078 6,31E-03 3,248 2,52E-02 sgn-U232570 unknown protein

5,179 6,48E-03 3,203 4,97E-03 4,092 4,23E-03 sgn-U212706 light regulated protein -related

4,860 8,15E-03 4,314 1,92E-02 4,049 1,99E-03 sgn-U219226 senescence-associated protein

3,926 3,33E-02 4,668 3,77E-03 3,059 9,41E-03 sgn-U229252 nitrate transporter NRT1-1 [Glycine max]

3,864 1,81E-02 3,788 2,82E-02 3,152 2,06E-02 sgn-U214216 putative steroid membrane binding protein [Oryza sativa (japonica
cultivar-group)]

3,697 9,00E-03 5,706 1,16E-02 10,814 9,84E-04 sgn-U215359 1-aminocyclopropane-1-carboxylate oxidase homolog (Protein E8)

3,071 1,25E-02 3,300 2,47E-02 8,554 7,00E-03 sgn-U217504 zinc finger (C3HC4-type RING finger) family protein (RMA1)

zt8/zt0 zt16/zt0 zt20/zt0 B

Ratio P-value zt16 P-value zt20 P-value Gene_ID Annotation

0,004 1,16E-04 0,046 8,98E-05 0,193 5,89E-04 sgn-U218628 protein kinase family

0,001 7,75E-05 0,072 2,18E-03 0,251 4,60E-06 sgn-U227452 heat stress transcription factor HSFA9 [Helianthus annuus]

0,009 7,76E-05 0,119 1,17E-04 0,155 2,10E-04 sgn-U220755 protease inhibitor/seed storage/lipid transfer protein (LTP) family

0,026 3,27E-07 0,009 8,04E-09 0,021 2,25E-08 BT012912 Lycopersicon esculentum clone 114030R

0,044 4,58E-04 0,094 1,45E-02 0,018 1,52E-05 sgn-U237511 LHY

0,048 2,51E-05 0,067 2,03E-06 0,181 1,05E-05 sgn-U227174 pectinesterase family

0,054 9,85E-07 0,142 8,72E-06 0,299 1,38E-04 sgn-U226241 L-aspartate oxidase family

0,082 1,55E-07 0,099 3,47E-06 0,010 9,01E-08 sgn-U217418 heat shock protein 81-1 (HSP81-1/heat shock protein 83/HSP83)
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In order to determine possible roles of cryptochromes on the

function of the tomato circadian clock, we compared the changes

in the mRNA abundance of photoreceptor genes, in wt, cry1a- and

CRY2-OX plants grown under LL. Our results showed that loss of

CRY1a as well as over-expression of CRY2 influenced the circadian

transcription profiles of a number of photoreceptor genes,

including CRY1a, CRY2, PHYA, PHYB2 and PHYF (Figure 7). As

already observed in LD, the rhythm in CRY2 expression was not

affected by CRY2 over-expression, although the transcript levels

were 10–15 fold more abundant relative to those observed in wt

Figure 3. Pearson’s correlations between gene expression levels of photoreceptors determined by QRT-PCR and the TOM2
microarray.
doi:10.1371/journal.pone.0002798.g003

Table 1. cont.

zt8/zt0 zt16/zt0 zt20/zt0 B

Ratio P-value zt16 P-value zt20 P-value Gene_ID Annotation

0,085 2,63E-06 0,005 2,64E-06 0,248 1,85E-04 sgn-U213666 expressed protein

0,085 3,42E-06 0,272 1,45E-03 0,152 2,15E-05 sgn-U218682 abnormal floral organs protein (AFO) (FIL) YABBY1 (YABBY1)

0,087 2,09E-06 0,087 4,49E-06 0,286 3,94E-04 sgn-U215829 beta-carotene hydroxylase

0,090 2,96E-06 0,177 7,57E-05 0,109 5,24E-06 sgn-U222349 expressed protein

0,097 1,03E-06 0,163 1,16E-05 0,256 3,41E-05 sgn-U222883 phytochrome A supressor spa1

0,104 4,28E-05 0,177 4,42E-05 0,083 1,70E-05 sgn-U216986 DnaJ protein AtJ3

0,130 1,02E-04 0,035 1,74E-05 0,071 1,76E-07 sgn-U212621 AMP-dependent synthetase and ligase family

0,140 1,13E-04 0,041 8,67E-03 0,169 6,02E-06 sgn-U214765 copper-binding protein family

0,188 2,52E-06 0,128 6,98E-06 0,132 1,31E-05 sgn-U222990 expressed protein

0,198 2,22E-04 0,182 2,45E-04 0,278 8,19E-04 sgn-U217455 linker histone protein -related

0,215 3,86E-04 0,128 1,22E-06 0,144 2,38E-05 AY547273 early light inducible protein (ELIP)

0,216 8,70E-06 0,223 7,48E-05 0,285 2,17E-06 sgn-U222868 phytochelatin synthetase

0,218 1,29E-05 0,029 1,13E-02 0,091 4,92E-05 sgn-U224520 FtsH protease

0,240 1,21E-04 0,111 3,91E-02 0,244 2,01E-04 Control-4 2-oxoglutarate-dependent dioxygenase

0,249 2,15E-05 0,325 1,00E-04 0,323 6,23E-05 sgn-U215717 omega-6 fatty acid desaturase

0,267 2,02E-03 0,060 1,72E-03 0,021 6,00E-05 sgn-U218114 myb family transcription factor [Arabidopsis thaliana]

0,270 2,49E-04 0,130 5,06E-06 0,132 1,18E-05 sgn-U221454 ammonium transporter

0,320 2,19E-06 0,145 1,02E-06 0,097 2,92E-06 sgn-U217678 delta 9 acyl-lipid desaturase (ADS1)

0,324 1,92E-03 0,137 2,81E-03 0,006 3,73E-07 sgn-U225455 CONSTANS-LIKE 1 (COL1)

doi:10.1371/journal.pone.0002798.t001
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Figure 4. Diurnal oscillations of Cryptochrome and Phyto-
chrome transcripts analyzed by QRT-PCR in tomato plants
grown in LD conditions. Results are presented as a proportion of the
highest value after normalization with b-actin. Open and closed bars
along the horizontal axis represent light and dark periods, respectively.
Time points are measured in hours from dawn (zeitgeber Time [ZT]).
Data shown are the average of two biological replicates, with error bars
representing SEM. Time points of CRY1a, CRY2, PHYA, PHYB1, PHYB2,
PHYE and PHYF transcripts significantly different from the correspond-
ing ones of the CRY1b gene (Student’s t test, P # 0.05) are marked with
an O. Time points significantly different from the highest transcription
value (Student’s t test, P # 0.05) are marked with an X.
doi:10.1371/journal.pone.0002798.g004

Figure 5. Circadian oscillations of Cryptochrome and Phyto-
chrome transcripts in tomato plants entrained in LD conditions
and then transferred to LL. Results are presented as a proportion of
the highest value after normalization with b-actin. Open and hatched
bars along the horizontal axis represent light and subjective night
periods, respectively. Time points are measured in hours from dawn
(zeitgeber Time [ZT]). Data shown are the average of two biological
replicates, with error bars representing SEM. Time points of CRY1a,
CRY2, PHYA, PHYB1, PHYB2, PHYE and PHYF transcripts significantly
different from the corresponding ones of the CRY1b gene (Student’s t
test, P # 0.05) are marked with an O. Time points significantly different
from the highest transcription value (Student’s t test, P # 0.05) are
marked with an X.
doi:10.1371/journal.pone.0002798.g005
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(Figure 7A). Circadian oscillations of PHYA appeared to be

repressed in CRY2-OX, following transfer to LL conditions, with a

low amplitude oscillation remaining in cry1a- (Figure 7B). CRY2

over-expression dramatically reduced the amplitude of PHYB2

oscillations (Figure 7B). Finally, as for LD experiments, the PHYF

transcription was dramatically increased under LL conditions in

the cry1a- genotype (Figure 7B).

Oscillation of tomato GI and LHC4 mRNAs and the effect
of cryptochromes

In LD conditions, GI transcripts oscillated about 800-fold, with

a peak at ZT12, and a trough between ZT20 and ZT0 (Figure 8A).

The LHC4 peak occurred 4 h earlier (ZT8) (Figure 8A), and the

trough 12 h later (ZT20) than GI (Figure 8A), with an 84-fold

difference in transcript abundance. Interestingly, LHC4 transcripts

Figure 6. Effect of CRY1a loss-of-function and CRY2 over-expression on diurnal expression of tomato cryptochrome (A) and
phytochrome (B) genes. Wt, cry1a- and CRY2-OX tomato plants were grown under LD conditions. The abundance of the mRNAs were measured by
QRT-PCR. Results are presented as a proportion of the highest value after normalization with b-actin. Open and closed bars along the horizontal axis
represent light and dark periods, respectively. Time points are measured in hours from dawn (zeitgeber Time [ZT]). An additional panel depicts CRY2
transcript values in wt and cry1a- genotypes to avoid the masking effect of CRY2-OX values. Data shown are the average of two biological replicates,
with error bars representing SEM. Circles (O) indicate time points of CRY2-OX and cry1a- genotypes, significantly different from the corresponding
ones in wt genotype (Student’s t test, P # 0.05). For each genotype X indicate time points significantly different from the highest transcription value
(Student’s t test, P # 0.05).
doi:10.1371/journal.pone.0002798.g006
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increased slightly in darkness from ZT20 to ZT24, showing an

anticipation of ‘‘light-on’’ that is typical of circadian-regulated,

particularly of LHC genes (Figure 8A) [53].

Under LL, GI and LHC4 mRNA levels continued to cycle,

although with a much reduced amplitude (Figure 8B), showing

that transcription of these genes is partially controlled by the

endogenous circadian clock. LL conditions affected both the

amplitude/phase of oscillations as well as the abundance of the

mRNAs (Figure 8B).

In the cry1a- genotype, both GI and LHC4 transcripts showed a

reduction of the peak at ZT12. In addition, a slight phase shift was

evident which anticipated the transcription peak at ZT4

(Figure 8A), while no major alterations were observed in the

CRY2-OX genotype.

Under LL conditions, neither CRY1a loss nor CRY2 over-

expression have dramatic effect on GI and LHC4 expression

(Figure 8B).

Discussion

Diurnal expression of the tomato genome
Using the TOM2 microarray, we identified 1016 diurnally

regulated genes, corresponding to about 15% of the spots that

passed quality controls. Though by using high cutoff (.3x) values

Figure 7. Effect of CRY1a loss-of function and CRY2 over-expression on circadian expression of tomato cryptochrome (A) and
phytochrome (B) genes in LL. Wt, cry1a- and CRY2-OX tomato plants were entrained under LD cycles and then transferred to LL. The abundance
of the mRNAs were measured by QRT-PCR. Results are presented as a proportion of the highest value after normalization with b-actin. Open and
hatched bars along the horizontal axis represent light and subjective night periods, respectively. Time points are measured in hours from dawn
(zeitgeber Time [ZT]). An additional panel depicts CRY2 transcript values in wt and cry1a- genotypes to avoid the masking effect of CRY2-OX values.
Data shown are the average of two biological replicates, with error bars representing SEM. Circles (O) indicate time points of CRY2-OX and cry1a-
genotypes, significantly different from the corresponding ones in wt genotype (Student’s t test, P # 0.05). For each genotype, X indicate time points
significantly different from the highest transcription value (Student’s t test, P # 0.05).
doi:10.1371/journal.pone.0002798.g007

Diurnal Profiling

PLoS ONE | www.plosone.org 10 July 2008 | Volume 3 | Issue 7 | e2798



we might have excluded a certain number of transcripts cycling

with lower amplitude, it is evident that in tomato, like in

Arabidopsis, diurnal rhythms in gene expression affect a large

portion of the transcriptome [36]. The majority of dirunally

regulated genes showed a peak at midday (ZT8), while the other

transcription peaks appeared evenly distributed at the other time

points, supporting the occurrence of highly coordinated and

alternated metabolic processes (see supplementary Data S1).

Given the cyclic nature of many physiological processes driven

by photo- and thermocycles [54], it is expected that the majority of

transcripts involved in the biosynthesis of mitochondrial and

cytosolic proteins peak in the middle of the light phase (ZT8)

(Figure 1A). This can be attributed to the fact that the biosynthetic

processes correlated to photosynthesis and energy metabolism are

usually more active in light hours. Similarly, the fact that several

transcripts coding for proteins involved in transport, transferase

activity and in the transcription control machinery were also

abundant at dusk (ZT16) and during the night (ZT20) (Figure 1B)

indicates that, during the hours of darkness, synthesis of these

proteins is still active.

Several transcripts with higher levels during daylight (ZT8 to

ZT16), grouping in clusters 2 and 4 (Figure 2), encode for protein

elements involved in photosynthesis and stress response elements.

The latter, that include a number of transcription factors – MYB,

WRKY, bHLH, salt tolerance proteins, peroxidases, oxygenases

and others, could have a major role to adapt tomato plants to day

conditions, such as excess of light and higher temperatures.

Conversely, several transcripts relatively more abundant in

during the dark phase (ZT16 to ZT20), grouped in clusters 2 and 3

(Figure 2), are related to biochemical processes occurring in

darkness. We found genes involved in nitrogen and sulfur

assimilation, as well as key genes involved cell wall loosening,

such as xyloglucan endotransglycosylase and expansin. Most of

these genes are already known to be down-regulated during

daylight in Arabidopsis [35]. Thus, it seems that these processes are

diurnally regulated in both Arabidopsis and tomato.

Plants need protection from the damaging effects of reactive

oxygen species generated by the excess of light; in green tissues,

carotenoids prevent the chlorophyll-photosensitized formation of

highly destructive singlet oxygen by quenching the chlorophyll

triplet states, scavenging reactive oxygen species. Furthermore,

they have an antenna function and transfer the energy of absorbed

light at the singlet excited state level to the chlorophyll system for

the execution of photosynthesis [55]. Structural genes of the

Figure 8. Effect of CRY1a loss and CRY2 over-expression on light induced transcription of tomato GI and LHC4 genes. Wt, cry1a- and
CRY2-OX tomato plants were grown under LD (A) and LL (B) conditions. The abundance of the mRNAs of GI and LHC4 genes were measured by QRT-
PCR. Results are presented as a proportion of the highest value after normalization with b-actin. Open, closed and hatched bars along the horizontal
axis represent light, dark and subjective night periods, respectively. Time points are measured in hours from dawn (zeitgeber Time [ZT]). Data shown
are the average of two biological replicates, with error bars representing SEM. Circles (O) indicate time points of CRY2-OX and cry1a- genotypes,
significantly different from the corresponding ones in wt (Student’s t test, P # 0.05). For each genotype, X indicate time points significantly different
from the highest transcription value (Student’s t test, P # 0.05).
doi:10.1371/journal.pone.0002798.g008

Diurnal Profiling

PLoS ONE | www.plosone.org 11 July 2008 | Volume 3 | Issue 7 | e2798



pathway appear to be diurnally regulated, although with different

phases (Figure 2): ZEAXANTHIN EPOXIDASE (ZEP) is found in

cluster 1, VIOLAXANTHIN DE-EPOXIDASE (VDE) and PHY-

TOENE SYNTHASE (PSY) in cluster 2, b-CAROTENE HYDROX-

YLASE (CHY) in cluster 3, DEOXYXYLULOSE 5-PHOSPHATE

SYNTHASE (DXS) in cluster 4. Although light regulation of

carotenoid gene transcription is a well known phenomenon [56],

diurnal rhythms in gene expression have been reported, to date,

only for ZEP [57]. Our data indicate that these rhythms are

widespread in transcripts encoding carotenoid biosynthesis

enzymes. This observation remains to be interpreted, in

combination with data on the diurnal abundance and activity of

the corresponding enzymes.

A good example of a possible coordinated response of tomato

plants to abiotic stresses is given by the cyclic transcript oscillations

of the DREB1A and DREB2 transcription factors (Figure 2,

clusters 1 and 5). In Arabidopsis, DREB1A gene and its two

homologs are implicated in response to low-temperature stress, in

a manner independent of ABA, and its transcripts peak during the

presumptive day, whereas expression of the DREB2A gene and its

single homolog was induced by dehydration [47,58]. Thus, it is

plausible that the observed increment of DREB transcripts at ZT8

in tomato plants under LD conditions provide appropriate defense

against changing temperature and dehydration occurring during

light hours. The expression pattern of DREB1A evidenced a

consistent increment of its transcripts at dark (ZT20) (Figure 2,

cluster 5), possibly due to the decrease of ambient temperature at

the presumptive dusk (ZT16) (see Material and Methods).

Several tomato homologues of the genes involved in the circadian

clock feedback-loop in Arabidopsis [59] were found to oscillate in a

similar phase in tomato: the morning element LHY was up-regulated

ad dawn (Table 1); while PRR7, thought to establish a negative loop

with CCA1/LHY, was more expressed during daylight (ZT8-ZT16)

and down-regulated at dawn (Figure 2, cluster 4 and Table 1). ELF4

and GI (discussed more in detail below), which are putatively

involved in feedback-loops with CCA1/LHY and TOC1/LUX,

respectively [33], were accordingly more expressed around dusk

(Figure 2, clusters 6 and 4). These results suggest that the basic

molecular machinery of the circadian clock is conserved in higher

plants. Furthermore, the fact that a number of other elements, like

FKF1 [11] and SPA1 [50] related to the input/output signalling of

the Arabidopsis circadian clock, but also involved in flowering and

light transduction, showed similar transcript fluctuations in tomato

(Figure 2, cluster 4 and Table 1) suggests that molecular interactions

between the clock core and input/output pathways are also partially

conserved. However, it must be considered that our dataset is largely

incomplete and does not represent the actual complexity of

transcript network interactions described in Arabidopsis.

Temporal modulation of cryptochrome and
phytochrome transcripts

Previous experiments in Arabidopsis have established a funda-

mental role of phytochromes and cryptochromes in providing light

input to the plant circadian clock [15,53]. In tomato, as for

Arabidopsis, we observed a bi-directional regulatory crosstalk

between the clock machinery and photoreceptors which allowed

the latter to determine significant changes on the temporal

transcription pattern of genes under the control of the first.

As seen in Arabidopsis [53], tomato PHY and CRY genes followed

a diurnal rhythm and exhibited maximum expression in the light

phase (Figure 4A-D). Tomato photoreceptor transcripts, except for

CRY1b, appeared to be synchronized and peaked during the

presumptive afternoon, (Figure 4A-D). By contrast, in Arabidopsis

gene expression trends are different between photo-stable and

photo-labile photoreceptors. Indeed, light-stable photoreceptors

are highly expressed at the beginning (PHYC, PHYD, and PHYE)

or in the first half (PHYB and CRY1) of the light phase, while

photo-labile PHYA and CRY2 reach their maximum transcript

abundance close to the end of the light interval. Unfortunately,

data on the photo-stability of tomato photoreceptors are not yet

available. The massive accumulation, in late afternoon, of most of

the tomato photoreceptor transcripts, including CRY-DASH [60],

might reflect the different photoperiodic behaviour of the two

species (long-day for Arabidopsis, day-neutral for cultivated tomato).

The temporal regulation of CRY1b expression, whose mRNA was

the most abundant among the analyzed photoreceptors, did not

show remarkable fluctuations during the day, and was quite different

from that of the other CRY genes (Figure 4A). Despite its high

sequence similarity with CRY1a, this gene is not yet functionally

characterized. The similarities of the expression patterns of PHYA,

CRY1a and CRY2 genes in both LD and LL (Figure 4B and

Figure 5B), namely high levels of expression in the second part of the

day (ZT8-16) and very low transcript abundances during the night,

could be potentially related to overlapping functions and/or

cooperation in their physiological roles.

PHYB1 was the most abundant among phytochrome transcripts,

followed by PHYB2, PHYE and PHYA, while PHYF is by far the

least expressed phytochrome transcript in tomato green tissues

(Figure 4). In LD, the expression peak of all phytochrome genes

was between ZT8-ZT12 with no major phase differences. The

amplitude of the oscillations was quite modest, with the sole

exception of PHYB2 that showed a 7-fold difference between

through and peak transcript levels (Figure 4). These data contrast

with a previous report [61] which evidenced a phase shift of about

10 hours between diurnal transcription rhythms of PHYB1 and

PHYB2. However, it must be taken in account that the authors

used a quite different experimental set-up, with tomato plants

grown in greenhouse and without supplemental illumination. This

specific timing of transcript accumulation suggests that photore-

ceptor-mediated input signalling to the clock machinery may be

particularly synchronized in tomato.

The fact that under LL all tomato cryptochromes plus PHYA,

PHYB2 and PHYF seem to keep their oscillations following a

period close to 24 hours, though with lower amplitude and minor

changes in the phase of the peaks (Figure 5A-D), hints that a

circadian clock regulates the expression of these photoreceptors, as

seen in the Arabidopsis closest homologs, PHYA, PHYD and PHYF

[53]. In contrast, PHYB1 and PHYE lose their rhythmicity in LL

(Figure 5A, C), while the most closely related Arabidopsis homologs,

PHYB and PHYE continue to cycle in LL with a peak at the

beginning or in the first one-half of the light phase [53]. The

different regulation in the two plants could reflect the different

functional organization of the photoreceptor gene families.

Differently from Arabidopsis, tomato flowering is day-neutral.

In LL, early into the presumptive night (ZT20), an increment in

the CRY2, PHYB2 and PHYF transcript levels with respect to the

correspondent LD point was evident (Figure 5). This difference may

be explained through postulating direct activation by light. The

actual transcript levels appear to be then partially restored to the

‘‘normal’’ light/dark oscillation; this is possibly caused by some

feedback action mediated by the clock machinery. This hypothetical

feedback action is consistent with the model proposed by Tòth and

colleagues [53], in which the photoreceptors send the ‘‘light-on’’

signal to the clock core, and the core regulates their expression,

forming a regulatory loop. This regulatory loop could serve to

increase the perception of resetting light signals at the right times,

and to neutralize signals from non-predictable environmental cues,

which could cause an incorrect resetting of the circadian clock.
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Influence of cryptochromes on temporal transcription of
photoreceptor genes

In LD conditions, alterations in cryptochrome gene expression

caused a minor increase of cryptochrome transcripts. The peak

expression of CRY1a was incremented in cry1a- plants (Figure 6A);

this could be the effect of an auto-regulatory feedback mechanism

mediated by CRY1a and repressing the transcription of its own

gene.

The increment of CRY2 transcripts in CRY2-OX transgenic

tomato is expected. However, the CRY2 transcript, under the control

of the 35S promoter, continues to cycle in both LD and LL

(Figure 6A and Figure 7A). This strongly suggests that at least part of

the CRY2 oscillations are post-transcriptional. A similar situation has

been observed in a transgenic line over-expressing GI [62]. To our

knowledge, this is the first time that posttranscriptional (diurnal and

circadian) oscillations are described in CRY2.

Our data demonstrate that cryptochromes regulate phyto-

chrome transcript levels, resulting in changes in transcript

abundance, phase and cycling amplitude. Additionally, our data

suggest that Cryptochromes 1 and 2 act cooperatively in

repressing the transcription of PHYA and antagonistically on the

transcription of PHYB2, which is promoted by CRY1a and

repressed by CRY2 (Figure 6B and Figure 9). In Arabidopsis, there

is evidence for a direct interaction between PHYA and CRY1,

with PHYA mediating a light-dependent phosphorylation of

CRY1 [14], and between PHYB and CRY2, with the CRY2

probably suppressing PHYB signaling [63]. Furthermore, in

Arabidopsis CRY1 operates as a signal transduction component

downstream of PHYA in light input to the clock [6]. In tomato, an

additional level of suppression of PHYB signalling could be

represented by the repressive action of CRY1a and CRY2 on

PHYB2 transcript levels (Figure 6B and Figure 9). Another

interaction is the approximately 3–10 fold increase of PHYF

transcripts at all time points in plants lacking a functional CRY1a.

Under LL conditions, transcriptional oscillations often became

more perturbed and were sometimes difficult to interpret.

However, the evident arrhythmicity of PHYA and PHYB2 , but

not CRY1a transcripts caused by the over-expression of CRY2

(Figure 7B) is quite intriguing and suggests that this condition

specifically disrupts the output signal from the clock to PHYA and

PHYB2 (figure 9).

Transcription rhythms of LHC4 and GI are under
cryptochrome control

In tomato wt plants, GI and LHC4 transcripts cycled similarly to

their putative counterparts in Arabidopsis [21,64] with strong

diurnal oscillations (about 800 and 90-fold, respectively). Lack of a

functional CRY1a decreased the amplitude of the diurnal

oscillation of both GI and LHC4, meaning that both genes,

directly or indirectly, are activated by CRY1a (Figure 8A and

Figure 9). A recent report showed that Arabidopsis mutant cry1-cry2

plants displayed a severely reduced GI response to blue light, while

CRY2 had no affect on the diurnal transcription of GI [65]. In

agreement with these data, our results demonstrate that CRY1a

plays a major role in the activation of tomato GI under high

fluence white light. If we accept the hypothesis of GI as the ‘‘factor

Y’’ in an interlocked feedback loop through light affecting TOC1

expression [33], we must conclude that CRY1a plays a major role

in the input to the tomato circadian clock.

Materials and Methods

Standard molecular biology protocols were followed as

described in Sambrook and colleagues [66].

Solanum lycopersicum (cv Moneymaker), cry1a- and transgenic CRY2-

OX [42,43] were grown in a growth chamber for 28 days in LD

conditions (16 h light-25uC/8 h dark-23uC). A light intensity of

about 100 mmol m22 s21 was provided by Osram (Munich) 11–860

daylight lamps. For LL experiments, plants grown as described

above for 28 days, were shifted to continuous light at the dawn of the

29th day. The aerial parts of three plants for each genotype (wt,

cry1a- and CRY2-OX) were harvested at the times shown.

Microarray analyses
Samples were assayed on the tomato TOM2 oligo-arrays

printed at the University of Arizona which comprise contain

12,160 70-mer oligonucleotide elements (http://www.operon.

com/arrays/oligosets_Tomato.php).

For each experiment, 2 mg of DNA-free total RNA was reverse-

transcribed and amplified using the Aminoallyl Message Amp II

kit (Ambion) following the manufacturer’s instructions. 2 mg of

amplified aminoallyl-modified RNA were labeled in the presence

of Cy3 and Cy5 for 2 hours at room temperature. Unincorporated

dyes were eliminated using RNeasy MinElute column (Qiagen)

according to the manufacturer’s specifications.

200 pmoles of purified Cy3- and Cy5-labelled aRNAs were

combined in a buffer containing 26SSC, 0.08% SDS and Liquid

Blocking Reagent (GE Healtcare), and were dispensed over the

microarray surface, and incubated at 55uC overnight with

agitation. Slides were washed in decreasing SSC concentrations

and 0.1% SDS at 55uC and room temperature, respectively. The

last wash was carried out in 0.16SSC at room temperature. The

hybridization and post-hybridization washes were performed using

an automatic hybridization station (HybArray 12, Perkin-Elmer).

Hybridized microarrays were then scanned using ScanArray Lite

(Perkin-Elmer) and the resulting Cy3 and Cy5 images were

Figure 9. A model for genetic interactions among tomato CRY1a
and CRY2 proteins and tomato photoreceptor, LHC4 and GI
genes, deduced from transcription experiments. The arrows
represent a stimulatory effect, and the lines terminated with a bar
represent an inhibitory effect. Positive and negative effects mediated by
the circadian machinery are represented by the clock symbol.
doi:10.1371/journal.pone.0002798.g009
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analyzed with the software ScanArray Express (Perkin-Elmer) in

order to determine the Cy3/Cy5 spot intensities.

Raw hybridization signals were filtered by imposing a minimal

signal/noise ratio of 2.0 and flagging the non-passed spots. In

order to obtain a homogeneous dataset for all hybridized slides, we

filtered microarray data imposing good quality spots to be present

in at least three out of four hybridized slides (two dye-swap and

two biological replicas, respectively) for each experimental point.

Raw values were then normalized with the locally weighted linear

regression (LOWESS) method using the 20% of data for

smoothing [67] and gene expression analysis of the array data

were performed using GeneSpring version 7.3 (Agilent).

After quality analysis and normalization (described above), we

had a three-point LD time course with four microarrays per time

point (2 independent biological replicates and 2 dye-swap

experiments). For each of the transcripts which passed quality

controls on the microarrays, a single factor ANOVA was

performed across all three time points. Each time point was

treated as a group, and arrays at each time point were treated as

the individuals within that group. A nonadjusted ANOVA p-value

of 0.05 or less was required for any particular transcript to pass the

screen. After ANOVA-based statistical prescreening, genes

showing equal to or more than 3-fold change in at least one of

the three time points were considered diurnally regulated.

Moreover, in order to identify genes showing major transcript

regulation at dawn (ZT0), for each of the transcripts which passed

quality controls on the arrays, a Student’s t test was performed

across ZT8, ZT16, ZT20 together and their common reference

ZT0. After above mentioned analysis, of the transcripts with a

Student’s t test p-value of 0.05 or less, that showing at least 3-fold

change simultaneously at all time points were considered

differentially regulated at dawn (Table 1).

Cluster Analyses were performed using Cluster and Treeview

algorithms [68]. Microarray experiments have been deposited to

the EBI public repository ArrayExpress (Accession number E-

MEXP-1456).

Quantitative RT-PCR
Total RNA (1 mg) was reverse-transcribed with oligo-dT and

Superscript III (Invitrogen), according to the manufacturer’s

instructions. First strand cDNA (5 ng) was used as template for

QRT-PCR. QRT-PCR assays were carried out with gene-specific

primers, using an ABI PRISM 7900HT (Applied Biosystems) and

the Platinum SYBR Green master mix (Invitrogen), according to

manufacturer’s instructions. PCR conditions were: 5 min at 95uC,

followed by 45 cycles at 95uC for 15 sec, and at 58uC for 60 sec.

At the end of the PCR, the thermocycler has been programmed to

generate a thermal denaturation curve of the amplified DNA and

to measure the melting temperature of the PCR product(s). The

shape of the melting curve indicates whether the amplified

products are homogeneous and the melting temperature provides

confirmation that the correct product has been specifically

amplified. Relative template abundance was quantified using the

relative standard curve method described in the ABI PRISM

7900HT manual and the data were normalized for the quantity of

the b-actin transcript [69]. A serial dilution of 10-, 100-, 1000-,

10000-, and 100000-fold of each studied gene fragment was used

to determine the amplification efficiency of each target and

housekeeping gene. At least three PCR runs were carried out for

each cDNA to serve as technical replicates and two independent

experiments were carried out by using two independent RNAs for

each sample. Means from two independent experiments were

subjected to SEM calculation, student’s t test using PAST (http://

folk.uio.no/ohammer/past/).

Supporting Information

Data S1

Found at: doi:10.1371/journal.pone.0002798.s001 (3.23 MB

TXT)
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