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Abstract

Background: The design and construction of novel biological systems by combining basic building blocks represents a
dominant paradigm in synthetic biology. Creating and maintaining a database of these building blocks is a way to
streamline the fabrication of complex constructs. The Registry of Standard Biological Parts (Registry) is the most advanced
implementation of this idea.

Methods/Principal Findings: By analyzing inclusion relationships between the sequences of the Registry entries, we build a
network that can be related to the Registry abstraction hierarchy. The distribution of entry reuse and complexity was
extracted from this network. The collection of clones associated with the database entries was also analyzed. The plasmid
inserts were amplified and sequenced. The sequences of 162 inserts could be confirmed experimentally but unexpected
discrepancies have also been identified.

Conclusions/Significance: Organizational guidelines are proposed to help design and manage this new type of scientific
resources. In particular, it appears necessary to compare the cost of ensuring the integrity of database entries and
associated biological samples with their value to the users. The initial strategy that permits including any combination of
parts irrespective of its potential value leads to an exponential and economically unsustainable growth that may be
detrimental to the quality and long-term value of the resource to its users.
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Introduction

De novo gene synthesis [1–3] is catalyzing a transition from the

ad-hoc methods of traditional genetic engineering to the develop-

ment of industrial-scale fabrication processes enabling users to

quickly obtain from commercial vendors genetic constructs that

would have been assembled through a custom cloning strategy just

a few years ago. Designing a construct for gene synthesis often

consists in combining a number of previously defined DNA

sequences [4]. The design of an expression cassette in Escherichia

coli typically includes a promoter, a Ribosome Binding Site (RBS),

a coding sequence, and a transcription terminator. These

functional blocks are commonly referred to as biological parts or

genetic parts. Catalogues of biological parts that are sufficiently

well characterized to be used in the design of new genetic

constructs can be described in review articles [5], embedded into

software applications to design new DNA sequences [4], or made

available through a web site [6,7]. With four years of existence and

4,856 entries in July 2007, the Registry is the largest publicly

available library of genetic parts. The Registry goes beyond just

cataloguing parts. The parts in the Registry must meet the

BioBrick standard, which requires the part sequence to be framed

by standard cloning sites called the prefix and suffix. If the part

sequences do not contain any of the restriction sequences used by

the prefix and suffix, this standardization ensures that it is possible

to use a generic cloning process to combine two BioBrick-

compliant parts. The process is generic because the restriction

enzymes and ligation steps it includes are independent of the

sequences of the two parts being combined. This standardized

assembly of new genetic constructs derived from standardized

parts is therefore complementary to de novo gene synthesis since

both approaches can be used to fabricate designer DNA

sequences. Another benefit from standardizing parts is the physical

composition of BioBrick parts. The restriction sites used by the

BioBrick standard ensure that the combination of two BioBrick

parts results in a new BioBrick part that can be added to the list of

parts available for future design projects. The composition of parts

leads to distinguishing two categories of parts. Composite parts are

parts resulting from the composition of two parts whereas basic

parts are parts that cannot be decomposed into smaller parts.

In addition to developing a large catalogue of parts, the Registry

has developed a repository of 995 bacterial clones (as of July 2007)

corresponding to physical implementations of entries in the

Registry database. The Registry database content and clone

collection have been primarily developed by students enrolled in

the in the International Genetically Engineered Machine (iGEM)
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competition [8,9]. Each year, the iGEM organizers send the entire

clone collection to all the teams enrolled in the competition. The

teams use this toolkit to implement the designs required for their

project. At the end of the summer, the teams contribute back to

the Registry new basic parts and new composite parts they have

made during the course of their project. This new material is

included in the Registry and becomes available to the teams

enrolled in the competition the following year. If students enrolled

in iGEM still represent the largest group of Registry users, recent

publications have demonstrated that this resource can enable the

development of more mainstream research projects [10–14].

We have analyzed the Registry to identify usage patterns that

could help design the next generation of infrastructures to host

libraries of genetic parts. The analysis consists of two parts. First,

the structure of the database itself is considered in terms of the

relationships between database entries by examining their

published sequences and categorization. The Registry uses two

levels of categories to organize its content. Entries of different

functional types (promoters, coding sequences, etc.) are regrouped

into three classes according to their level of complexity. The

simplest entries are found at the bottom of the hierarchy in a class

labeled ‘‘Parts’’. Combinations of parts implementing specific

functions like inversion of a signal, gene expression cassettes, or

reporter genes are found in ‘‘Devices’’. Finally self-contained

combinations of devices designed for a particular application are

placed under ‘‘Systems’’ [7]. This categorization implements an

abstraction hierarchy, an approach commonly used in engineering

to manage complex engineering projects by allowing different

groups of specialists to work at different levels. Ultimately,

engineers with a domain expertise should be able to develop

application-specific systems by combining previously characterized

devices without having to know more about these devices than

their operational characteristics. The second part of our analysis is

a comparative analysis of the published sequences of database

entries and the experimental sequences of the corresponding

clones, which we obtained by sequencing the clones in one

distribution of the DNA repository.

While a library of parts as a single centralized community

resource has clear benefits, there are still many reasons for

organizations or individual investigators to structure their own

libraries of parts [15,16]. These reasons may include the physical

or legal availability of a limited set of parts, previous experience

with a specific parts list, the use of specific organisms not included

in community resources, the inclusion of proprietary parts in the

design, and possibly others. Hence, our results have implications

beyond the analysis of a specific resource at a particular point in

time.

Results

Analysis of the database content
Since most Registry entries correspond to constructs that have

not yet been fabricated, it appeared more interesting to limit the

analysis of the database to the 995 entries for which a clone was

available. Among these 995 entries, 279 were in the ‘‘Parts’’ layer

of the Registry abstraction hierarchy. The remaining 716 entries

were categorized in the ‘‘devices’’ and ‘‘systems’’ layers of the

hierarchy. In this paper we use parts to refer to entries in the

‘‘parts’’ layer and design for entries categorized in the device or

systems layers of the hierarchy.

We derived a network of relationships between entries in the

Registry from their published sequence. First, inclusion relation-

ships between entries were identified by pair wise comparison of

the sequences in the database. Entry A is connected to entry B if

the sequence of A includes the sequence of B. In a second step, this

directed graph was pruned to eliminate transitive relationships.

For instance, if A includes B and B includes C, then a relationship

between A and C can be derived from the previous relationships.

In this example the inclusion of C within A is pruned from the

graph. This operation allowed us to draw a network of 1383

relationships among the 995 entries considered in this analysis

(Figure 1 and Figure S1). We identified 496 relationships in which

the sequences of designs included part sequences. We also found

826 inclusion relationships between design sequences. Since parts

correspond to the bottom layer of the abstraction hierarchy, it was

expected that there would be few if any connections among entries

in this group. However, 49 relationships between parts have also

been identified. Even more surprising, 12 relationships indicated

that entries in the design group were present in the sequences of

parts. These observations appear to be inconsistent with the

Registry abstraction hierarchy.

After having identified inclusion relationships within the

Registry, we summarized this pruned connection matrix by

computing for each entry, the number of other entries directly

included in its sequence (a measure of its design complexity) and

the number of entries in which its sequence is found (a measure of

its popularity). The joint distribution of entry complexity and

popularity provides a global perspective on the dynamics of design

reuse to build more complex designs (Table 1). Entries in the first

column (299 entries) are true basic parts while the entries that have

never been reused are in the first line (502 entries). If some entries

have been used in as many as 70 designs (Table 2), 80% have been

used less than 3 times. Because indirect relationships have been

removed from the pruned interaction network, the complexity axis

on Table 1 does not refer to the total number of parts included in

the design but it indicates the number of subcomponents an entry

is composed of. Approximately 50% of the entries can be broken

down into two other entries, which is consistent with a pair wise

assembly process. It also indicates that users have recorded most of

the construction intermediates. The ideal shape of this joint

distribution is not clear except that few entries should be located

near the origin. The value of having a lot of parts used very

infrequently is questionable, so the weight of the popularity

distribution should shift away from 0.

Analysis of the DNA repository
The analysis of the Registry database reveals some of the

challenges in implementing the abstraction hierarchy upon which

this community resource has been built. However, making the

parts physically available adds another level of complexity. We

have therefore systematically analyzed the library of plasmids

shipped in May 2007 to teams enrolled in the iGEM competition.

The plasmids were distributed lyophilized in four 384-well

plates. After suspending the DNA into water, the solutions were

quantified using a spectrophotometer and only two wells did not

appear to contain any DNA. In order to obtain enough material

for DNA sequencing, the inserts were amplified using primers

complementary to the standardized prefix and suffix used to clone

them into the vector. The products of amplification were analyzed

by electrophoresis to select clones suitable for sequencing. In

particular, we eliminated 216 clones that did not amplify and 190

clones that resulted in multiple peaks of size greater than 120 bp.

The lack of amplification product can either result from a problem

with the amplification reaction or indicate the absence of

sequences complementary to the primers. The presence of

multiple peaks may be caused by primer dimers, non-specific

amplification, or the presence of different plasmids in the well.

Since parts with sequences shorter than 120 bp can easily be

Registries of Biological Parts
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obtained as oligonucleotides, only the 789 clones that generated a

single PCR fragment larger than 120 bp were sequenced. Of these

789 sequenced clones, 509 have published sequences that were

used for subsequent analyses.

To get a global measure of the match between published and

physical sequences, we plotted the length of the published

sequence against the size of the PCR fragment for the 509

sequenced plasmids having a documented sequence. On Figure 2,

76 outliers were visually identified. The rest of the lengths

remained close to the expected lengths. Yet, only 285 data points

had less than a 10% difference between the two sequence lengths.

The differences in size distribution between measured and

expected lengths appears wider than 5%, the previously reported

experimental error affecting the determination of fragment size by

the microfluidic system used for this project [17]. We have not

investigated all discrepancies, amplification failures, or multiplicity

of amplification products. This would require a systematic

curation of the published sequences, as well as individual PCR

troubleshooting for each clone, which were beyond the scope of

this project.

The next step of our analysis was to look at sequences

individually. Of the 789 clones sequenced, 591 could be assembled

in contigs. The length of assembled sequences ranges from 166 bp

to 1897 bp. Some of the inserts that could not be assembled may

be too long to achieve a significant overlap between the two

sequence files starting from both extremities of the insert.

Assembling these clones would require additional sequencing runs

utilizing clone-specific primers. Out of the 591 clones assembled,

only 354 could be associated with a Registry entry as the other

clones were undocumented in the particular distribution of the

Registry used in this project. The assembled sequences were

aligned with the published sequence using BLAST [18]. Out of

354 assembled sequences for which published sequences were

available, 334 produced alignments with their published sequence

and the complete results of this alignment analysis are reported in

Table S1. This spreadsheet was used to identify clones for which

the assembled sequence confirms the published sequence. Since

the assembled sequence can include the primer sequences, the

assembled sequence should not be longer than the published

sequence plus the combined length of the two primers (41 bp).

Since the primers used in this project are adjacent to the sequence

being verified, the first and last 10 to 25 bases of the insert can be

difficult to read. As a result, the assembled sequence may be up to

50 bp shorter than the published sequence. These two criteria led

to the selection of 221 clones for which 241#length (published

sequence) – length(assembled sequence) #50. In the second step of

sequence analysis, we want to ensure that the alignment of the

assembled and published sequences covers most of the shorter of

the two sequences. In this second step, from the 221 clones

meeting the assembled sequence length criteria, we selected 177

clones for which the alignment length is at least 99% of the length

of the smaller of the two sequences being compared. After these

two rounds of selections, the percentage of identity of the

assembled and published sequence was always superior or equal

to 97% and greater or equal to 99% for 162 of the 177 clones. It is

obvious that different choices of parameters would lead to larger or

smaller number of clones with a confirmed published sequence.

Just like in the case of PCR results, a systematic control of the

published sequences could improve the clone confirmation

statistics. It is quite possible that for a number of these clones

Figure 1. Network of inclusion relationships among the Registry entries. Nodes of this network correspond to entries in the Registry. Nodes
are grouped in color-coded circles according to the Registry categories. Categories corresponding to parts are within the blue box on the left side of
the figure whereas categories corresponding to designs are located within the red box on the right side. The diameter of the nodes corresponds to
the node connectivity. The directed edges indicate that the sequence of one entry is included in the sequence of another entry. Edges are color-
coded according to the type of relationship. If most of the edges correspond to natural relations (parts included in designs, and designs included in
other designs), it is somewhat surprising that parts can include other parts (yellow edges) and it is unclear why some parts would include design in
their sequence (red edges). Detailed analysis of individual entries can be conducted using a Cytoscape [28] file (Figure S1).
doi:10.1371/journal.pone.0002671.g001
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the biological material is correct but their published sequence may

be inaccurate. Additional sequencing runs starting from within the

insert sequences would also increase the number of clones with

long inserts that could be confirmed.

Discussion

A global analysis of the Registry
This analysis of the DNA library provides no more than a

snapshot of one distribution of the Registry clone collection.

Amplification and sequencing problems could result from

technical problems during the experiments described in this paper

just as they could indicate problems with the biological samples

themselves. For instance, samples that lead to multiple amplifica-

tion products could have been delivered contaminated, could have

been contaminated during one of the steps described in this report,

or could simply result from mispriming. In order to control the

experiments, it would be necessary to repeat all the operations

starting from a new series of samples. Unfortunately the lack of

unique clone identifier makes such control problematic. The

different distributions of the DNA repository do not share a

common key necessary to relate one distribution to another. The

data set described in this article is specific to the 2007 distribution

of the DNA repository. Our results are valuable to understand

global issues associated with the design, development, and

management of a registry of biological parts but they would need

data describing how different distributions relate to each other to

be used for controlling the quality of specific clones in the Registry

collection.

The high-level analysis of the Registry database led to the

identification of several non-trivial issues that need to be

addressed. The implementation of a workable abstraction

hierarchy remains problematic. A single category of parts (DNA)

appears to be exclusively composed of basic building blocks.

However, our sequence analysis has revealed elements categorized

as parts within the Registry that include other parts, indicating

that not all clones categorized as parts have an atomic nature.

Some part sequences even include designs, a higher level in the

abstraction hierarchy. These observations result from the lack of

consensus in the community on how biological parts should be

defined. Nothing illustrates this confusion better than the complex

architecture of promoters [19,20]. On the one hand, promoters

are generally considered as parts but on the other hand they have

well characterized domains that can be associated with specific

functions. When developing an abstraction hierarchy, should

promoters lie at its bottom and be considered as atomic parts or

should they be considered as composite parts composed of

multiple functional domains? The case of genes is not simpler as

proteins are also composed of multiple functional domains [21]. A

complete access to the Registry database would have made it

possible to investigate questions that could not be addressed using

the partial dump of the database content used in this analysis. For

instance, parts have a usefulness attribute used to report if a part

works, works with issues, or does not work as anticipated. It would

be interesting to relate the parts popularity to the usefulness status

of a part as one would imagine that the most popular parts are

reported as working. The structure of composite parts is also

described as the series of basic parts they are composed of.

Comparing the sequence and structure of composite parts could

help investigate a number of interesting questions. Figure 1 reflects

the laborious efforts of the synthetic biology community to develop

and implement the new theoretical framework it needs to support

its scientific vision.

Organizational guidelines
Results presented in this report lead to a number of

organizational guidelines that could help design or manage

registries of biological parts.

The published DNA sequence of entries should be carefully

curated. Lack of published sequences or incorrect ones hamper the

quality control of the associated clones. It is important to clearly

identify basic parts of a registry as they generate the rest of the

database. Basic parts should be linked and compared to entries in

other sequence databases and peer-reviewed publications [5].

Basic parts that have not been completely annotated should be

flagged so that people considering using them may proceed with

Table 1. Joint-distribution of the parts complexity and
popularity.

Popularity1 Complexity2

0 1 2 3 4 5 6 Sum

0 154 64 236 39 5 4 - 502

1 65 24 150 12 1 1 2 255

2 30 9 62 10 3 - - 114

3 21 7 19 1 - - - 48

4 8 3 7 - - - - 18

5 6 4 5 - - - - 15

6 3 - 7 - - - - 10

7 3 - 3 1 - - - 7

8 - - 1 - - - - 1

9 2 - 3 - - - - 5

10 1 - 1 - - - - 2

11 2 - 1 - - - - 3

12 1 - - - - - - 1

13 - - - - - - - 0

14 - 1 1 - - - - 2

15 - - - - - - - 0

16 - - 3 - - - - 3

17 - 1 - - - - - 1

18 - - - - - - - 0

19 - - 1 - - - - 1

20 1 - - - - - - 1

21 - - - - - - - 0

22 1 - - - - - - 1

… - - - - - - - 0

31 - - 1 - - - - 1

… - - - - - - - 0

36 - - 1 - - - - 1

… - - - - - - - 0

39 - - 1 - - - - 1

… - - - - - - - 0

52 1 - - - - - - 1

… - - - - - - - 0

70 - - 1 - - - - 1

Sum 299 113 504 63 9 5 2 995

1Number of times Registry entries are used in other entries
2Number of entries included in an entry sequence
doi:10.1371/journal.pone.0002671.t001
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Table 2. The Registry most popular parts.

ID Category N1 Description Parts included

BBa_B0015 Terminator 70 Double terminator consisting of BBa_B0010 and
BBa_B0012

BBa_B0010, BBa_B0012

BBa_B0034 RBS 52 RBS based on Elowitz repressilator -

BBa_E0430 Reporter 39 Standard YFP Output Device -LVA tag BBa_E0130, BBa_S01014

BBa_E0432 Reporter 36 EYFP (RBS+ LVA+ TERM) (B0034.E0032.B0015) BBa_I9045, BBa_S01638

BBa_J13002 Regulatory 31 TetR repressed POPS/RIPS generator BBa_B0034, BBa_R0040

BBa_R0040 Regulatory 22 TetR repressible promoter -

BBa_R0011 Regulatory 20 Promoter (lacI regulated, lambda pL hybrid) -

BBa_I0500 Regulatory 19 Inducible pBad/araC BBa_I13458, BBa_R0080

BBa_B0030 RBS 17 Strong RBS based on Ron Weiss thesis BBa_B0034

BBa_I13507 Composite 16 Screening plasmid intermediate BBa_I13501, BBa_I13502

BBa_I13504 Reporter 16 Screening plasmid intermediate BBa_I13401, BBa_I13500

BBa_S03155 Intermediate 16 Trminators B0010+B0012+promoter R0040 BBa_B0015, BBa_R0040

BBa_J04500 Intermediate 14 IPTG inducible promoter with RBS BBa_B0034, BBa_R0010

BBa_Q04121 Inverter 14 LacI QPI with strong RBS, hybrid promoter BBa_P0412

BBa_R0062 Regulatory 12 Promoter activated by LuxR in concert with HSL -

BBa_E0420 Reporter 11 Standard CFP output device w/o LVA tag BBa_B0015, BBa_S01022

BBa_R0051 Regulatory 11 promoter (lambda cI regulated) -

BBa_B0032 RBS 11 Weak1 RBS based on Ron Weiss thesis -

BBa_Q04400 Inverter 10 TetR QPI with strong RBS BBa_P0440, BBa_S03155

BBa_B0031 RBS 10 RBS.2 (weak) – derivative of BBa_0030 -

1Entry popularity.
doi:10.1371/journal.pone.0002671.t002

Figure 2. Comparison of the Registry published sequences with the size of the PCR amplification products. This plot is limited to the
clones that generated a single PCR fragment greater than 120 bp. Theoretically, the size of the PCR fragment is 41 pb longer than the length of the
published sequence because of the presence of the PCR primer sequences in the amplification product (n = 509). When all data points were used in
the linear regression, the fit led to a coefficient of correlation R1

2 = 0.33. Based on previously reported experimental error affecting fragment size
determination[17], 76 outliers were eliminated manually (green points) leading to a greatly improved R2

2 = 0.98.
doi:10.1371/journal.pone.0002671.g002
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caution. The sequence redundancy of the basic part set is a

difficult problem. Theoretically, a set of basic parts could be

atomic in the sense that it generates all other entries in a registry.

However, this approach may not always be practical. If certain

projects need to identify several parts in a promoter sequence, this

level of granularity may be excessive for other projects. The same

argument can apply at higher levels of organization. For the same

reasons, nothing prevents the definition of complete gene

expression cassettes and other devices such as switches, inverters,

etc. as basic parts. However, this option does not seem desirable as

it would be inconsistent with the engineering vision of building

complex systems from a limited numbers of building blocks.

The integrity of the sequence of composite parts is even more

difficult to ensure. There could either be a static or dynamic link

between the sequence of a composite part and the sequences of the

basic parts it is composed of. In the first case, the sequence of a

composite part is automatically derived from the sequence of its

components when the composite part is created but future changes

to the sequences of its basic components do not propagate to the

composite part sequence. If such a policy is enforced, discrepancies

between the composite part sequence and the sequences of its

basic components can develop over time. It is desirable that such

discrepancies be identified. In the case of a dynamic link, any

change in the sequence of a basic part propagates to all composite

parts using this basic part. The integrity of the composite part

sequence is then always preserved but different versions of the

composite parts that are automatically generated by this process

may be very confusing to the users.

Clones in the DNA repository associated to a parts registry need

to be uniquely identified independently of the parts in the registry.

Parts numbers are not good identifiers of clones as many clones

correspond to the same part in different plasmids or different

bacterial strains. A clone key is necessary to compare data

collected on different distributions of the same clone and therefore

implement quality control procedures. A standardized quality

control process should be specified to ensure the integrity of the

clone collection.

Targeted development of registries of parts
The idea of developing collections of standardized parts is a

transformative idea in biology [22]. After a few years of a large

scale experiment, it becomes apparent that developing and

managing this new type of resource for synthetic biology raises a

number of original questions. Specialized registries built on

compatible standards are being developed by various groups that

will experiment with different user interfaces, workflows, and

modes of user interaction. These initiatives along with future

developments of the original Registry will provide elements of

solutions to these new questions.

It will be particularly interesting to see if different registries will

adopt different editorial policies. The cost of maintaining a parts

registry depends on its size as each entry needs to be properly

documented and each clone needs to be verified. Parts registries are

different from traditional collections used in biological research as

any combination of parts in the registry can also be integrated in the

registry. A small number of basic parts can therefore generate a

potentially infinite collection of clones. Initially, it may be attractive

to record any combination of parts without any consideration of its

potential value, but this approach now appears unsustainable [16].

At some point, users and managers of a parts registry will need to

analyze the allocation of their resources. Table 2 and similar

analysis on other registries can help identify entries that are the most

valuable to the users and least expensive to maintain. For instance,

basic parts deserve special attention because they enable the

development of new designs and errors affecting basic parts can

propagate to the entire resource. This contrasts with the case of a

large and specialized construct including multiple genes that would

be expensive to control and might have a low probability of reuse.

Even though it would be desirable to also include such construct in

the database and clone collection, if finite resources require

choosing between recording a few new basic parts with a broad

reuse potential and a specialized and expensive part, it is likely that

resources will be preferably allocated to adding basic parts.

Similarly, including a switch that could be used in developing a

number of applications will probably be deemed more valuable than

the construction intermediates that were generated during its

assembly. Managers of parts registries need to articulate editorial

policies to set criteria for including new entries in their database so

that resources can be targeted to developing content maximizing the

benefits to their users.

Recognizing that repositories of biological parts are an essential

component of the upcoming integrated development environ-

ments for synthetic biology [6,23,24] may help target the

development of their content. In order to support this integration

it is necessary to specify a minimal data model allowing

programmatic access to the registry databases from multiple client

applications. A draft of such a data model is described in Text S1.

Structured methods for designing synthetic genetic systems will

provide a theoretical framework that will guide the development of

user interfaces helping users combine basic parts into complex

designs. Alternative solutions to the organization of parts in

categories or the mechanism to define composite parts will

probably be proposed. In this context, recent initiatives to organize

forums aiming at defining technical standards for biological parts

appear very timely and laudable.

Materials and Methods

The plasmids were resuspended in 30 ml of nuclease free water

(Ambion) at 4uC overnight. They were quantified using the

Nanodrop spectrophotometer. 20 ng of Plasmid DNA was used in

the PCR amplification of the plasmid inserts, using Qiagen’s Taq

PCR master mix kit, and 2 mM primers forward and reverse

primers at 100 ml reaction volume. The forward primer was

homologous to the BioBrick prefix (59 - GAA TTC GCG GCC

GCT TCT AG - 39) whereas the reverse primer was complemen-

tary to the suffix sequence (59 - CTG CAG CGG CCG CTA CTA

GTA - 39). PCR conditions: 94uC 45 sec, (94uC 30 sec, 55uC
45 sec, 72uC 45 sec) for 24 cycles, 72uC 5 minutes, 4uC hold.

The PCR product was purified using Qiagen’s QIAquick PCR

purification kit, resuspended in 25 ml of nuclease free water, and

quality controlled using the Agilent Bioanalyser DNA 7500 assay.

The amplified products were quantified and diluted to 10 ng per

ml. The PCR product and corresponding primers were submitted

to the VBI Core Laboratory for Sanger sequencing using the

primers used in the amplification step. Sequencing conditions:

400 ng template DNA, 3.2 pmol primer, 2.5 ul BigDye Termi-

nator mix v3.1, water to a total volume 15 ml.

Base calling and quality control of sequence chromatograms was

done by PHRED [25,26]. The sequences were assembled using

CAP3 [27] with default options except for minimum overlap size of

21 bp. The assembled sequences were aligned with their respective

published sequences using BLAST [18] with default parameters.

Supporting Information

Figure S1 Cytoscape file used to generate Figure 1. Can be used

to interactively explore the network of relationships within the

Registry
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Found at: doi:10.1371/journal.pone.0002671.s001 (0.10 MB ZIP)

Table S1 Blast analysis of the clones assembled sequences

against the published sequence.

Found at: doi:10.1371/journal.pone.0002671.s002 (0.14 MB

XLS)

Text S1 Describes the supporting database and its data model.

Also describes the other files included in the supplement.

Found at: doi:10.1371/journal.pone.0002671.s003 (0.12 MB

PDF)
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