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Abstract

Ci-VSP contains a voltage-sensing domain (VSD) homologous to that of voltage-gated potassium channels. Using charge
displacement (‘gating’ current) measurements we show that voltage-sensing movements of this VSD can occur within 1 ms
in mammalian membranes. Our analysis lead to development of a genetically encodable fluorescent protein voltage sensor
(VSFP) in which the fast, voltage-dependent conformational changes of the Ci-VSP voltage sensor are transduced to similarly
fast fluorescence read-outs.
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Introduction

Cells use voltage sensor containing proteins to control the

membrane potential and for signaling processes. Among these

proteins are the extensively studied voltage-gated potassium

channels (Kv channels), which are constituted by four homologous

subunits each with transmembrane segments S1–S4 forming a

voltage-sensing domain (VSD) and S5–S6 contributing to the pore

structure (Figure 1a left) [1,2]. Recently, a homolog to the VSD of

Kv channels was discovered to be coupled to a phosphatase in the

ascidian Ciona intestinalis (Ciona intestinalis voltage-sensor containing

phosphatase; Ci-VSP) (Figure 1a middle) [3], and unlike Kv

channel subunits Ci-VSP can exist in the membrane as a

monomer [4]. The self-containing properties of the Ci-VSP

voltage sensor makes it particularly suitable for the study of

voltage-sensing mechanisms [5] and has enabled successful

engineering of a protein for optical measurement of membrane

potential (voltage-sensitive fluorescent protein; VSFP) [6]. Genet-

ically encodable fluorescent voltage probes hold great promise in

neuroscience, where methods that allow recordings of electrical

activity from multiple identified neurons simultaneously are

needed [7,8]. The first VSFP based on the Ci-VSP voltage sensor,

named VSFP2.1, was generated by fusing the VSD of Ci-VSP to a

pair of cyan- and yellow-emitting proteins (cyan/yellow fluores-

cent protein; CFP/YFP) and introducing a R217Q mutation in S4

to shift the activation curve of the sensor into the physiological

range of neuronal membrane potential [6]. Removal of five amino

acids originating from engineered restriction sites in VSFP2.1

resulted in VSFP2.3, and both versions of the sensor exhibit

excellent membrane targeting in PC12 cells (Figure 1a right,

Figure S1). The main obstacle of these VSFP variants is that their

fluorescence read-out is slower than required for measurement of

fast electrical signals in neurons.

Results and Discussion

With the goal to improve the VSFP response kinetics we set out

to investigate the molecular activation mechanism of VSFP2.3.

The conformational transitions of the protein upon a voltage

change are initiated by displacement of charged amino acids of the

VSD, which gives rise to a transient current analogous to the

gating currents known from ion channels [9]. Measurement of

such ‘gating’ currents of Ci-VSP in Xenopus oocytes [3] suggests

that VSD rearrangements in Ci-VSP are slow compared to VSD

movements in most ion channels [10]. To address if the slow

fluorescence response of VSFP2.3 is due to intrinsically slow

operations of its VSD, we measured fluorescence signals along

with ‘gating’ currents in a PC12 cell-line stably expressing

VSFP2.3 (Figure S2, Supplementary Methods). The voltage-

dependency of the fluorescence read-out closely resembles the

activation curve for charge displacement (Figure 1b–d) indicating

that the fluorescence signal reports the voltage-dependent

conformation of the VSD. However, we found the ‘gating’ charge

movement to be two orders of magnitude faster than the

fluorescence response (,1 ms versus ,100 ms) (Figure 1e), and

more than ten times faster than the reported Ci-VSP ‘gating’

currents recorded from Xenopus oocytes (,30 ms) [3]. The

surprising rapidity of the ‘gating’ currents might be related to

the R217Q mutation in S4. However, measuring charge

displacements from VSFP2.3 Q217R revealed similarly fast

‘gating’ currents (1.960.1 ms at 70 mV, n = 10, data not shown).

It thus appears that VSD movements in VSFP2.3 are intrinsically

fast, and that the slow fluorescence report instead reflects weak

coupling between the VSD and the fluorescent reporter proteins

(FPs). We made two important observations concerning the effect

of VSD-FP coupling: First, the ratio of CFP to YFP emission of

VSFP2.1 increased when the VSD-FP linker was shortened [6].
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Second, VSFP2.1 in its short linker version (VSFP2A R217Q,

Figure S1) clearly exhibited a fast component in CFP response,

which is not present in the YFP signal (time-constants CFP:

762 ms and 180615 ms, YFP: 171615 ms, n = 8) (Figure 2a).

These observations led us to hypothesize that stronger VSD-FP

coupling, as presumably achieved by linker shortening, may give

rise to a faster depolarization response in CFP independent of the

CFP-YFP energy transfer mechanism (fluorescence resonance

energy transfer; FRET). To test this hypothesis we photo-bleached

the YFP chromophore subsequently to the measurements

illustrated in Figure 2a. Single cell spectro-fluometry confirmed

disappearance of the 530 nm YFP emission band and increase in

CFP emission at 470 nm due to acceptor bleaching and donor de-

quenching, respectively (Figure 2b). Importantly, the YFP

response was completely abolished by photo-bleaching (the YFP

channel even showed a small reversed signal caused by crosstalk

from the CFP detection channel), whereas a significant CFP

response remained (time constant of fast component 561 ms;

n = 8). This experiment provides direct evidence that the fast-

component CFP response does not require presence of a FRET

acceptor. To test whether the presence of YFP is required for

structural reasons or, in contrast, removal of the YFP domain

would favor the fast intrinsic CFP response, we truncated the YFP

domain and investigated the response properties of the construct

obtained (VSFP3.1, Figure S1). VSFP3.1-transfected cells exhib-

ited the well known emission spectrum of CFP, which was

unaffected by the YFP bleaching protocol (Figure 2c). Most

notably, VSFP3.1 responded to depolarizations with large

response amplitudes and a very fast initial transient (activation

time-constant 1.360.1 ms at 70 mV, n = 7). Linker shortening

and truncation of YFP thus greatly improved the response time.

Measurement of charge displacements in VSFP3.1 revealed

similar voltage-dependency as found for VSFP2.3, as did

measurements of the voltage-dependence of the fluorescence

read-out (Figure 3a–b, Figure S3). The fluorescence output of

VSFP3.1 exhibits a dominant time-constant that closely tracks the

activation time-course of the charge movement (Figure 3c), and a

less prominent slower component resembling the FRET compo-

nent in the previous VSFP versions.

In conclusion, we find that the voltage sensor of Ci-VSP exhibits

very fast ‘gating’ currents in mammalian cells, which underscores

the notion that this VSD is functionally similar to that of Kv

channels [5]. The unusual large difference in the kinetics observed

in mammalian membranes as compared to Xenopus oocytes [11]

may result from an expectedly strong dependence on the lipid

environment of an isolated VSD [12]. Reverse engineering of the

previously reported VSFP2.1 type of sensors revealed that their

slow fluorescence reports are caused by inappropriate coupling

between the VSD and the CFP/YFP domain. We accordingly re-

engineered VSFP2.3 resulting in VSFP3.1, which displays

Figure 1. Fast voltage-dependent VSD movements and slow fluorescence signals in VSFP2.3. (a) Membrane topology of single Kv
channel subunit, Ci-VSP and VSFP2.3. VSDs are shown in blue. (b) Change in yellow fluorescence induced by depolarizing voltage steps recorded
from a PC12 cell stably expressing VSFP2.3. Red traces are single exponential fits. (c) On- and off ‘gating’ currents induced by the same voltage steps.
The On-‘gating’ decay is fitted by single exponential functions (red traces). (d) Fluorescence-voltage (F-V) (n = 11, blue) and charge-voltage (Q-V)
relations (n = 10, black) of VSFP2.3. (e) Voltage-dependency of time-constants for VSFP2.3 fluorescence activation (blue) and the decay of on-‘gating’
currents (black). Note broken time scale.
doi:10.1371/journal.pone.0002514.g001

FP Voltage Sensor VSFP3.1
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fluorescence activation kinetics closely resembling the fast ‘gating’

currents. To our knowledge VSFP3.1 is the fastest FP voltage

sensor that is functional in mammalian PC12 cells reported to

date, exhibiting an activation time constant matching that of fast

neuronal electrical signals. Future work will be aimed at a

confirmation of the function and kinetic properties of VSFP3.1 in

differentiated neurons, an important step towards realization of an

optical sensor of neuronal circuit activity.

Materials and Methods

Cell and Molecular Biology
Constructs were prepared by modifying the previously pub-

lished VSFP2A and VSFP2.1 plasmids6. The VSFP2.3 construct

was generated by removal of the amino acids constituting the NotI

(CGR) and BamHI (GS) restriction sites in VSFP2.1 using overlap-

extension PCR. The R217Q mutation was introduced in VSFP2A

by site-directed mutagenesis. VSFP3.1 was generated by substi-

tuting the FRET pair in VSFP2A(R217Q) with a single Cerulean

using NotI and HindIII restriction sites. All constructs were

verified by DNA sequencing.

PC12 cells (ATCC) were grown in high-glucose DMEM (Gibco-

Invitrogen) supplemented with 5% fetal calf serum and 10% horse

serum on poly-D-lysine coated coverslips. Tranfections were done

one day after plating using Lipofectamine 2000 (Invitrogen)

reagent according to the manufacturer’s instructions. Recordings

from transiently expressing PC12 cells were performed 48–72 h

post transfection. PC12 cell-line stably expressing VSFP2.3 was

established after 1 mg/ml G418 (Calbiochem) selection and clone

expansion from limited dilutions at 0.1 cell/well in 96-well plates.

Fluorescence signals and gating currents were recorded from

either non-transfected PC12 cells, a PC12 cell-line stably

expressing VSFP2.3 or from transiently transfected PC12 cells.

Electrophysiology
A coverslip with PC12 cells was placed in a recording chamber

mounted on the stage of an inverted microscope (Eclipse TE-2000,

Nikon), and voltage-clamp recordings in the whole-cell configu-

ration were performed using an Axopatch 200B amplifier (Axon

Instruments). Clampex software (Axon Instruments) was used for

data acquisition and for synchronization of voltage command

pulses and fluorescence excitation. Borosilicate glass electrodes of a

resistance of 3–5 MV were pulled on a two-stage vertical puller

(PP-830, Narishige) and painted with Sylgard in two steps.

Recordings were performed in a perfused chamber, and the bath

temperature was kept at 25uC by a temperature controller. For

each cell 3–7 current traces and 2–4 fluorescence traces were

recorded and averaged. Recording solutions contained in mM

(140 NMDG, 10 HEPES, 1 MgCl2, 1.8 CaCl2, 10 dextrose,

pH 7.4 using HCl) for the pipette and (140 NMDG, 10 HEPES, 5

EGTA, 1 MgCl2, pH 7.2 using HCl) for the bath, where NMDG

is N-methyl-D-glucamine. Fluorescence traces were elicited from a

holding potential of –70 mV by a sequence of 20 mV activation

steps lasting 500 ms to a final potential of 110 mV with 10 s

Figure 2. Development of a fast reporting VSFP. The membrane topology of VSFP2A(R217Q) (a), VSFP2A(R217Q) after photobleaching YFP (b)
and VSFP3.1 (c) are shown in the top panel. Underneath are emission spectra recorded from each construct using 440 nm excitation light. The lower
panel shows the fluorescence signals recorded in the yellow and cyan channels. For VSFP2A(R217Q) a scaled mirror-image of the cyan signal is shown
aligned with the yellow signal; note the fast CFP component. For VSFP3.1 the onset of the fluorescence signal is shown on an expanded time scale;
note the dramatically faster response of VSFP3.1.
doi:10.1371/journal.pone.0002514.g002
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interpulse intervals. ‘Gating’ currents were recorded by 20 ms

potential steps in the range from –90 mV to +110 mV in 20 mV

steps with a 5 s interpulse interval from a holding potential of –

70 mV. Data was acquired at 50 kHz and filtered by a 5 kHz low

pass Bessel filter.

Fluorescence measurements
Fluorescence was induced by light (440 nm) from a computer

controlled monochromator (Polychrome IV, T.I.L.L. Photonics)

through a 506oil immersion objective. Fluorescence emission was

collected through the objective and directed via a first dichroic

mirror (DCLP 445 nm) through a beam splitter (DCLP505) and

an emission filter (D480/40) onto two photodiodes (Viewfinder,

T.I.L.L. Photonics). Photodiode signals were digitized along with

the electrophysiological signals using Axon hard- and software as

described above.

For spectral measurements a fluorescence spectrometer (Fluor-

olog, HORIBA) was coupled to the inverted microscope by an

optical fiber. Excitation (440 nm) and photo-bleaching (520 nm,

4 min exposure time) light were provided by a monochromator.

For the data presented in Fig. 2 electrophysiology, fluorescence

and spectral measurements were performed as a combined set of

experiments on each cell tested.

Data analysis
Fluorescence signals and gating currents were analyzed using

Clampfit 9.2 (Axon Instruments), OriginPro 7 (OriginLab) and

Excel (Microsoft) software.

Fluorescence analysis
Photobleaching was corrected by subtraction of a bleaching

curve (fluorescence trace at constant voltage). Fluorescence

transients elicited by voltage steps were fit with single- and double

exponential functions depending on what gave the best fit. The

amplitude of fluorescence transients was measured at end of the

test pulse and expressed as percentage of baseline fluorescence.

‘Gating’ current analysis
‘Gating’ currents were extracted from recorded current traces

by subtraction of linear leak current and linear capacitive

transients. Leak current was subtracted by measuring the mean

current amplitude in the last 2 ms of the hyperpolarizing voltage

step and subtracting a correspondingly scaled Ohmic current from

each recorded current trace. Similarly, the capacitive transient

needed to charge the cell membrane was estimated by a single-

exponential fit to the current recorded at the hyperpolarizing

voltage step, and a linear voltage dependent exponential was

subtracted from each current trace recorded. The ‘gating’ current

charge displacement was calculated as the time integral of the on-

‘gating’ current. Steady-state relations recorded from single cells

were normalized and fit with two-state Boltzmann distributions.

Values for half maximal activation and slope factors were

calculated as mean values obtained from the ensemble of cells.

All data points are represented by mean values and error bars

indicate standard error of the mean.

For Figure 1d the Boltzmann fit parameters for F-V are V1/

2 = 223.462.1 mV, slope factor a = 19.361.2 and for Q-V, V1/

2 = 217.461.5 mV, slope factor a = 20.460.9. For the time

constants shown in Figure 1e the values obtained at 70 mV are

85.868.1 ms for the fluorescence signal and 0.8460.08 ms for the

on-‘gating’ currents.

Supporting Information

Figure S1 Sequences of VSFP constructs and expression in

PC12 cells. (a) Amino acid sequences for VSFP constructs. The

grey box indicates the putative VSD from Ci-VSP, and the blue

and yellow boxes refer to cyan (CFP) and yellow (YFP) fluorescent

proteins respectively. Amino acids are specified for regions

containing modifications between different VSFP constructs.

Unmodified regions are represented by amino acid numbering

in brackets referring to the sequences of Ci-VSP VSD from Ci-

VSP (NP_001028998), CFP from Cerulean A206K (CAP04994)

and YFP from Citrine (AAV97899). R217Q mutation is shown in

red. (b) Transmission (top panel) and fluorescence (lower panel)

images of PC12 cells expressing VSFP2a(R217Q), VSFP2.3 and

VSFP3.1. Notice the membrane targeting of VSFP constructs.

Scale bar is 15 mm.

Found at: doi:10.1371/journal.pone.0002514.s001 (6.81 MB TIF)

Figure S2 ‘Gating’ current measurements from non-transfected

PC12 cells (controls) and PC12 cells stably expressing VSFP2.3. (a)

Top: uncorrected current traces elicited from non-transfected

PC12 cells by voltage steps ranging from 290 mV to +110 mV

from a holding potential of 270 mV. Bottom: remaining currents

after subtraction of linear leak current and capacitive transient. (b)

Same experimental procedure using PC12 cells stably expressing

VSFP2.3. The top trace shows uncorrected current traces as

Figure 3. Characterization of VSFP3.1 ‘gating’ currents and
fluorescence response. Representative ‘gating’ currents (a) and
fluorescence responses (b) of VSFP3.1 elicited from single cells upon a
family of voltage steps. (c) Voltage-dependency of the fast component
of the fluorescence activation time-constant (blue) and the time-
constant for the decay of on-‘gating’ currents (black). The inset shows
single exponential fits to the fast fluorescence time-constant compo-
nent from averaged fluorescence traces (n = 8) obtained with voltage
steps to 230 mV and +70 mV.
doi:10.1371/journal.pone.0002514.g003

FP Voltage Sensor VSFP3.1
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recorded. The bottom trace shows the remaining currents (‘gating’

currents) after subtraction of linear leak current and capacitive

transient.

Found at: doi:10.1371/journal.pone.0002514.s002 (2.42 MB TIF)

Figure S3 Voltage-dependency of VSFP3.1 fluorescence re-

sponse and on-‘gating’ currents. (a) F-V relation for VSFP3.1

(n = 7). The change in cyan fluorescence elicited upon voltage

steps between 2110 mV and + 110 mV was normalized and fit to

two-state Boltzmann distributions with mean values (V1/

2 = 251.262.3 mV, a = 20.863.2). (b) Q-V relation for VSFP3.1

on-‘gating’ (n = 7). Currents were evoked by voltage steps between

270 mV and +110 mV, and the charge transfer was calculated

and normalized. The data was fit to Boltzmann distributions with

mean values (V1/2 = 218.361.5 mV, a = 19.161.2).

Found at: doi:10.1371/journal.pone.0002514.s003 (0.76 MB TIF)
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