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Abstract

Chimpanzees have been used extensively as a model system for laboratory research on infectious diseases. Ironically, we
know next to nothing about disease dynamics in wild chimpanzee populations. Here, we analyze long-term demographic
and behavioral data from two habituated chimpanzee communities in Taı̈ National Park, Côte d’Ivoire, where previous work
has shown respiratory pathogens to be an important source of infant mortality. In this paper we trace the effect of social
connectivity on infant mortality dynamics. We focus on social play which, as the primary context of contact between young
chimpanzees, may serve as a key venue for pathogen transmission. Infant abundance and mortality rates at Taı̈ cycled
regularly and in a way that was not well explained in terms of environmental forcing. Rather, infant mortality cycles
appeared to self-organize in response to the ontogeny of social play. Each cycle started when the death of multiple infants
in an outbreak synchronized the reproductive cycles of their mothers. A pulse of births predictably arrived about twelve
months later, with social connectivity increasing over the following two years as the large birth cohort approached the peak
of social play. The high social connectivity at this play peak then appeared to facilitate further outbreaks. Our results provide
the first evidence that social play has a strong role in determining chimpanzee disease transmission risk and the first record
of chimpanzee disease cycles similar to those seen in human children. They also lend more support to the view that
infectious diseases are a major threat to the survival of remaining chimpanzee populations.
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Introduction

Human childhood diseases are renowned for their tendency to

exhibit annual and supra-annual cycles [1–3]. In attempting to

explain this cycling researchers historically looked to environmen-

tal influences on immune function. Although environmental affects

on immunocompetence and disease mortality rate are widespread

and well established [4,5], what has recently come into focus is the

extent to which the dynamics of epidemic disease are also driven

by the influence that social connectivity has on disease

transmission rates [1,2,6,7].

Some of the most pervasive effects of social connectivity on

pathogen transmission involve childhood diseases. In the course of

activities such as social play, young children tend to come more

often into close physical contact than do adults [8]. In addition,

during play young children engage in high risk behavior such as

oral contact with other children and/or fomites (e.g. toys).

Attendance at schools and day care centers also brings children

into close proximity to more potential sources of infection than is

typical for adults. Consequently, attendance at schools and

daycare centers is a strong predictor of per capita disease risk

amongst young children [9–11]. This is particularly true for

respiratory diseases, which are easily spread through casual

contact [10]. What’s more, the seasonal fluctuations in social

connectivity produced by school holidays have been implicated as

drivers of the seasonal and supra-annual cycling of childhood

respiratory diseases [7,11,12], which, in developing countries, are

the leading cause of mortality amongst children under five years of

age [13,14].

Although the consequences of social connectivity for disease

dynamics are now increasingly well understood in humans,

observations on disease dynamics in our closest relatives,

chimpanzees, are very limited. Therefore, we have little sense of

the extent to which the social connectivity effects that are so

important to the epidemiology of human childhood disease

dynamics also drive the dynamics of disease in chimpanzees.

Here, we use long term behavioral and demographic data from

two chimpanzee communities at our study site in Taı̈ National

Park, Côte d’Ivoire [15] to examine whether the elevated social

connectivity of chimpanzee infants and, particularly, their high

play rates result in disease dynamics similar to those seen in human

children [1,11,12]. We have previously shown that two human

respiratory viruses have, in recent years, caused repeated

outbreaks with very high morbidity and substantial infant

mortality [16, see also 17–19]. We do not have similar etiological

data for the many earlier years of the study. However, several

aspects of the demography of the two communities suggest that a

long history of respiratory disease impact has contributed

prominently to substantial declines in the size of the two

communities [16] (Fig. 1, see also discussion).

In our present analyses we use demographic data to infer

whether social connectivity is an important driver of infant

mortality dynamics. In particular, we examine to what extent

infant per capita mortality rates and changes in infant abundance
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are predicted by rates of play. We also look for evidence of

periodicity in infant abundance and mortality rate. Periodic

cycling is a classic signature of respiratory disease outbreak

dynamics in human children [1–3,11,12]. Finally, we examine

whether seasonal variations in mortality rate are better explained

in terms of seasonal fluctuations in play rates or seasonal variation

in external factors such as food availability and rainfall. Although

our limited sample sizes prohibit overly strong conclusions, many

complementary results point to infant play as a strong determinant

of disease transmission and infant mortality dynamics in Taı̈

chimpanzees.

Materials and Methods

Study System
Our data come from two habituated chimpanzee communities

under continuous and ongoing observation in Taı̈ National Park,

Côte d’Ivoire. Habituation of the ‘‘North Group’’ started in 1979

whereas habituation of the second community, the ‘‘South

Group’’, began in 1989. Here we use data only from years in

which each community was already well-habituated: North Group

1984–2006; South Group 1995–2006. Both groups were moni-

tored on most days during the study period, although only a

minority of individuals was observed on any given day. We

recorded the identity of all individuals observed on each day,

immigration and emigration of females, births, and deaths (for

details see [15]). Because the exact date of each demographic event

was not always known, we pooled observations into monthly bins

and assigned each event to the last month in which the individual

was observed alive (deaths and emigrations) or the first month in

which the individual was detected (births and immigrations). In

cases in which there was a gap in observations, we assigned the

event to the midpoint date of the gap. We used daily focal follows

of individuals to collect behavioral data, i.e. time spent playing by

infants. Age classes of infants (0–5 years), and juveniles (5–10

years) were defined following ref. [15].

Habituation effect
We evaluated whether infant and juvenile survival rate

increased in the years after habituation with a GLM analysis. In

the baseline model, annual survival rate of each individual below

the age of 120 month was assumed to be constant across all years

of the study. We compared the baseline model to a model in which

annual survival rate differed between periods (first six years after

habituation vs. rest of time series). We then tested for a density

dependent effect by including community size as a covariate.

Finally, we estimated a model including both period and

community size effects. Relative support for models was evaluated

in terms of Akaike’s information criterion (AIC) [20].

Infant Play Behavior and Mortality Rates
We derived age specific play rates for each monthly age class (1–

60 months) by calculating the average proportion of one minute

observation bouts during which infants played. We estimated age-

specific mortality as the number of infant deaths in a given

monthly age class (1–72 month) divided by the total number of

infants reaching that class. We made this estimate separately for

North and South Group. We then used the Pearson Product

Moment Correlation to compare age specific mortality patterns in

the two communities.

Autocorrelation and crosscorrelation analysis
We used autocorrelation/ crosscorrelation analyses to test for

periodic behavior in the demographic time series data (birth,

death, abundance). To reduce stochasticity (e.g. due to death date

uncertainty) we pooled data into four month bins. Because the

communities declined in size over time, we log transformed the

binned data and calculated the rate of change in abundance

(log(Nt)2log(Nt21)) in order to get a stationary time series [21]. We

then used the autocorrelation function in SPSS version 13 (SPSS

Inc. Chicago) to estimate autocorrelation coefficients, and for the

death vs. birth time series the crosscorrelation function.

Covariate model predicting infant mortality
To evaluate the influence of demographic, social and environ-

mental factors on chimpanzee infant mortality, we developed an

age structured generalized linear model with the number of deaths

per unit time as the dependent variable. As demographic

predictors of mortality rate we included both a density dependent

effect (infant abundance) and two density independent effects

(neonatal and postweaning mortality [22]). In order to include the

weaning phase we extended this analysis to the age of 78 months.

As a measure of infant social connectivity, we used an index of

community-wide playfulness (the product of infant abundance in

each monthly age class and age-specific playfulness, summed

across age classes). As environmental covariates we used monthly

mean rainfall at the study site, an index of the El Niño Southern

Oscillation ([23], downloadable at http://www.cdc.noaa.gov/

people/klaus.wolter/MEI/), and an index of fruit abundance

[24, and N’Guessan et al. unpublished data]. To represent a

neonatal mortality peak, we added a term treating mortality rate

as inversely proportional to age. To represent a weaning mortality

peak we added a term treating mortality rate as inversely

proportional to the absolute value of an infants difference in age

from the mean interbirth interval (male = 71.4 months, fe-

male = 67.1 months, [15]).

We assumed that the probability of infant death in a given

month was a logistic function of the predictor variables, so that

survival probability (pm) for month m was

pm~1{
1

1z exp { b0z
Pj~n

j~1

bjxj

 ! !
0
BBBB@

1
CCCCA,

where b0 is a constant and bj is the coefficient for predictor variable

Figure 1. Time series of infant abundance. Number of 0–5 year old
infants in North Group (blue) and South Group (red).
doi:10.1371/journal.pone.0002440.g001
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j. In order to reduce the effect of uncertainty in death date, we

compared model predictions to the number of deaths observed in

four month bins, rather than in single months. Thus, the number

of infants of age i alive at the beginning of a bin starting in month t

but dead four months later (Dti) was just

Dti~Nti| 1{ P
m~tz3

m~t
pm

� �� �
:

Summing across all initial infant ages (i = 1..78) gives the total

number of infant deaths predicted for the four month period

Dt~
Xi~78

i~1

Nti| 1{ P
m~tz3

m~t
pm

� �� �
:

We estimated parameter values using maximum likelihood

methods and ranked models using AIC (Akaike’s information

criterion) [20]. Model fitting was done in R [25] using the ‘optim’

function (log link and negative binomial error function).

Results

Habituation effect
If the increasing proximity between humans and chimpanzee

resulted in increasing rates of human disease spillover, one would

expect to see an effect of the degree of habituation on survival rate.

GLM analysis confirmed this expectation with survival rate lower

in the years after habituation (Table 1). The effect was strongest

for infants, whose per capita mortality risk increased fivefold

(Fig. 2).

Seasonality
If environmental factors were strong drivers of infant mortality

dynamics one might expect to see strong peaks in mortality rate

corresponding to either seasonal environmental fluctuations or

supra-annual cycles such as those captured by the El Niño

Southern Oscillation Index [26]. However, we observed no

seasonal clumping of infant mortalities (permutation test,

p = 0.45). We also found no significant relationship between infant

mortality rate and the average monthly values of either rainfall

(Fig. 3a) or an index of the availability of fruit (Pearson correlation,

R2 = 0.002, n = 12, p = 0.88).

Although the average number of infant deaths per calendar

month did not vary with fruit availability, there were indications that

the cause of death did. Fruit availability was strongly correlated with

the amount of time infants spent playing (Pearson Correlation,

R2 = 0.5, n = 12, p = 0.01) and the number of different partners each

infant played with (Pearson Correlation, R2 = 0.62, n = 12,

p = 0.002). Both measures of play rate more than doubled during

peak fruiting season (October–February). The possibility that high

social connectivity might facilitate infectious disease outbreaks led us

to predict that multiple mortality events should be more likely in the

peak fruiting season while isolated deaths from food stress should be

more likely in months of low fruit availability. As predicted the ratio

of multiple to isolated mortality events was positively correlated with

fruit availability (Fig. 3b).

Figure 2. Infant per capita mortality rate for North Group (dots). Each data point represents the monthly per capita mortality rate for infants
averaged over a two year interval. Numbers below each dot are numbers of infant deaths. Each colored block represents a distinct period of human
presence and proximity. First block (green) is early habituation (before 1984) with only two researchers present. Per capita mortality rate is very low.
In second period (blue) chimpanzees are habituated well enough to be followed and only two researchers are present. Per capita mortality rate
increases. In 1988 field assistants and additional researchers join study. Per capita mortality rate increases further, then gradually decreases as
community size (dashed gray line) decreases, suggesting strong density dependence of infant mortality rate.
doi:10.1371/journal.pone.0002440.g002

Table 1. GLM results on infant and juvenile survival rates.

model const period size AIC

C 1.86 - - 588.9

C+P 2.35 20.63 - 585.0

C+N 5.77 - 25.26 549.0

C+P+N 9.92 21.99 28.78 508.8

C = baseline model with constant annual survival rate of each individual less
than 120 months old. C+P = survival rate for first six years different than for
remainder of study period. C+N = survival rate proportional to community size.
C+P+N = both period and community size effects.
doi:10.1371/journal.pone.0002440.t001
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Finally, an indirect test for supra-annual environmental forcing

involves the synchrony of the two communities. If broad scale

environmental factors were driving chimpanzee mortality dynamics,

then one might expect the two neighboring communities to show

correlated fluctuations in infant abundance. We found no such

correlation (Fig. 4a). In fact, fluctuations in the infant abundance

time series were much better explained in terms of intrinsic (density

dependent) dynamics than in terms of extrinsic forcing. This can be

seen by shifting the time series for the later habituated South

community back in time until its initial abundance matches the

abundance of the North Group (Fig. 4b). The time series are not only

correlated, they remain in perfect phase for 12 years.

Infant Play Behavior and Mortality Rates
The alternative to extrinsic, environmental forcing of infant

mortality dynamics is that the dynamics are self-organized. That

is, some intrinsic property of individual chimpanzee ontogeny or

behavior reliably pushes community-wide mortality patterns into a

predictable trajectory: a dynamical attractor. In the context of

disease transmission, the factors that structure rates of social

contact are an obvious place to look for mechanisms of self-

organization. The ontogeny of social play seems particularly likely

to be important because play is the most common venue for direct

physical contact or proximity close enough to create a high risk of

aerosol or fomite transmission. Both the amount of time infant

chimpanzees spend in social play and the number of different

partners they play with rise sharply for their first two years,

reaching a peak at about 2.5 years of age (Fig. 5a). Play rates then

gradually subside. Peak play infants spend more than twice as

much time playing and play with more than twice as many

partners as infants either two years younger or two years older.

Peak play infants also spend twice as much time in social play as

adults spend in close contact activities such as grooming [15,27].

Relative respiratory disease transmission risk for infants is further

elevated by the fact that they frequently engage in sham biting and

oral manipulation of objects [28].

The peak in infant play is intriguing because it is centered

almost exactly on a peak in infant per capita mortality rate. The

peak at 2.5 years is joined by two other major peaks in per capita

mortality rate, a neonatal peak and a peak at about six years.

There is no obvious life history event that corresponds to the

mortality peak at 2.5 years, other than the peak in play. In

contrast, the two other peaks correspond to clear life history

watersheds. Neonatal mortality peaks are common in primates

and may be caused by birth complications, congenital defects,

poor mothering, or the weak immunity of newborns [15,29]. The

peak at 5–6 years occurs around weaning so it might plausibly be

attributed to food stress. Just as plausible is the possibility that the

Figure 3. Seasonality of infant death rate. A) Rainfall (line)
seasonality was not a good predictor of the number of infant deaths
(red bars; same month: Pearson Correlation, R2 = 0.233, p = 0.332, n = 6).
Bimonthly averages are from rain gauge samples taken at the site
between 1987 and 2003. Infant deaths are pooled across North and
South Groups. B) Fruit availability (green bars) was a very good
predictor of the ratio of the number of deaths in multiple mortality
events to the number of isolated deaths (R2 = 0.98, p,0.001, n = 6). Fruit
availability index calculated from data in ref. 37 and unpublished data
provided by A. N’Guessan.
doi:10.1371/journal.pone.0002440.g003

Figure 4. Time series of birth rates. A) Rates of change in birth rate
are plotted in terms of the difference between each year (t) and the
preceding year (t21) in the logarithm of the relative number of births
(log(bt)2log(bt21)). Time series for North Group (blue) and South Group
(red) were not correlated (R2 = 0.132, n = 12, p = 0.14). B) If the South
Group time series is shifted backwards in time to the point at which its
initial community size matches that of North Group, the two time series
are strongly correlated (R2 = 0.7, n = 12, p = 0.0006) and stay in phase for
all 11 years.
doi:10.1371/journal.pone.0002440.g004
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cessation of the maternal antibody subsidy provided by breast milk

makes freshly weaned juveniles particularly susceptible to

infectious disease. Maternal antibodies in breast milk suppress

antibody production in human children and their termination at

weaning results in a spike in respiratory disease infection [22,30].

Play and Cohort Cycling
One consequence of the death of multiple infants in a disease

outbreak is that the reproductive cycles of their mothers are

synchronized. Female chimpanzees typically come into estrous

within a few weeks and conceive within a few months after losing

an infant, and have a gestation time of about eight months [15].

Consequently, the synchronizing effect of disease outbreaks results

in a strong correlation between the number of infant deaths and

the number of births 9–12 months later (Fig. 6a).

Now, if the propensity towards respiratory outbreaks in each

community was strongly determined by the number of immuno-

logically weak individuals, then one might expect outbreak

probability to fall after an outbreak and rise immediately with

the introduction of a synchronized cohort of neonates, which have

notoriously weak immune systems [29]. Assuming fairly persistent

exposure to respiratory pathogens, a new outbreak would follow

relatively soon thereafter. In other words, infant mortality rates

would cycle on a period of roughly one year.

Infant per capita mortality rates did show the expected neonatal

peak (Fig. 5). However, autocorrelation analyses of mortality rate did

not show the roughly one year cycle predicted by simple density

dependence. Rather, mortality rates showed a strong positive

autocorrelation only at 28 months (Pearson correlation,

R2 = 0.295, n = 65, p = 0.017). Interestingly, the time separation

between the neonatal peak in per capita mortality rate and the

mortality peak at maximum play age was also 28 months (Fig. 5).

What appears to be happening is that the birth of a large, post-

outbreak cohort resulted in a small pulse in neonatal deaths. The

number of deaths then stayed low for the following two years as

infant abundance swelled with the addition of smaller following

cohorts. Finally, when the large, post-outbreak cohort approached its

peak of social play at 2–3 years, outbreaks became more likely and

infant mortality rates again peaked. The cycle then started anew.

The cyclic nature of cohort structure can also be seen in the

time series for the North Group, with large cohorts moving

through the community on a regular cycle (Fig. 7a). The regularity

of this cycle is even more apparent when the data are plotted in

terms of the abundance of only the playful 2–3 year old cohort

(Fig. 7b). The period from 1986 to 2006 contains five cycles with

clear peaks and troughs in the number of 2–3 year olds. The cycles

stay in phase through the 21 year period except for a three year

phase shift caused by an Ebola virus outbreak in 1994, which killed

all five females who were expected to give birth in 1995–6 (three

pre-weaning mothers and two nulliparous immigrants).

A critical element in maintaining the strong cohort structure

seen in Fig. 7 was likely that respiratory outbreaks at Taı̈ showed a

very high morbidity [16]. Even though outbreaks may have been

precipitated by the presence of large cohorts of playful 2–3 year

olds, mortality during outbreak periods was spread across infant

ages. Consequently, the abundance of all infants, not just their

distribution amongst cohorts, also showed strong cycling (Fig. 6b).

Autocorrelations on infant abundance show this effect clearly.

There were strong negative correlations corresponding to the

gestation length (pre-outbreak peak to pre-birth trough, post-

outbreak trough to post-birth peak) and the interval from birth to

peak play age (pre-birth trough to pre-outbreak peak, post-birth

peak to post-outbreak trough). And there was a positive

autocorrelation in infant abundance (,37–40 months) at a lag

equal to the sum of the two negative lags: i.e. roughly the interval

from pre-outbreak peak to pre-outbreak peak or post-outbreak

trough to post-outbreak trough. The fact that the two communities

showed very similar autocorrelation profiles (Fig. 6c) is highly

suggestive of a common mechanism of self-organization, partic-

ularly if one remembers that rates of change in births in the two

communities were uncorrelated in real time (Fig. 4a). That the

period of the cohort cycles (Fig. 7b; ,3.5 years) is slightly longer

than the 37–40 month autocorrelation peak in Fig. 6b,c reflects

the tendency of 2–3 year old abundance to ‘‘pause’’ at high levels

for six months or more before crashing. That the observed cycling

was driven by infant playfulness, rather than just infant

abundance, is suggested by the observation that the index of

community-wide playfulness was a much better predictor of infant

per capita mortality rate than was simple infant abundance (Fig. 8).

The strong cohort structure also generated a closer correspon-

dence between play and mortality risk than might be inferred from

the broad peak in individual play rates (Fig. 5). The lag between the

rise in play rates and the rise in mortality rates may simply reflect a

stochastic ‘‘waiting time’’ before disease introduction into each

community. And the slow drop in individual play rates does not

convey the tendency for outbreaks that occurred when large cohorts

Figure 5. Play and age specific mortality rate. A) Per capita infant
mortality rate (blue) shows a strong peak at 2.5 years, the same age as a
peak in the proportion of each day that infants spend in social play
(green). Mortality rates estimated using data from both communities.
Additional mortality rate peaks occur during the neonatal period and
around the time of weaning (5–6 years). Variation in the number of play
partners shows the same shape (e.g. the average number of play
partners increased from less than three during the first year of life to
almost seven at 2.5 years; data from North Group, 1992–1994). B) An
index combining the abundance and playfulness of infants (green) has
the same peak as the individual play rate but drops more sharply
because outbreaks that occur when large cohorts of infants reach 2–3
years of age predictably reduce infant abundance (and therefore the
value of the play index).
doi:10.1371/journal.pone.0002440.g005
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reached peak play age to kill many infants. Thus, even though high

individual play rates continued beyond the 2–3 year age class, the

community-wide play index followed a sharp downward trajectory

very similar to that of mortality rates (Fig. 5b). This result reinforces

the idea that the 2–3 year old peak in mortality rate was not just an

intrinsic property of individuals but, rather, an emergent outcome of

social interactions amongst individuals.

Combining the Effects
To evaluate the relative strength of extrinsic and intrinsic effects

on infant mortality rates we compared a series of generalized

linear models that included social, demographic, and environ-

mental variables as predictors. The globally best model was 11.5

AIC units better than a null model assuming constant mortality

rate. An index combining infant abundance with infant playfulness

was the best covariate predictor of infant mortality rate (Table 2)

and was positively correlated with mortality rate. It had the highest

cumulative Akaike weight (0.98) and in univariate analyses

produced the greatest improvement over a null model assuming

constant mortality rate (7 AIC units). Fruit availability was also a

good predictor, with high infant mortality rate increasing at times

of low food availability. The fruit index produced only 4 AIC units

of model improvement when evaluated in a univariate analysis but

when combined with play received an Akaike weight of 0.93.

Figure 6. Correlations between infant death rate, birth rate and abundance. A) Infant birth rates are positively correlated with infant death
rates at a time lag of about 12 month. B) Abundance of infants age 0–5 years shows significant negative autocorrelation at time lags of 9–12 and 24–
27 months, and significant positive autocorrelation at a time lag of 37–40 months (open squares indicate Pearson Correlation p,0.05). Data are
pooled across North and South Groups and data points are plotted in four month bins. C) Lag autocorrelation curves for North Group (blue) and
South Group (red) were strongly correlated (Pearson correlation, R2 = 0.96, n = 11, p,0.0001).
doi:10.1371/journal.pone.0002440.g006

Infant Chimp Disease Dynamics
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There was only weak support for climate forcing, with the El

Niño Index appearing in models with a combined Akaike weight

of only 0.47. Despite strong neonatal and post-weaning peaks in

the analysis of per capita mortality rate (Fig. 4), neither the

number of neonates nor the number of post-weaning juveniles was

a good predictor of the number of deaths in a given period

(cumulative Akaike weights 0.29 and 0.33, respectively). The lack

of stronger effects may reflect the high morbidity of respiratory

disease outbreaks at Taı̈. Although high 2–3 year old abundance

may have been a trigger for outbreaks, individuals appeared to die

in proportion to their (age-specific) immune susceptibility. Because

a large proportion of deaths (roughly half) occurred during

outbreaks, the number of highly susceptible neonates and post-

weaning juveniles dying at a given time was better predicted by the

frequency of peak play 2–3 year olds than it was by their own

frequency. This effect may have been magnified for the post-

weaning juveniles in that the members of a large cohort that

survived one outbreak cycle tended to reach the post weaning year

just as the following large cohort reached peak play age.

Discussion

Perhaps the most surprising result of our analyses was the great

regularity of cycles in infant mortality and abundance. This

regularity was surprising to us because of the stochasticity inherent

in the small sample sizes involved in our study. That cycles were so

regular despite this stochasticity suggests a very strong structuring

mechanism.

Our observations suggest that this structure was not extrinsically

imposed but self-organized as a consequence of three relatively

invariant aspects of chimp demography. First, outbreaks that killed

multiple infants synchronized the reproductive cycles of their

mothers. Second, after a female lost a baby, there was very low

variance in the time to estrous and conception as well as in the

gestation period [15]. Third, infant play rates followed a

predictable rise to a peak at age 2–2.5 years. Consequently, the

death of a large group of infants in one outbreak reliably resulted

in a large cohort of highly playful, socially connected infants about

three years later: in other words, ideal conditions for propagation

of a new outbreak. In this context, it must again be emphasized

that these peak play infants spend twice as much time playing and

play with twice as many partners as other subadults and play twice

as much as adults engage in close contact activities such as

grooming. Peak play infants are ideal super spreaders [10].

The major caveat to our conclusions is the fact that definitive

etiological data on respiratory pathogen identity were only

available in the later years of the study. This prevents us from

arguing conclusively that respiratory disease was the primary

driver of mortality in the earlier period. We are persuaded that

Figure 7. Birth cohort cycling in North Group. A) Proportion of
infants in each annual birth cohort through time. Large birth cohorts
(red) are separated by 3–4 years. In cases where large birth cohorts
occurred in consecutive years (1991 and 1996) the first cohort is shaded
red. B) Time series for the abundance of peak play (2–3 year old) infants
shows a consistent cycle period of about 3.5 years. A shift in phase
resulted from an Ebola outbreak in 1994.
doi:10.1371/journal.pone.0002440.g007

Figure 8. Infant per capita mortality risk as a function of play
index (A) and infant abundance (B). Per capita infant mortality rate,
infant abundance, and the community-wide play index were calculated
separately for each month in the two time series. Data from the two
communities were then pooled, sorted by play index or infant
abundance, and divided into 12 equal size bins. The 20 monthly
estimates within each bin were then averaged. The averaged per capita
infant mortality rates were more strongly correlated with values of the
play index (R2 = 0.75, p = 0.0003, n = 12) than with infant abundance
(R2 = 0.41, p = 0.025, n = 12).
doi:10.1371/journal.pone.0002440.g008
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respiratory disease was the major driver, in part, because all of the

other plausible sources of infant mortality fail to explain one or

more aspects of our observations. For example, although climate

cycling might plausibly affect either immune function (through its

affects on thermal stress [31], food stress [32,33], or mucosal

membrane function [34,35]), rates of pathogen spillover from

other hosts [36], or duration of pathogens persistence in the

environment [37], we found little evidence of such effects. Not

only did climate variables do a poor job of predicting supra-annual

mortality cycles, infant population cycling in the two chimpanzee

communities were not even in phase. Respiratory pathogens such

as respiratory syncytial virus also typically cycle through human

populations on a shorter period (1–2 years) than the cycles seen in

our study chimpanzees [38]. Thus, spillover from cyclic human

respiratory epidemics does not seem a likely driver.

The strong dependence of per capita mortality rates on infant

density was also consistent with epidemic respiratory disease but

not with vector borne disease because chimpanzee communities

are too small to maintain persistent circulation of diseases such as

malaria. Furthermore, the study chimpanzees do not live near

potential sources of water borne disease (i.e. villages) and we never

saw a high prevalence of waterborne disease symptoms (e.g.

diarrhea). And, although Ebola [39] and Anthrax [40] have been

isolated in Tai, long term screening of the chimpanzee population

did not lead to the repeated identification of anything other than

respiratory pathogens, which were isolated from four different

outbreaks during the last nine years [16].

Non-disease sources of mortality such as starvation or predation

also show inconsistencies with the observed patterns of infant

mortality. For instance, although fruit scarcity was positively

associated with infant mortality rate, this seasonal peak involved

isolated deaths. In contrast, multiple mortality events were actually

most common in the season of high fruit availability. And, as

mentioned above, there was little support for an association

between extreme climate fluctuations (e.g. El Niño) and peaks in

mortality rate, as one might expect if starvation were a major force

structuring infant mortality cycles.

There are also good reasons to doubt that predation was a

major driver of the observed infant mortality cycles. Cyclic

predator-prey dynamics can arise if a predator species is largely

dependent on a single prey species [41]. However, the primary

chimpanzee predator, leopards, feed on many different prey

species, each with a different demography [15,42]. Besides,

leopards mature so slowly that it would be impossible for major

fluctuations in adult leopard density to occur on the short (,three

year) time scale on which chimpanzee infant abundance showed

major fluctuations. This leaves behavioral mechanisms as the only

plausible explanations of how predation might drive infant

mortality cycles. For example, if leopards switched to hunting

infant chimpanzees only when they achieved high densities, then

predation could in principle drive cycles in infant abundance.

However, leopard prey switching would have to be remarkably

abrupt to explain both the cyclic pattern of mortality and the large

size of many of the observed mortality events (e.g. four deaths in a

single month in 1988). One might also expect that the increasing

human presence during the early part of the study would have

discouraged leopard predation rather than resulting in higher

infant mortality rates (Fig. 2). And one would also have to assume

that the driving effect of predation stopped abruptly in 1999, as all

multiple mortality events recorded thereafter showed high

prevalence of respiratory symptoms and supporting diagnostic

samples [16].

In sharp contrast, many different aspects of infant mortality

patterns at Taı̈ are consistent with respiratory disease: including

many aspects other than infant mortality cycling. For example,

respiratory symptoms were frequently observed at high prevalence

in the era before pathogen sampling was initiated [16]. The

observations that mortality rate was density dependent and that

multiple mortality events peaked in the season of high social

connectivity are also consistent with infectious disease outbreak. In

addition, the demographic profile for the multiple mortality events

of unconfirmed origin was remarkably similar to that of confirmed

respiratory disease outbreaks, which differed from confirmed

outbreaks of other diseases (i.e. Ebola, and Anthrax [16]). The

observed post weaning peak in juvenile mortality is consistent with

loss of the protection provided by maternal antibodies in breast

milk: a phenomenon that has been documented for many

respiratory diseases including the viruses that caused several

confirmed respiratory outbreaks in Taı̈ chimpanzees [30]. The fact

that infant mortalities rose sharply in each community when better

habituation allowed closer approach by more researchers is

consistent with pathogen spillover from researchers (Fig. 2), as is

the global provenance of the pathogens detected during outbreaks

[16]. Individually these observations each have caveats and

counter-arguments. However, we believe that as an ensemble

they make a convincing case that respiratory disease was the

primary driver of infant mortality dynamics at Taı̈.

Our results show for the first time that social connectivity plays

the same central role in structuring disease cycling in young

chimpanzees that it does in human children. However, the

mechanisms of cycling in Taı̈ chimpanzees were different than

those typically observed in modern humans. In humans, seasonal

patterns of school attendance generate seasonal fluctuations in

disease exposure and, therefore, specific immunity that modulate

Table 2. GLM results for covariate model predicting infant mortality rate.

model # par const play fai mei neo wean AIC

play+fai+mei 5 23.17 1.26 24.89 20.20 - - 126.73

play+fai 4 20.81 1.23 210.92 - - - 126.78

play+fai+mei+neonatal+weaning 7 0.34 1.39 215.16 20.25 2.58 0.36 130.03

play 3 25.75 1.37 - - - - 131.39

fai 3 0.96 - 211.80 - - - 134.24

null 2 24.19 - - - - - 138.30

Model = variables in the model; #par = number of parameters (includes also shape parameter, which is not shown here), the coefficients for the constant (const), and
the variables (playindex (play), fruit availability index (fai), Multivariate El Niño Southern Oscillation index (mei), neonatal mortality (neo), weaning (wean)), and AIC. Only
major effects shown. For full results see Supporting Materials (Table S1).
doi:10.1371/journal.pone.0002440.t002
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outbreak probability [2,12]. Specific immunity undoubtedly

played a role in disease cycling at Taı̈, particularly in determining

the disease susceptibility of neonates and post-weaning juveniles.

However, high infant mortality rates during outbreaks produced

strong cycles in infant abundance, not just in the prevalence of

specific immunity. And it was the number of infants, rather than

just their immune status, that appeared to drive outbreak cycling.

Furthermore, although seasonality in social connectivity did

appear to affect outbreak probability in a way analogous to

humans, the age-specific playfulness of infant chimpanzees

appeared to have an even stronger effect. The role of specific

immunity might be more rigorously probed using a dynamical

modeling approach rather than the static statistical approach taken

here. Unfortunately, the relatively short length of the data time

series and the small sizes of the chimpanzee communities provide

little statistical power for implementing such an approach.

As for the implications of our results for future research, we are

hoping that our sample does not grow much larger. Once we

recognized that respiratory disease transmission might be a

problem, we instituted stringent hygiene precautions such as the

wearing of masks, and prohibition of individuals with respiratory

symptoms from entering the forest [16]. Only time will tell how

effective these measures will be.

However, we hope that the result from Taı̈ will be taken

seriously elsewhere. Respiratory symptoms have been observed at

several other sites where gorillas and chimpanzees are habituated

for research or tourism [17–19]. We found that the strong density

dependence that typified infant mortality dynamics within Tai was

also evident in a cross site comparison including all chimpanzee

research sites for which we could find published data on infant

survivorship (Fig. 9). The proportionality of infant death rate to the

square of infant density is particularly suggestive because the

probability that a disease spillover event amplifies throughout a

population is closely related to the rate of contact between

individuals, which in a well mixed population increases with the

square of density [1].

A detailed meta-analysis of demographic, behavioral, and

environmental data from several field sites with declining and

non-declining chimpanzee populations would be a promising next

step to evaluate the findings of this study independently. Our guess

is that a retrospective analysis of demographic data from the

several sites that have experienced serious declines might show a

demographic signature of respiratory disease similar to the one

observed at Taı̈.

Such a cross-site comparison would help in the further evaluation

of alternative or complementary hypotheses on the role of climate

forcing, food stress, or predator pressure on chimpanzee population

dynamics. Site specific differences in the history of human-

chimpanzee contact might also provide better insight into both the

role of research and tourism in determining pathogen spillover rates

and the extent to which acquired immunity in chimpanzees

influences the outcome of pathogen spillover. This issue may

become even more important in the near future, given the increasing

fragmentation of chimpanzee habitat and, thus, increasing proximity

of human and chimpanzee populations.

Finally, we strongly encourage all sites where apes are

habituated to close human contact to take both appropriate

precautions [16] and detailed data on ape demography, clinical

symptoms, and disease etiology. Whenever possible, post mortem

necropsy should be conducted. Field site staff health monitoring

might also prevent new disease outbreaks and allow the origin of

any outbreaks that do occur to be identified. We hope that this

study will lead to a debate about the ethics and consequences of

long-term field sites for research and tourism, and about

appropriate measures for the prevention of disease transmission.

Supporting Information

Table S1 This file contains the full GLM results, from which

only a selection is shown in the manuscript.

Found at: doi:10.1371/journal.pone.0002440.g001 (0.03 MB XLS)
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16. Köndgen S, Kühl HS, Ngoran P, Walsh PD, Schenk S, et al. (2008) Pandemic

human viruses cause decline of endangered great apes. Curr Biol 18: 260–264.
17. Wallis J, Lee DR (1999) Primate Conservation: The Prevention of Disease

Transmission. Int J Primatol 20: 803–826.
18. Lonsdorf EV, Travis D, Pusey AE, Goodall J (2006) Using retrospective health

data from the Gombe chimpanzee study to inform future monitoring efforts.

Am J Primatol 68: 897–908.
19. Hanamura S, Kiyono M, Lukasik-Braum M, Mlengeya T, Fujimoto M, et al.

(2007) Chimpanzee deaths at Mahale caused by a flu-like disease. Primates 49:
77–80.

20. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a

practical information–theoretic approach. New York: Springer-Verlag.
21. Bjørnstad ON, Ims RA, Lambin X (1999) Spatial population dynamics:

analyzing patterns and processes of population synchrony. Trends Ecol Evol 14:
427–432.

22. Katzenberg MA, Herring DA, Saunders SR (1995) Weaning and Infant
Mortality: Evaluating the Skeletal Evidence. Yearb Phys Anthropol 39:

177–199.

23. Wolter K, Timlin MS (1998) Measuring the strength of ENSO events - how does
1997/98 rank? Weather 53: 315–324.

24. Anderson DP, Norheim EV, Moermond TC, Gone Bi ZB, Boesch C (2005)
Factors influencing tree phenology in Taı̈ National Park, Côte d’Ivoire.
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