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Abstract

The Dystroglycan-Dystrophin (Dg-Dys) complex has a capacity to transmit information from the extracellular matrix to the
cytoskeleton inside the cell. It is proposed that this interaction is under tight regulation; however the signaling/regulatory
components of Dg-Dys complex remain elusive. Understanding the regulation of the complex is critical since defects in this
complex cause muscular dystrophy in humans. To reveal new regulators of the Dg-Dys complex, we used a model organism
Drosophila melanogaster and performed genetic interaction screens to identify modifiers of Dg and Dys mutants in
Drosophila wing veins. These mutant screens revealed that the Dg-Dys complex interacts with genes involved in muscle
function and components of Notch, TGF-b and EGFR signaling pathways. In addition, components of pathways that are
required for cellular and/or axonal migration through cytoskeletal regulation, such as Semaphorin-Plexin, Frazzled-Netrin
and Slit-Robo pathways show interactions with Dys and/or Dg. These data suggest that the Dg-Dys complex and the other
pathways regulating extracellular information transfer to the cytoskeletal dynamics are more intercalated than previously
thought.
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Introduction

Muscular dystrophies are a group of inherited neuromuscular

disorders that share the same basic phenotype of progressive loss of

muscle integrity. Many muscular dystrophies are caused by defects

in a specialized cell adhesion complex called the Dystrophin

Glycoprotein Complex (DGC). It has become evident that this

complex plays a central role in muscle integrity and forms a

mechanical link from the actin cytoskeleton to the extracellular

matrix (ECM). The core DGC is composed of a transmembrane

component, Dystroglycan (Dg), which associates with the ECM

protein, Laminin and the cytoplasmic protein Dystrophin which

binds Actin (reviewed in [1,2]).

Many lines of evidence confirm that maintaining the structural

link from the extracellular matrix to the actin cytoskeleton is

crucial in preventing many forms of muscular dystrophy.

Mutations that disrupt any component of this structural link

results in a variety of muscular dystrophies like Duchenne’s,

Becker’s, Muscle-eye-brain disease, Walker-Warburg syndrome,

congenital muscular dystrophies 1C and 1D as well as limb girdle

muscular dystrophy 2I. These diseases share the common

symptoms of skeletal muscle degeneration, cardiomyopathy, as

well as a reduced life span for afflicted individuals [3].

Additionally, alterations which reduce the affinity of compo-

nents of the DGC lead to congenital muscular dystrophies like

Fukuyama’s which, aside from muscular defects, also are

associated with aberrant neuronal migrations that lead to mental

retardation, epilepsy, as well as abnormal eye development. The

use of animal model systems has led to the clarification of the roles

of specific gene products in maintaining muscle integrity and

function (reviewed in [4]), however, the regulation of this complex

is largely unknown.

Initial characterization of the DGC in Drosophila has determined

that components studied so far possess similar roles in muscle

integrity and neuronal migration in flies as in humans (Figure 1,

[5,6,7,8]). These abnormalities include age dependent muscle

degeneration, reduced mobility, defects in eye development as

manifested by altered photoreceptor axon pathfinding, and a

shorter life span. Additionally, mutations in Dys and Dg affect cell

polarity in the Drosophila germ line as both the follicular cell

epithelium and the oocyte are disrupted [6,9,10]. Recently, a

reduced lifespan in Drosophila, as well as heart and muscle

abnormalities, have been reported in mutants of another

component of the DGC, d-sarcoglycan [5]. In addition, heart

and eye phenotypes have been observed in Drosophila Dys and Dg

mutants [11,12].

The similar defects in both flies and humans make Drosophila an

attractive model for further studies on clarifying the role of the

DGC. Such studies may reveal novel components that may likely

have counterparts in humans. Additionally, since very little is
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known about how the DGC is regulated insights may be gained on

this heretofore unknown process. More recently, transmembrane

signaling has been implicated in the function of the DGC. The C-

terminus of Dystroglycan, in addition to having, EF and WW

domain binding sites, also possesses SH2 and SH3 domain binding

sites. These known protein-protein interaction motifs support the

idea that Dystroglycan is a signaling receptor in addition to its

known role as a conduit between the ECM and the cytoskeleton.

Changes in MAPK kinase and GTPase signaling have also been

observed when the DGC is perturbed [2,13]. Recent work has

shown that specific sets of domains are critical in the function of

Drosophila Dystroglycan [8].

In the present work, we have used the genetic tractability of

Drosophila to search for novel components of the DGC, as well as

components that may be involved in its signaling and regulation.

Such a search is straightforward because in addition to the muscle

degeneration and photoreceptor axon pathfinding defects, muta-

tions in dystrophin and Dystroglycan cause a visible phenotype

manifested as alterations in the fly wing, particularly the posterior

crossvein (Figure 2, [14]). Since this is an easily score-able, highly

penetrant phenotype we undertook a dominant modifier screen

approach and looked for flies that showed either a suppression of

the crossvein phenotype or a noticeably altered crossvein.

Importantly, crossvein development has been previously shown

to require EGFR, TGF-b and Notch pathway activities and is

therefore a sensitive place to observe potential interactions of the

DGC with these signaling pathways [15,16,17]. In addition,

hemocyte migration is shown to correlate with the crossvein

development [14]. Therefore genes involved in correct migration

processes might also be obtained by this approach. We screened P-

element lethal as well as deficiency collections for interactors in

addition to performing a classical ethylmethanesulfonate (EMS)

screen for dominant modifiers.

Here we report that in using these screening strategies we have

found modifiers that belong to six different functional groups. We

have found genes involved in muscle development, neuronal/cell

migration and motor function as well as cytoskeletal components

and components of the TGF-b, EGFR and Notch pathways. A

common theme among many of these interactors and Dg-Dys

complex is their involvement in the cytoskeletal rearrangements

controlled by extracellular cues.

Results

To identify genes that interact with Dys and Dg, we used the

chromosomal lesion hypomorph DysE6 as well as the RNAi

knockdown mutants DysN-RNAi, DysC-RNAi and DgRNAi. These

mutants exhibit age dependent muscle degeneration of indirect

flight muscles (IFM, Figure 1B and 1C) as shown before for other

Dys alleles [6].

In addition to the muscle phenotype, a visible wing vein

phenotype was observed in these and previously analyzed alleles.

In particular, the posterior crossvein (PCV) is defective in both Dys

and Dg mutants, a disrupted anterior crossvein (ACV) and a partial

duplication of L2, a longitudinal wing vein, can also be observed at

a lower frequency (Figure 2). These phenotypes are present in the

RNAi knockdown mutants, DysN-RNAi, DysC-RNAi and DgRNAi

(Figure 2C, 2D and 2E, respectively) as well as the chromosomal

lesion hypomorphs DysE6 (Figure 2B), DysDf, DgO43, DgO55 and

DgO86 [14]. Dys and Dg are expressed in third instar larval wing

imaginal discs (Figure S1) and interact in the wing vein since the

double mutant shows a new phenotype – a duplication of L3

longitudinal wing vein (Figure 2F and 2F’).

We used the visual wing vein phenotypes in P-element lethal,

EMS induced and deficiency screens to find dystrophin and

Dystroglycan interactors in Drosophila that either increase or decrease

the wing vein phenotype. Additional studies reveal that many of

the interactors identified in the screens are required for proper

function in other tissues that require Dys and Dg, such as muscle,

brain and ovary.

Modifier Screens
To identify Dys and Dg interactors, we screened three different

kinds of mutants; a collection of 800 FRT-P-element lethal lines, a

deficiency collection of 216 lines and 43,000 EMS induced

mutants. From these analyses, we identified 37 interacting genes

that can be clustered into six different functional groups (Table 1).

P-element screen. We screened FRT-P-element lethal lines

from the Kyoto Stock Collection (Japan). The homozygous

lethality of the lines allows us to infer that the transposon is

inserted in or near an essential gene. We set up crosses to search

for modifiers of the RNAi mutants DysC-RNAi , DysN-RNAi and DgRNAi

as well as DysE6, a hypomorph that removes DLP2, a specific long

Figure 1. Muscle Phenotypes of Dys Mutants. Transverse histological sections of indirect flight muscles showing age dependent muscle
degeneration. Control muscle section from Df(3R)Exel6184/+ flies at 18 days of age do not show any type of abnormalities (A). While lower
penetrance and milder muscle degeneration phenotype is observed from RNAi knockdown of long forms of dystrophin (act-Gal4:UAS-DysN-RNAi/+ flies
at 18 days of age (B), KX43/Df(3R)Exel6184 and Dys8-2/KX43), a strong muscle degeneration phenotype is seen when all forms of dystrophin are
reduced (C; tub-Gal4:UAS-DysC-RNAi/+ flies at 12 days of age).
doi:10.1371/journal.pone.0002418.g001
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isoform of dystrophin [7]. Modifiers were divided into phenotypic

classes of enhancers, suppressors and suppressors with extra wing

vein material (En, Su or Su+; Figure 3). From the P-element screen

we obtained 33 modifiers of the Dys phenotypes (Table 1), 25 of

which also showed interaction with Dg (Figure 4). Since the

identity of these genes is known, we were able to organize these

modifiers into 6 different functional categories (Table 1).

We were excited to find genes involved in both muscle and

motor/cytoskeletal function as these are processes in which Dys

and Dg are known to act (Table 1, functional group I; Figure 4). Of

the muscle category genes, muscleblind (mbl) was the strongest

suppressor in the wing vein. Weak suppressors of this group

included Calmodulin (Cam) and the nicotinic acetylcholine receptor a 30D

(nAcRa-30D) (Table 1, functional group I), though nAcRa-30D

strongly interacted with Dg (Figure 4). Cytoskeletal and motor

function genes (Lissencephaly-1 (Lis-1), Kinesin heavy chain (Khc),

Dynamitin (Dmn) and Fhos showed moderate to weak suppression

with dystrophin mutants (Table 1, functional group I).

Another intriguing functional group that interacts with Dg-Dys

complex includes genes known to be involved in neuronal

migration (Table 1, functional group II). This group is composed

of the genes which belong to Semaphorin-Plexin (Sema-1a, Sema-

2a), Slit-Robo (slit (sli), roundabout (robo), leak (lea) – a robo2 homolog,

Syndecan (Sdc)) and Netrin-Frazzlez (frazzled (fra)) pathways. In the

wing vein most of these genes were scored as moderate to weak

suppressors of the Dys RNAi mutants. Importantly, Sema-2a and fra

modify DysE6 (Table 1, functional group II; Figure S3). Sema-1a

was found to moderately enhance the Dys wing vein phenotype.

Using our DgRNAi mutant we found that robo and Sema-2a enhanced

the Dg phenotype and Sema-1a and lea (robo2) suppressed the Dg

phenotype (Table 1; Figure 4 and Figure S4). We have previously

shown that Dys and Dg function in the Drosophila Photoreceptor

axon pathfinding [6] in processes similar to Semaphorin-Plexin,

Slit-Robo and Netrin-Frazzled pathways.

Functional groups IV and V (Table 1) contain interactors that

belong to the TGF-b signaling pathway: Daughters against dpp (Dad),

decapentaplegic (dpp), thickveins (tkv) and EGFR signaling pathway:

kekkon-1 (kek1) and argos. Dad, dpp and kek1 were strong modifiers of

the DgRNAi mutant (Table 1; Figure 4 and S4) and Dad and tkv of

DysE6 allele as well (Table 1, functional group IV; Figure S3). It has

been known for some time that TGF-b, Notch and EGFR

pathways are necessary for proper wing vein development ([18];

reviewed in [19,20]). In fact, many novel factors of these pathways

have been identified through the analysis of wing vein mutants.

The longitudinal wing veins that begin to form during late larval

stages of development require EFGR and TGF-b signaling

pathways for proper fating of cells in the region [15,21].

Crossveins appear in late pupal stages of development and require

TGF-b signaling for formation and EGFR and Notch signaling for

final patterning [17]. The posterior crossvein is particularly

sensitive to different levels of TGF-b signaling and forms only

after the proper formation of the longitudinal veins.

The last functional group (Table 1, functional group VI) contains

a group of 12 genes with disparate functions. One enhancer, glial cells

missing (gcm), was identified. Three strong suppressors of this group

also interacted with DysE6, the Drosophila homolog of the homeodo-

main-interacting protein kinase (HIPK), kismet (kis) and l(3)L4092,

which contains a zinc-finger motiff. kis, deadlock (del), gcm, POSH and

wunen (wun) also strongly modified DgRNAi (Figure 4).

Figure 2. Dys and Dg are Required for Proper Wing Vein
Formation and Interact in the Process. In a wild type like wing (A,
genotype DysE6/+) there are 5 longitudinal veins (L1–L5). The anterior
cross vein (ACV) forms between L3 and L4 and the posterior cross vein
(PCV) forms between L4 and L5. (A’) Higher magnification of the region
of the wing that shows both cross veins, ACV and PCV. DysE6/DysE6

homozygotes show defects in cross vein formation (B). The PCV is
detached from L4 and L5 and at a lower frequency, the ACV fails to form
a connection to L4. (B’) Higher magnification of the image in B where
arrows indicate the altered ACV and PCV. Arrows indicate altered cross
veins. The RNAi mutant that knocks down long forms of dystrophin (act-
Gal4:UAS-DysN-RNAi/+) also shows a PCV mutant phenotype where the
cross vein fails to attach to L4 and L5 (C). (C’) Higher magnification of
the image in (C) where the arrow indicates the altered PCV. (D) Shows
the wing vein phenotype of the RNAi dystrophin mutant (tub-Gal4:UAS-
DysC-RNAi/+) that reduces the protein levels of all isoforms. Here the PCV
is drastically affected and there is extra vein material above L2. (D’)
Higher magnification of the image in (D) where the arrows indicate the
alterations. The upper arrow shows extra wing vein material above L2.
The lower arrow indicates an altered PCV. The RNAi Dystroglycan
mutant (tub-Gal4:UAS-DgRNAi/+) also shows a wing vein phenotype (E).
In this case we see a branch off the PCV as well as extra material above
L2. (E’) Higher magnification of (E) where the upper arrow shows extra
wing vein material above L2 and the lower arrow shows branching from
the PCV. Finally, Dys and Dg interact in the Drosophila wing as the
double mutant (tub-Gal4:UAS-DysC-RNAi/UAS-DgRNAi) shows a novel
phenotype (F, F’). The box indicates a thickened L3 vein. (F’) Higher

magnification of the box is shown in (F). Arrows indicate extra L3
longitudinal vein material. (G) Wild type L3 vein from the same region
as shown in (F’).
doi:10.1371/journal.pone.0002418.g002
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Table 1. Modifiers of Dg-Dys Complex

Functional groups Gene name Allele(s) Function
act-Gal4: UAS-
DysN-RNAi/+

tub-Gal4: UAS-
DysC-RNAi/+ DysE6/+ 1

Dg inte-
ractors2

I. Muscle, motor
and cyto-skeleton
function

Dys Dys[EMS-ModE10] Dys-Dg complex - - En (S) +

Cam Cam[k04213] Calmodulin, muscle contraction Su (W) - -

mbl l(2)k04222b* muscle development; splicing; RNA
binding

Su (S) Su+ (S) -

mbl[E27]** Su (S) Su+ (S) - +

nAcRa-30D l(2)k14204* acetylcholine receptor; muscle
contraction

Su+ (W) Su+ (W) -

nAcRa-30D[EY13897]** Su+ (W) Su+ (W) Mod (W) +

Lis-1 Lis-1[k13209] Dynein binding, WD repeats - Su+ (M) - -

Khc Khc[k13219] Kinesin, microtubule motor - Su+ (M) - -

Dmn Dmn[k16109] Subunit in Dynactin complex - Su+ (M) - -

Fhos l(3)j5B6 Actin organizing protein Su (M) Su+ (W) -

II. Neuro-nal
migration or planar
cell polarity genes

sema-2a sema-2a[k13416] ligand of PlexinB, axon guidance Su (W) Su+ (W) Mod (M) +

sema-1a sema-1a[k13702] axon guidance En (M) En (M) - +

fra l(2)k03003* receptor of Netrin Su+ (M) Su+ (M) Mod (W)

fra[4]** Su (W) Mod (W)

sli l(2)k02205* ligand (interects with Robo and Sdc) Su (W) Su+ (W) Mod (W)

sli[2]** Su (W) Su+ (W) - -

robo robo[2]** receptor Su (W) Su+ (W) - +

robo2 lea[2]** receptor Su+ (W) - +

Sdc l(2)k10317* Heparan sulphate proteoglycan
(interacts with Sli and Robo)

Su+ (S) Su+ (M) -

Sdc[10608]** Su+ (M) Su+ (W) - +

stan stan[129]** Receptor, Flamingo Su+ (M) Su+ (W) - +

wg wg[spd-1]** ligand Su+ (S) Su+ (S) Mod (M) +

grh grh[s2140] transcription factor Su+ (S) Su+ (S) Mod (W) +

III. Notch signaling Dl Dl[EMS-Mod130] ligand of Notch Su+ (S) Su+ (M) Mod (S) +

Dl[EMS-Mod140] Su+ (S) Su+ (M) Mod (S) +

IV. TGF-b signaling Dad Dad[j1E4] negative regulator Su+ (S) Su+ (S) Mod (M) +

dpp dpp[KG08191] TGF-b homolog Su+ (M) Su+ (W) - +

tkv tkv[k16713] type I receptor - - Mod (M)

msk msk[EMS-Mod90] importin En (S) En (S) En (S) +

msk[5]** Su (W) Su+ (M) +

V. EGFR signaling kek1 kek1[k07322] repressor of EGFR signaling Su+ (S) Su+ (M) - +

argos l(3)j10E8* repressor of EGFR signaling; ligand Su+ (W) - -

argos[Delta7]** Su+ (S) - - +

VI. Other Nrk Nrk[k14301] receptor tyrosine kinase Su (W) Su+ (M) - -

HIPK CG17090 [BG00855] serine/threonine kinase, death Su+ (S) Su+ (S) Mod (S) -

kis kis [k13416] ATP helicase activity; chromatin binding Su+ (S) Su+ (S) Mod (W) +

gcm gcm[KG01117] transcription factor activity En (S) En (M) - +

CG4496 CG4496[KG10365] zinc ion binding, nucleic acid binding Su (S) Su+ (S)

wun wun[k10201] lipid phosphate phosphatases - Su+ (W) - +

l(2)k11120a* Su+ (W) - -

POSH POSH [15815] SH3 adaptor protein, JNK signaling Su (W) Su+ (M) - +

vimar vimar[k16722] Ral GTPase binding Su (W) Su+ (M) - +

del del[KG10262] oogenesis - Su+ (S) +

SP1070 Poly-EGF [EMS-Mod29] Notch binding (predicted) Su+ (M) Su+ (M) -

Genetic Screens/DGC Modifiers
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Deficiency screen. In addition to the P-element lethal

collection, we also screened for the Dys interactors using a

collection of deficiency lines, which covers about 30% of the 1st,

40% of the 2nd and 80% of the 3rd chromosome and found 10

regions on the 2nd and the 3rd chromosomes that interacted with

DysN-RNAi in the wing vein (Figure 5A). Nine of these deficiencies

suppressed the Dys PCV phenotype with formation of extra wing

vein material and belonged to the Su+ class (Figure 3C and 5B)

and one to the En class (Figure 3D and 5B). The wg and stan

(Flamingo, Fla) genes, which belong to the planar cell polarity

pathway (Table 1), were identified as DysN-RNAi interactors in

[27D1-27F2] and [47A7-47C6] cytological regions respectively

(Figure 5B). Both of these genes modify DgRNAi phenotype in wing

vein as well (Figure 4). A third component of the planar cell

polarity pathway, grainy head (grh), was identified from the P-

element screen. Furthermore, dystrophin and Dl genes located in

region [91F12-92A11], as well as poly-EGF and CG4496 from

[27D1-27F2] region were also independently identified in the P-

element and EMS screens (Figure 5B and Table 1).

EMS mutagenesis screen. We analyzed ,37,000 chromo-

somes for modifiers of DysN-RNAi and DysN2-RNAi and over 6000

chromosomes for enhancers of DysE6 and isolated 27 modifiers

(Table S1). Eighteen of these were localized to the 2nd

chromosome and nine were localized to the 3rd chromosome.

The genes defective in eight of these mutants were identified and

shown to correspond to five genes (Table 1). The modifier screens

using EMS produced similar phenotypes to those observed in the

P-element screen (Figure 4) and additionally produced a ‘‘posterior

crossveinless’’ class (14/27 modifiers; Figure S2). These modifiers

may be alleles of the crossveinless genes on the second and third

chromosomes. There are eight previously identified crossveinless

loci, cv, cv-2, cv-3, cv-b, cv-c, cv-d, cvl-5 and cvl-6. Two, cv and cvl-6,

are on the X chromosome. One, cv-3 is on the second chromo-

some and the remaining five are on the third chromosome.

Modulators of the TGF-b pathway are encoded by two of the eight

crossveinless loci, cv and cv-2. Of the remaining six one other, cv-c has

been molecularly characterized and encodes a Drosophila Rho

GTPase Activating Protein. The others may also encode effectors

of TGF-b signaling. Nevertheless, when cv and cv-2 are lost the

resultant aberrant TGF-b signaling results in the loss of both

crossveins. Of our crossveinless like modifiers, one, Mod90

(Table 1 and Table S1), was mapped to cytological location

66B, two map units distal to the hairy gene, and so does not appear

to be an allele of any of the crossveinless genes on the third

chromosome. An attractive candidate for this gene is moleskin (msk)

which encodes Drosophila Importin-7, a protein involved in nuclear

translocation that has been shown to regulate the TGF-b pathway

by controlling Mad localization. We further confirmed that

moleskin (msk5) interacts with Dg and Dys (Table 1).

The next largest class of modifiers (9/27 EMS induced

modifiers; Table S1) belonged to the Suppressor+ (Su+) class with

extra wing vein material (Figure 3) and showed a more global

effect on the wing. Four of these modifier mutants, Mod59,

Mod111, Mod130 and Mod140, had phenotypes in the absence of

Figure 3. Wing Vein Phenotypes in Dys Modifier Classes. The
posterior cross vein (PCV) was used in the screening process. The Dys
mutant is depicted schematically in (A) with an actual fly wing (act-
Gal4:UAS-DysN-RNAi/+) shown to the right. Among the modifiers from the
original mutant phenotype was the Su class or the completely suppressed
class (B) where the PCV reverted to the wild type cross vein. Another class
of interactors suppressed the detached PCV phenotype but also produced
extra vein material, either as a branch or as an extra L2 vein (arrows, C).
This group was classified as suppressor-plus (Su+). Finally, a group of
modifiers showed a complete loss of the PCV (D, arrow) and this group
was classified as enhanced (En).
doi:10.1371/journal.pone.0002418.g003

Functional groups Gene name Allele(s) Function
act-Gal4: UAS-
DysN-RNAi/+

tub-Gal4: UAS-
DysC-RNAi/+ DysE6/+ 1

Dg inte-
ractors2

CG7845 CG7845[EMS-Mod4] WD40 domain protein Su+ (M) Su+ (M) -

l(3)L4092 l(3)L4092 Zn-finger protein Su+ (S) Su+ (S) Mod (S)

*, P-element insertion used in screen that may affect gene;
**, gene allele from Bloomington stock center; S, suppressor; Su+, suppressor of PCV with extra wing vein material; En, enhancer; Mod, modifier; (W), weak; (M),

moderate; (S), strong; 1, phenotypic classes shown in Figure S3; 2, summary for the data in Figure 4; +, interact; -, does not interact.
doi:10.1371/journal.pone.0002418.t001

Table 1. cont.
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Figure 4. Dg Mutant Modifiers. The RNAi Dystroglycan mutant modifiers were scored either as an increase in penetrance of the Dg phenotype, or
as an addition of extra vein material. These are represented in a bar graph. The ordinate indicates the percent penetrance of the wing vein
phenotype. The abscissa indicates the genes that interact with tub-Gal4:UAS-DgRNAi/+ as heterozygotes. The unmodified Dg mutant phenotype is at
the far left (control) and shows that nearly 30% of DgRNAi/+ flies show the Dg mutant phenotype (orange color) with the rest having wild type wing
veins (yellow color). Modifiers that show an extra vein material are indicated in brown. Wing vein phenotypes are shown in Figure S4.
doi:10.1371/journal.pone.0002418.g004

Figure 5. Deficiency Screen. (A) Cytological map of 2nd and 3rd chromosomes. Red bars represent cytological regions that were screened for
interaction with Dys in wing vein. Blue bars represent deficiencies tested in the screen. Deficiences that showed interactions are circled in red.
Numbers next to the blue bars indicate deficiencies used to narrow down the Dys interacting region. (B) Numbers in column 1 describe the
deficiencies used to narrow down region and respond to the following deficiencies: (1) w*; Df(2L)spdj2, wgspd-j2, (2) w1118; Df(2L)ade3, (3) Df(2L)ED1473,
(4) Df(2R)ED2098, (5) Df(2R)en-B, b1 pr1, (6) Df(2R)en-A, (7) Df(2R)PC4, (8) y1w*/Dp(1;Y)y+; Df(2R)P34, (9) Df(3L)ED4978, (10) Df(3R)ED5612, (11)
Df(3R)ED5942, (12) Df(3R)ED6025, (13) Df(3R)ED6069, (14) Df(3R)ED6076, (15) Df(3R)ED6265, (16) Df(3R)Tl-P, e1 ca1. Class of wing vein phenotype
modifiers is listed in second column. Cytology of 10 Dys interacting regions found in the screen is shown in column 3. Column 4 indicates Dys
interacting genes found in deficiency, EMS (*) and P-element (**) screens.
doi:10.1371/journal.pone.0002418.g005
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the dystrophin mutant. We mapped them to cytological location

92A and showed that they are tightly linked to the Delta gene (Dl,

Table 1). Subsequent crosses to different Dl alleles yielded lethal

phenotypes, suggesting that these mutants are alleles of Dl. Two of

the modifiers Mod130 and Mod140 suppressed the posterior

crossvein phenotype of DysN-RNAi, i.e. formed a complete crossvein

from longitudinal vein L4 to longitudinal vein L5, in addition to

generating extra wing vein material. We also found modifiers that

belonged to the Enhancer as well as the Suppressor classes (Text

S1).

Two other members of the class of mutants with extra wing vein

material (Table S1 and Figure S2B), Mod4 and Mod29 were

mapped to specific locations on the 2nd chromosome. Mod4 was

mapped by following its lethality phenotype in crosses with

deficiency lines. It was lethal in a cross with the Df(2R)nap9/

Dp(2;2)BG, In(2LR)Gla line and was not lethal in a cross with the

Df(2R)ST1, Adh[n5] pr[1] cn[*]/CyO line. The available lethal

mutants from cytological region 42A1-42B3 were crossed to Mod4

and using a P-element insertion line, PBac{PB}CG7845c00845/

CyO we determined that the mutation was in gene CG7845. This

gene codes for a WD40 containing protein whose function is not

known (Table 1). The underlying common function of all WD-

repeat proteins is coordinating multi-protein complex assemblies,

where the repeating units serve as a rigid scaffold for protein

interactions. Such a scaffolding protein may be utilized in the

formation or stabilization of the DGC.

Following the wing vein phenotype seen in homozygous flies as

well as its semi-lethality, Mod29 was mapped to cytological region

27D1-27D4. This region was independently identified to contain a

Dys interactors through the Deficiency screen (Figure 5B). We

further fine-mapped the region by showing that two smaller

deficiency lines, Df(2L)ade3/CyO,P{ftz/lacB}E3 and Df(2L)Ex-

el7029,P+PBac{XP5.WH5}Exel7029/CyO phenocopy the semi-

lethality/wing vein phenotypes seen with Mod29. Ultimately,

Mod29 was determined to be a poly-EGF gene mutant. Other

genes in the region were eliminated by complementation analysis.

In addition to the wing vein phenotype, Mod29 also shows defects

in muscles, in oogenesis and in the brain (photoreceptor axon

termination; Figure S5). Additionally, these mutant animals have a

very short lifespan. Since Poly-EGF is predicted to bind the Notch

receptor further functional analysis will be very interesting.

As discussed above, the DysE6 mutant does not show a wing vein

phenotype as a heterozygote (Figure 2A). But as a homozygote it

displays a disrupted posterior crossvein similar to DysN-RNAi

(Figure 2B and 2C). We reasoned that this heterozygote

background was ‘‘sensitized’’ and therefore excellent for identify-

ing enhancers. We screened 6000 chromosomes and found four

modifiers for DysE6/+. Three of those modifiers showed some extra

wing vein material in the posterior crossvein (Figure S2B). Two of

the modifiers, on the third chromosome ModE21 and ModE26

showed a branched crossvein phenotype in the absence of DysE6

though this dominant phenotype was not completely penetrant.

The third of this group, ModE11 on the second chromosome,

showed no wing vein phenotype in the absence of DysE6, however

as a homozygotes ModE11 flies displayed a globally disrupted

wing vein characterized by an abundance of extra vein material

(data not shown). Modifier E10 was the only modifier that showed

an enhanced phenotype (Figure S3A). ModE10/DysE6 flies

phenocopied the DysE6 homozygous phenotype which is a

reduction in wing vein material (Figure 2B). Moreover,

ModE10/Df(3R)Exel6184 flies also gave a similar wing vein

phenotype to DysE6/Df(3R)Exel6184 flies strongly arguing that

ModE10 is a dystrophin allele. Finding an additional allele of Dys

confirms that the screening approach was successful and analysis

of the EMS mutant will allow us to further characterize

Dystrophin protein function. Furthermore, the newly identified

dystrophin allele ModE10 interacted strongly with the Dg RNAi

mutant in the wing; instead of 27% penetrance, the phenotype was

96% penetrant in heterozygous Dys[Mod-E10] background

(Figure 4). This further confirms that molecules acting closely

with Dys and Dg can be found in this assay.

mbl Interacts with Dys in Muscles
These modifier screens led to the identification of genes that

belong to different functional groups. Importantly, genes with

known muscle function were identified in this screen, including

dystrophin itself. In addition, the screen also identified muscle genes

previously shown to interact with the Dg-Dys complex, Cam, mbl

and nAcRa-30D [22,23,24]. muscleblind encodes a RNA binding

protein that has shown to function in splicing [25]. As part of a

secondary screen in muscle tissue, we tested whether mbl, a strong

interactor with Dys in wing vein, also interacts with Dys in the

indirect flight muscles.

Animals that have lost one copy of mbl appear to have normal

muscle structure (Figure 6A), while act-Gal4:UAS-DysN-RNAi mutants

show moderate muscle degeneration (10 days old: 10%, n = 68;

18 days: 25%, n = 159; Figure 6B and 6D). However, the extreme

muscle degeneration phenotype was not observed in 10 days old

and at a low frequency in 18 day old DysN-RNAi mutants (Figure 6B

and 6D). In contrast, when mbl was reduced by one copy in a DysN-

RNAi mutant background, increase in muscles defects was observed.

Furthermore, around 50% of the phenotypes observed were

classified ‘‘extreme’’ both in 10 and 18 day timepoints (Figure 6C

and 6D). These data suggest that mbl and Dys interact in the

muscles and reduction of muscleblind level enhances the abnormal

muscle phenotype in DysN-RNAi mutants. These results show that

the screen successfully identified genes that interact with dystrophin

to establish normal muscle function.

Interactors Show Germline Phenotypes Similar to Dys
and Dg Mutants

The Dys and Dg genes are required in the germ line for the

establishment of oocyte polarity [6,8,9]. The oogenesis defects of

Dys and Dg serve as an excellent test to identify whether the new

modifiers might interact with Dg-Dys complex in other tissues as

well as in wing development. The ovariole contains a progression

of egg chambers at different stages of development (Figure 7A). An

early oocyte polarity marker, Orb, is localized to the anterior side

in early stages and then migrates to the posterior side of oocyte by

stage 3 of oogenesis. Between stages 3 and 6, Orb is clearly

localized to the posterior of the oocyte, making it an excellent

marker to analyze the polarity of the oocyte (Figure 7A–B). Dg loss-

of-function germ line clones and homozygous point-mutants are

arrested at early stages of oogenesis ([9]; Figure 7B) and show

mislocalization of the Orb marker that is usually missing or

diffused ([9]; Figure 7D). The oocyte polarity phenotype was also

observed for viable Dg and Dys alleles (Figure 7B, 7D and 7E; 74%,

n = 50 for DgO86/DgO55, 82%, n = 34 for DgO43/DgO55 and 68%,

n = 48 for DgO86/DgO43; the ovaries were dissected from 12 days

old mutants).

Interestingly, many of the identified modifiers are genes

previously shown to be required in germ line development. For

example a scaffolding protein, Rack1 that contains multiple WD-

domains and interacts with atypical protein kinase C (aPKC) has

recently been shown to function during Drosophila oogenesis [26].

We now analyzed potential Rack1 function in germ line for

posterior Orb localization. Importantly, this analysis revealed that

Rack1 is required in the early oocyte polarity: lack of Rack1 in
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early oocytes resulted in Orb mislocalization in the majority of the

eggchambers (76%, n = 13, Figure 8H). Consistent with these

findings aPKC is required for early oocyte development in

Drosophila [27]. Similarly, another Dys and Dg interacting protein,

Deadlock has previously shown to be required for Orb localization

[28]. It is, therefore, likely that other identified Dys and Dg

interactors are required in early oocyte polarity, possibly in a

process closely related to Dg-Dys function in oogenesis.

Utilizing the FRT sites in the P-lethal lines we made germ line

clones to determine how many of the selected modifiers had a role

in the establishment of early oocyte polarity. We analyzed germ

line clones of 14 loss-of-function mutants and found 8 genes that

showed a similar phenotype to that seen in Dg loss-of-function

clones. One of these genes, POSH, is an SH3 adapter protein.

Loss-of-function clones of POSH (Figure 8A, white arrow) were

arrested prior to stage 3–4 of oogenesis and appeared to lack Orb

entirely. Orb mislocalization was also found in Sema-2a, kek1, kis,

Lis-1, chif and Khc. Sema-2a loss-of-function clones showed clear

developmental arrest prior to stage 4–6 with diffused Orb staining

(Figure 8B). kek1, a negative regulator of the EGFR pathway, also

showed developmental arrest in loss-of-function clones (Figure 8C).

Orb in kek1 clones surround the oocyte in an irregular pattern. kis

loss-of-function germline clones have shown developmental arrest

and diffused Orb staining (Figure 8D). Similarly, the majority of

Lis-1, chif and Khc germline clones showed abnormal Orb

localization (Figure 8E–8G). Lis-1 and Khc have previously shown

to be involved in oocyte microtubular motor activities and to

interact in this process [29,30].

These data indicate that many of the genes that showed

interactions with Dys and/or Dg in the wing vein assay, also

showed early oocyte polarity phenotypes similar to Dys and Dg and

potentially play a role in the establishment of early oocyte polarity.

Discussion

In mammalian systems the DGC is composed of Dystrophin,

Dystroglycan, the Sarcoglycan complex (a, b, c, d, e, and f),
Sarcospan, the Syntrophins (a and b), the Dystrobrevins (a and b)

and Caveolin-3 [2]. Presently, the regulation of Dg-Dys complex

and its involvement in signaling are poorly understood. In this

work, we have addressed these unknowns by using dominant

modifier screens to find genes that may shed light on both of these

processes. Our screens have revealed groups of modifiers that are

components of canonical signaling pathways (TGF-b, EGFR, Wnt

and Notch) as well as components involved in cell/neuronal

migration, cytoskeletal rearrangements and most importantly

muscle development.

New Components of the Dg-Dys Pathway?
The screens described in this paper revealed some expected

interactors, Dys, Cam and Khc. Calmodulin, a calcium binding

protein required for muscle and neuronal functions has previously

been shown to interact with mammalian the Dg-Dys complex.

However, whether reduction of Cam activities suppresses or

enhances the muscular dystrophy phenotype is not totally clear.

Targeted inhibition of Cam signaling exacerbates the dystrophic

Figure 6. mbl Interacts with Dys in Muscle. (A–C) Transverse histological sections of indirect flight muscles of 18 days old flies. Reduction of
muscleblind by one copy does not show obvious muscle defects (A). A stronger phenotype is observed in a act-Gal4:UAS-DysN-RNAi/+ mutant where
loss of muscle integrity is noticeable throughout the tissue (B) and a significantly higher level of muscle degeneration is observed if the level of
muscleblind is reduced in a Dys mutant background (act-Gal4:UAS-DysN-RNAi/mbl, C). A green arrows in B and C indicate moderate muscle
degeneration and blue arrows extreme muscle degeneration phenotype. The bar graph (D) quantifies the percentage of muscles that yielded the
muscle phenotypes in 10 and 18 days old flies. Green bars indicate moderate muscle degeneration and blue arrows extreme muscle degeneration
phenotype.
doi:10.1371/journal.pone.0002418.g006
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phenotype in mdx mouse muscle while genetic disruption of

Calcineurin improves skeletal muscle pathology and cardiac disease

in ä-sarcoglycan null mice [31,32]. Since reduction of Cam showed

suppression of the phenotypes caused by reduction of the long

forms of dystrophin in the Drosophila wing, it will be interesting to

analyze whether reduction of Cam will suppress the Drosophila Dys

muscle phenotype as well. Khc involvement in Dg-Dys complex is

also expected since work in mammalian system has shown that

Khc can bind Dystrobrevin, a component of Dg-Dys complex

[33]. It will be interesting to test in the future whether Drosophila

Dystrobrevin can similarly bind Khc and what the functional

significance of this interaction is in muscles and neurons. We have

already shown that in oocyte development Khc is required for the

same early as Dys and Dg (Figure 7). It is, therefore, interesting to

test the potential requirement of dystrobrevin in this process and to

further dissect the Khc function in this complex during early

polarity formation.

An unexpected new interactor was identified in our screens, the

homeodomain interacting protein kinase, HIPK. In mammalian

systems HIPK is involved in the cell death pathway by

phosphorylating p53 [34]. Recently Drosophila HIPK has shown

to be involved in a communal form of cell death, sudden,

coordinated death among a community of cells without final

engulfment step [35]. It remains to be seen whether this HIPK

communal death pathway will utilize p53 phosphorylation.

However, it is tempting to speculate that the cell death observed

in muscular dystrophies use the newly described HIPK dependent

communal death pathway. HIPK is shown to interact with a

WD40-protein in mammalian system [35]. Since three WD40

proteins were identified in our screens, it will be interesting to test

whether any of these interact with Drosophila HIPK.

Another interactor that might shed light in the pathways utilized

by the Dg-Dys complex is an SH3-domain adapter-protein,

POSH. Structure-function analysis of Dg protein has revealed that

a potential SH3-domain binding site in Dg C-terminus is essential

for Dg function [8]. However, the critical SH3-domain protein in

this complex is still at large. The present screen revealed that

POSH can interact with the Dg-Dys complex in the wing vein

assay. It will now be interesting to determine whether POSH is the

missing critical SH3-domain protein that interacts with Dg-Dys

complex in Drosophila.

The Neuronal/Cell Migration Pathways Interact with the
DGC

There are only a few examples of signaling pathways that have

been shown to transmit information from outside the cell that

results in cytoskeletal rearrangements inside the cell. Slit-Robo,

Netrin-Frazzled and Semaphorin-Plexin pathways are examples of

such activity. Dg-Dys complex appears also regulate the

cytoskeleton based on extracellular information. Interestingly,

the interaction screens described in this paper show that these

aforementioned pathways are much more intricately connected

than previously thought. The Robo and Netrin Receptor (DCC)

pathways have previously been shown to interact [36], now we

report that Dg-Dys complex interact with these pathways as well.

The interactions that we see in wing development involving the

Drosophila DGC and the genes that affect neuronal guidance (sli,

robo, fra, sema-2a, sema-1a, Sdc) might be explained by their possible

role in hemocyte (insect blood cell) migration. Analysis done in

Drosophila shows that known axon guidance genes (sli, robo) are also

implicated in hemocyte migration during development of the

central nervous system [37]. Similar findings have been reported

in mammals, where blood vessel migration is linked to the same

molecular processes as axon guidance [38]. Both sli and robo have

been implicated in the vascularization system in vertebrates [39].

A recent study demonstrated that proper hemocyte localization is

dependent upon Dys and Dg function in pupa wings. Mutations in

these genes result in hemocyte migration defects during develop-

ment of the posterior crossvein [14]. Hence, we speculate that the

neuronal guidance genes that we have found may interact with the

DGC in wing veins by having a role in the migration process.

Similar to sli and robo [40], the Dys and Dg mutants also affect

photoreceptor axon pathfinding in Drosophila larvae [6]. It is

therefore possible that this group of modifiers will interact with the

DGC in axon pathfinding and other processes. Supportive of that

notion is the fact that mammalian Syndecan-3 and Syndecan-4

are essential for skeletal muscle development and regeneration

[41]. In addition slit-Dg interaction has previously been observed

in cardiac cell alignment [42]. Sequence analysis of slit reveals that

it possesses a laminin G-like domain at its C-terminus. Dystrogly-

can’s extracellular domain has laminin G domain binding sites and

has been shown to bind 2 of the five laminin G domains in

laminin. It is therefore possible that slit, through its laminin G-like

domain, binds to Dystroglycan and that Dystroglycan is a slit

Figure 7. Dys and Dg Mutant Germline Phenotype. In the wild
type ovariole, Orb localizes to the posterior of stage 3–6 oocytes (A, B).
(C) In DgO55 mutants, however, there is mislocalization of Orb and much
degeneration is observed. Arrowheads indicate mutant egg chambers.
Additional analyses of DgO86/DgO55, DgO43/DgO55 and DgO86/DgO43 show
similar phenotypes (not shown). Stage 3–6 wild type egg chambers
show posteriorly localized Orb staining (D, arrowheads, red staining).
(D’) shows Orb staining alone. Stage 3–6 DgO55 mutant egg chambers
show an abnormal lateral localization of Orb (E, arrowheads, red
staining). (E’) shows Orb staining alone. Stage 3–6 egg chambers from
DysDf homozygotes where the Orb staining is defused. (E’) more clearly
shows the altered Orb staining.
doi:10.1371/journal.pone.0002418.g007
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receptor. It will be informative to reveal the mechanisms and

nature of these interactions.

Oocyte Phenotypes
The establishment and formation of oocyte polarity during

development is a complex multistep process (reviewed in [43]). In

the anterior part of the germarium each stem cell undergoes

asymmetric cell division to give rise to another stem cell and a

cystoblast. The cystoblasts divide four times with incomplete

cytokinesis to form a 16 cell cyst. The oocyte fate is determined

when the cyst reaches the end of the germarium. At this point,

BicD protein, Orb protein, the microtubule organizing center

(MTOC) and the centrioles move from the anterior to the

posterior of the oocyte (Figure 7A). These events mark the first sign

of polarity in the oocyte. Subsequent Gurken signaling induces

posterior follicle cells to signal back to the oocyte which repolarizes

the microtubule cytoskeleton. This signal appears to require an

intact extracellular matrix since Laminin A mutants do not undergo

repolarization [44]. The outcome of the repolarization results in

the disassembly of the MTOC at the posterior, nucleation of

microtubules anteriorly and subsequent migration of the oocyte

nucleus to an antero-lateral position.

Germ line clones that lack Dg show developmental arrest and

mislocalization of the oocyte polarity marker Orb which is usually

diffused or absent in the oocyte [9]. This phenotype might be due

to Dg affecting the localization of the MTOC. But how exactly Dg

is involved in this process is not clear. One possible explanation is

that Dg is required for extracellular matrix (ECM) integrity since it

is known to bind Laminin. Such a structural conduit may be

necessary for proper signaling from the posterior follicle cells to the

oocyte. This is supported by the fact that Dg loss-of-function

mutants show defects in Actin accumulation. Another possibility is

that Dg may be involved in mircrotubule organization. Since the

regulation of actin- and microtubule-cytoskeleton are connected,

these two models are not mutually exclusive.

Interestingly, in our screens we found several genes that showed

phenotypes in oocyte development. One of these genes is kek1, a

transmembrane protein of the Drosophila Kekkon family that has

been reported to be a negative regulator of the EGFR receptor

[45]. It has been previously shown that EGFR signaling regulates

Figure 8. Interactors Show Similar Germ Line Phenotypes to Dys and Dg. POSH (hsFlp, FRT42D), loss of function clones show arrest at around
stage 3–4 and appear to lack Orb staining completely (A). Loss of function clones of Sema-2a (hsFlp, FRT42D Sema-2a[k13416]) (B), kek1 (hsFlp, FRT40A
kek1[k07322]) (C), kis (hsFlp, FRT40A kis[k13416]) (D), chif (hsFlp, FRT40A chif[BG02820]) (E), Khc (hsFlp, FRT42D Khc[k13219]) (F), Lis-1 (hsFlp, FRT42D Lis-
1[k13209]) (G) and Rack1 (hsFlp, FRT40A Rack1[EY00128]) (H) all show developmental arrest prior to stage 6. Khc, like POSH appears to lack any Orb
staining (red) while the others have abnormal Orb staining ranging from punctate (Sema-2a) to completely surrounding the oocyte (chif and Rack1).
GFP, green; Orb, red; DAPI, blue in (A–H). (A’–H’) show GFP staining. Arrows indicate Orb staining in clones.
doi:10.1371/journal.pone.0002418.g008
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the expression pattern of Dystroglycan to establish anterior-

posterior polarity of oocyte [10]. Further study is required to

determine if kek1, as an EGFR regulator controls Dg expression in

the germ line.

Another interesting gene found in our screens is POSH (Plenty of

SH3 domains), a Drosophila homologue of human SH3MD2

protein. Interestingly POSH is a multidomain scaffold protein that

can interact with Rho related GTPase - Rac1 and promotes the

activation of the JNK pathway [46] POSH has also shown to

regulate POSH-MLK-MKK-JNK complex [47]. A defect in this

complex can affect brain function. Furthermore, POSH and JNK-

mediated cell death pathway is thought to play an important role

in Parkinson’s disease [48]. With many SH3 domains, POSH has

the potential to bind Dg that has a predicted SH3-domain binding

site and has been shown to be necessary for the establishment of

oocyte polarity [8].

In addition, we have found interactions with Khc, Lis-1 and Dmn,

three genes known to be part of the Dynein-Dynactin complex

which in addition to Kinesin microtubule motor activity have been

shown to be necessary for establishment of intracellular polarity

within the Drosophila oocyte [49,50]. In mid-oogenesis dynein,

dynactin and kinesin are thought to act cooperatively in cargo

transport [49,51,52]. Since these genes interact with Dys (Table 1)

and show similar phenotypes in Orb localization (Figure 7), it will

be interesting to dissect their potential functional interactions with

Dys in early oocyte development. Furthermore, since mammalian

Dystrobrevin physically interacts with Khc, it is plausible, that the

Dynein-, Dynactin-, Kinesin-complex will utilize localization cues

set-up by Dg-Dys Complex.

In addition to the interactions with microtubular motor-

complexes, we also found interactions with a Drosophila Formin

homologue, FHOS. Mammalian FHOS directly binds to F-actin

and promotes actin fiber formation [53]. Recently Drosophila actin

nucleators, Capu and Spire have shown to assemble a cytoplasmic

actin mesh that maintains microtubular organization in the middle

of oogenesis [54,55,56,57,58]. Therefore, it will be important to

determine whether the actin nucleator, FHOS is also involved in

actin nucleation that regulates microtubular activity in early

oocyte development. Further study of these cytoskeletal genes will

allow us to gain a more detailed understanding of how Dg and Dys

function to ensure proper oocyte polarity during oogenesis.

Similar to microtubule and actin interplay in the regulation of

oocyte polarity, the dynamic actin-microtubule interactions

regulate growth cone steering at the growing axons [59]. It is

therefore possible that similar mode of function for Dg-Dys

interactions with these cytoskeletal modules is used in various cell

types. Furthermore the axon pathfinding and oocyte polarity

formation processes are similar in that they are controlled by

extracellular information which is transmitted to the cell resulting

in cytoskeletal rearrangement.

Planar Cell Polarity Genes
At the basal side of follicle epithelium, actin filaments exhibit a

planar cell polarity that is perpendicular to the long axis, the AP

axis, of the egg chamber. In Dg follicle cell clones the basal actin

array is disrupted non-cell-autonomously [9]. Integrins and the

receptor tyrosine phosphatase Lar are also involved in basal actin

orientation [60]. It is unclear whether Dg and the other genes

involved in basal actin polarity act together with the canonical

planar cell polarity pathway or function independently of this

pathway. Interestingly, we now report strong interactions between

the DGC and grainy head (grh) a transcription factor which is

required for several different processes during the differentiation

including the function of the frizzled dependent tissue polarity

pathway, epidermal hair morphogenesis and wing vein specifica-

tion [61]. In the absence of grh function the Fz, Dsh and Vang

proteins fail to accumulate apically and the levels of Stan (or

Flamingo) protein are dramatically decreased. The interactions

seen with stan (Fla) and wg in wing veins supports the hypothesis

that Dg might act together with the frizzled-dependent tissue

polarity pathway in coordinating the polarity of cells in epithelial

sheets.

Conclusions
By screening for alterations of a dominant wing vein phenotype

we have found modifiers of the DGC that are involved in

cytoskeletal organization. Initial characterization of some of these

genes revealed that they have phenotypes also in other tissues, in

which the DGC is known to function. These tissue/cell types

include the oocyte, the brain and the indirect flight muscles. This

argues strongly that the identified interactors may be involved

globally in DGC function. Further study is required to determine

mechanistically how these modifiers work in the context of the Dg-

Dys complex. However a common theme, already arising is that

the identified interactors appear to regulate cytoskeletal rear-

rangement. Mechanistic understanding of how the new interactors

might regulate Dg-Dys communication with cytoskeleton of

muscle cells may serve as a basis for the development of novel

therapeutic approaches that might improve the quality of life of

individuals afflicted with muscular dystrophy.

Materials and Methods

Fly Strains and Genetics
The fly-strains used is in this study are: DysE6/TM3, UAS-DysN-

RNAi/CyO (both kindly provided by L.Fradkin and described

previously as dysDLP2 E6 and RNAi-dysNH2 [62]), UAS-DysN2-RNAi/

TM3, UAS-DysC-RNAi/TM3, UAS-DgRNAi/TM3 (described previ-

ously as UASdsDysN-term, UASdsDysC-term and UASdsDg, respec-

tively [6]), DysDf, DgO43/CyO, DgO55/CyO, DgO86/CyO (kindly

provided by R. Ray [14]), KX43/TM6C, Dys8-2/TM3 [6], act-

Gal4/CyO, tub-Gal4/TM3, Ubi-GFP FRT42D,Dg323/CyO, hsFLP;

FRT40A Ubi-GFP/CyO, hsFLP; FRT42D Ubi-GFP/CyO and hsFLP;

FRT82B/TM3. Alleles used in this study w[1118], msk[5], nAcRa-

30D[EY13897], fra[4], mbl[E27], sli[2], robo[2], lea[2], Sdc[10608],

stan[129], wg[spd-1], argos[Delta7] and Df(3R)Exel6184, the defi-

ciency for dystrophin were obtained from Bloomington Stock

Center.

The following Dys and Dg mutants were used to screen for

modifiers of the wing vein phenotype: DysE6, an hypomorphic

allele of dystrophin, act-Gal4:UAS-DysN-RNAi/CyO, tub-Gal4:UAS-

DysN2-RNAi/TM3, tub-Gal4:UAS-DysC-RNAi/TM3 which are three

Dys RNAi mutants recombined onto chromosomes with actin and

tubulin Gal4 drivers, respectively; and tub-Gal4:UAS-DgRNAi/TM3,

a Dg RNAi mutant recombined onto a chromosome with the

tubulin Gal4 driver. DysN-RNAi is a transgene on the second

chromosome that encodes an inverted repeat that forms a double

stranded RNA hairpin complementary to the corresponding N-

terminus of the protein. It reduces the protein levels of all the

known long isoforms. DysN2-RNAi is a transgene on the third

chromosome that encodes a different inverted repeat than DysN-

RNAi but still reduces the protein levels of the known long isoforms.

DysC-RNAi is a transgene on the third chromosome that encodes

sequence complementary to the corresponding C-terminal region

of dystrophin and reduces the protein levels of all isoforms. All Dys

RNAi mutants exhibited 100% penetrance of the wing vein

phenotype. The Dg RNAi mutant exhibited ,30% penetrance of

the wing vein phenotype.
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P-element screen. The FRT P-element insertion lethal lines

used in this study were obtained from the Kyoto Stock Center

(Japan). From this collection, 800 lines were screened. Two-to-four

day-old males carrying P-lethal insertions over balancers (or virgin

females if the P-element was on the X chromosome) were mated to

DysE6/TM3; act-Gal4:UAS-DysN-RNAi/CyO; tub-Gal4:UAS-DysC-RNAi/

TM3 and tub-Gal4:UAS-DgRNAi/TM3 virgin females (or males).

Non-balancer F1 progeny were screened for dominant

modification of the wing vein phenotype. Modifiers were divided

into phenotypic classes based on the alterations of their wing veins

as compared to wing veins of act-Gal4:UAS-DysN-RNAi/(+ or CyO),

tub-Gal4:UAS-DysC-RNAi/(+ or TM3) and tub-Gal4:UAS-DgRNAi/(+ or

TM3) sibling flies. Suppressors were identified when wing veins of

F1 flies phenocopied the wing veins seen in wild type flies. Since

DysE6/+ had wild-type wing veins, non-balancer F1 progeny from

the DysE6/TM3 and P-lethal insertion cross were analyzed for the

presence or absence of a mutant posterior crossvein which is

altered in DysE6 homozygotes. All the genes found in this screen

were crossed to w[1118] to verify the absence of a dominant wing

vein phenotype. None modifiers showed a dominant posterior

wing vein phenotype. Since P-element insertion lethal lines were

on chromosomes with FRT sites, we made mosaics and

determined if selected modifiers possessed an oocyte polarity

phenotype (see below).

EMS screen. For the EMS mutagenesis 2–4 day old w1118

males were place in yeasted bottles overnight. Twenty males were

placed in each vial and starved for 6–8 hours. The flies were then

provided access to a solution of 22–25 mM EMS (ethyl

methansulfonate; Sigma) in a 5% sucrose solution for 18 hrs.

The flies were placed in new vials and allowed to recover for 1–

3 hrs. Each vial of flies was transferred to yeasted bottles with 40

virgin females of the desired genotype per bottle. The females were

allowed to lay eggs for two days then transferred to new bottles

daily for two more days. Mutagenized w1118 males were crossed to

act-Gal4:UAS-DysN-RNAi/CyO or tub-Gal4:UAS-DysN2-RNAi/TM3

females. Males of these crosses were scored for a modification of

the wing vein phenotype, either a novel alteration or suppression.

These were picked and backcrossed to the parental Dystrophin

mutant females to determine whether the modification was on the

second or third chromosomes. Once this was done these modifiers

were balanced either with CyO or TM6B and maintained as a

stock. The subset of modifiers that produced phenotypes in the

absence of the Dys mutants were crossed to meiotic mapping stocks

and subsequently mapped using those phenotypes. The

remainders were crossed to meiotic mapping stocks with a

dystrophin mutant in the background and mapped using the

modification phenotypes. In addition to the two RNAi dystrophin

mutants mentioned above, enhancers of the DysE6 mutant were

also screened for.

Obtained modifiers were mapped meiotically using the lines

from Bloomington Stock Center al[1] dp[ov1] b[1] pr[1] c[1] px[1]

sp[1] and ru[1] h[1] th[1] st[1] cu[1] sr[1] e[s] ca[1] .

Deficiency screen. A collection of 216 deficiency lines were

screened for modifiers of act-Gal4:UAS-DysN-RNAi/CyO mutant.

These lines were a mixed collection of flies from the Bloomington

Stock Center, the Exelixis (Harvard) and Drosdel (Cambridge)

collections. Additionally, these lines were used for mapping

modifiers (Mod29 and Mod4) from the EMS screen.

Deficiencies which show interaction in screen: w*; Df(2L)spdj2,

wgspd-j2; w1118; Df(2L)ade3; Df(2L)ED1473; Df(2R)ED2098;

Df(2R)en-B, b1 pr1; Df(2R)en-A; Df(2R)PC4; y1w*/Dp(1;Y)y+;

Df(2R)P34; Df(3L)ED4978; Df(3R)ED5612; Df(3R)ED5942;

Df(3R)ED6025; Df(3R)ED6069; Df(3R)ED6076; Df(3R)ED6265;

Df(3R)Tl-P, e1 ca1.

Loss of Function Mosaic Analysis
To obtain germline clones of the modifiers found in the FRT P-

element lethal screen, they were crossed to corresponding

chromosomal FRT stocks. Third instar larvae and early pupae

from this cross were heat-shocked at 37uC for 2 hours. After

eclosion, they were placed in vials with fresh yeast paste for 4–

5 days before dissection.

Dissections and Immunohistochemistry
Drosophila ovaries and wing imaginal discs were dissected rapidly

in phosphate buffered saline (PBS) and fixed in 4% paraformal-

dehyde (PFA) for 10 minutes at room temperature. Adult’s brains

were dissected in PBS and fixed in PFA for 30 minutes. All

antibody stainings were performed as described previously [6],

except with the Dystrophin antibody with which a protocol

provided by L. Fradkin was used [62]. Ovaries, brains and wing

imaginal discs were mounted in 70% glycerol in PBS for analysis

using a Leica TSC SPE confocal microscope. The following

antibodies were used: rabbit anti-Dg (1:3000; [9]), anti-Dys CO2H

(1:3000; [62]), mouse anti-Orb (1:20; Developmental Studies

Hybridoma Bank), mouse anti-24B10 (1:20; Developmental

Studies Hybridoma Bank), Alexa 488, 568, or 633 goat anti-

mouse, Alexa 488, 568 goat anti rabbit. To mount adult wings,

flies were pre-incubated in 80% ethanol and 20% glycerol

solution, then dissected and mounted in 70% glycerol before

analysis using a Leica light microscope.

Muscle Analysis
Histological sections of muscle were prepared from wax-

embedded material as described previously [6], stained with

hematoxyline and eosin (H&E staining) and analyzed using light

microscopy.

Supporting Information

Text S1

Found at: doi:10.1371/journal.pone.0002418.s001 (0.03 MB

DOC)

Table S1

Found at: doi:10.1371/journal.pone.0002418.s002 (0.14 MB

DOC)

Figure S1 Dys and Dg Expression in Wild Type and Mutant

Wing Discs. In wild-type larvae, Dys is expressed in all cells of the

wing disc (A) and is strongly reduced in the wing disc of the DysC-

RNAi mutant (B; tubGal4:UAS-DysC-RNAi/+). Dystroglycan

localization in wild type imaginal discs is enriched at the basal

surface of the epithelial cells. Dg expression is more intense in folds

formed from the contact of basal surfaces and is less visible in the

folds made from apical surfaces of wing disc cells (C). The

DgRNAi mutant also shows a reduction of Dystroglycan protein in

the wing disc (D; tub-Gal4:UAS-DgRNAi/+). (A9–D9) Enlarged

images of framed areas on (A–D). (A"–B") Enlarged images of

framed areas on (A–B) show Dystrophin single channel staining.

(C"–D") Enlarged images of framed areas on (C–D) show

Dystroglycan single channel staining.

Found at: doi:10.1371/journal.pone.0002418.s003 (6.06 MB TIF)

Figure S2 Subclasses of Dys(RNAi) Modifiers. (A) Example of

enhancers that lack the posterior cross vein (PCV) and belong to

phenotypic class En. Arrow indicates where the PCV should be.

(B) Wing representing Su+ class phenotype that shows the PCV

attached to L4 and L5 and extra wing vein material can be seen

below L5.

Found at: doi:10.1371/journal.pone.0002418.s004 (0.94 MB TIF)
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Figure S3 DysE6/+ Modifiers. DysE6/+ flies have normal

posterior cross veins. (A) Represents an enhancer (ModE10) of this

phenotype which phenocopies the wing veins from DysE6/DysE6

flies. (B) Shows an extra vein modification of the DysE6/+
posterior cross vein. Arrows indicate altered cross veins.

Found at: doi:10.1371/journal.pone.0002418.s005 (1.94 MB TIF)

Figure S4 Dg(RNAi) Modifiers. (A) Wild type fly wing with

normal posterior cross vein (PCV) as indicated by the arrow. (B)

DgRNAi mutant PCV (arrow) with a branch. (C–D) represent

modifiers that produce extra vein material (indicated by arrows. In

one case (C) the branch is elongated with extra material also seen

above L2 (upper arrow). (D) Shows extra material below L5 (lower

arrow).

Found at: doi:10.1371/journal.pone.0002418.s006 (1.77 MB TIF)

Figure S5 Phenotypes Observed in poly-EGF Mutants. (A) Fly

wing from Mod29/Df flies. Arrows indicate extra vein material.

(B) Transverse histological section of the indirect flight muscle in

Mod29 homozygotes. (B’) Higher magnification of the region

indicated by the box which indicates the separation of the muscle

into individual fibers. (C) Ovariole from a Mod29 homozygote.

Anterior to the left. The germarium is at the anterior most tip of

the ovariole with developing egg chambers progressing to the right

(posteriorly). The egg chambers undergo developmental arrest in

later stages. Actin-Green, Adducin-Red, DAPI-purple. (D) 24B10

antibody staining of the adult wild type brain. Arrows indicate

photoreceptor axon termination sites where the R8 photoreceptor

axon (left arrow) terminates before the R7 axon (right arrow). (E)

Mod29/Df adult brain. Termination of the R8 and R7 axons are

indicated by the red arrows. White arrows indicate non

termination of two axons that protrude deeper into the brain.

(F) Dg323/Dg323 clone in the adult brain. Red arrows indicate

where the R8 and R7 axons should terminate. Upper white arrows

indicate a general disruption of axon termination in the R8/R7

termination region. Lower right arrow indicates a non terminating

axon that proceeds deeper into the brain.

Found at: doi:10.1371/journal.pone.0002418.s007 (3.58 MB TIF)
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