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Abstract

The T lymphocyte plasma membrane condenses at the site of activation but the functional significance of this receptor-
mediated membrane reorganization is not yet known. Here we demonstrate that membrane condensation at the T cell
activation sites can be inhibited by incorporation of the oxysterol 7-ketocholesterol (7KC), which is known to prevent the
formation of raft-like liquid-ordered domains in model membranes. We enriched T cells with 7KC, or cholesterol as control,
to assess the importance of membrane condensation for T cell activation. Upon 7KC treatment, T cell antigen receptor (TCR)
triggered calcium fluxes and early tyrosine phosphorylation events appear unaltered. However, signaling complexes form
less efficiently on the cell surface, fewer phosphorylated signaling proteins are retained in the plasma membrane and actin
restructuring at activation sites is impaired in 7KC-enriched cells resulting in compromised downstream activation
responses. Our data emphasizes lipids as an important medium for the organization at T cell activation sites and strongly
indicates that membrane condensation is an important element of the T cell activation process.
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Introduction

Signals for T lymphocyte activation are transmitted at the

contact zone between the T cell and a cognate antigen presenting

cell (APC) [1]. The key T cell activating stimulus at the so-called

immunological synapse (IS) is initiated by the T cell antigen

receptor (TCR) upon binding to its cognate peptide-MHC

(pMHC) ligand presented on the surface of an APC [2]. The T

cell activation process is tightly coupled to spatial segregation of

proteins and lipids into T cell plasma membrane domains at the

IS. Segregation of these domains in the T cell plasma membrane

follows several distinctive mechanisms.

Following TCR triggering, signaling protein complexes assem-

ble in plasma membrane domains in vicinity of the TCR [3,4].

Membrane-attached Src kinase Lck phosphorylates subunits of the

TCR/CD3 complex leading to further recruitment and phos-

phorylation of cytosolic ZAP70 tyrosine kinase. ZAP70 phosphor-

ylates tyrosine residues of the transmembrane protein Linker for

Activation of T cells (LAT). Subsequently, LAT establishes a

cooperative network of cytoplasmic signaling proteins such as the

adaptor protein Grb2 and signaling enzyme PLCc in the vicinity

of activated TCR [5]. These multi-protein TCR LAT assemblies

(TLAs) mediate the immediate downstream signals following TCR

engagement [4] such as Ras activation [6] and induction of Ca2+

fluxes [7].

In addition to signaling complexes, organization of IS membrane

domains is also driven by interaction of membrane bound proteins

with the actin cytoskeleton. Consequently, T cells deficient in

proteins which regulate and mediate actin cytoskeletal rearrange-

ments have defects in IS formation and T cell activation [5,8,9].

Important steps of the T cell activation cascade have been

proposed to occur in raft domains of the T cell plasma membrane.

Based on studies of model membranes, lipid rafts are defined as

liquid-ordered (lo) membrane phases coexisting with a liquid-

disordered (ld) phase of the non-raft environment in the lipid

bilayers [10]. The phase separation into lo/ld critically depends on

the presence of cholesterol. In the lo phase, the planar sterol group

of cholesterol is believed to align with saturated hydrocarbon

chains of sphingolipids and phosphoglycerides resulting in tight

lipid packing and condensation of the lipid bilayers [10,11].

Lo phases in model membranes resist solubilisation by several

non-ionic detergents such as Triton6100 [12]. Thus, biochemical

analysis of detergent resistant membranes (DRMs) isolated from

cells was used to deduce the molecular composition of rafts. Based

on these analyses, cell membrane rafts were proposed to be

enriched in cholesterol, sphingolipids, and specific membrane

proteins such as glycosylphosphatidyl-inositol (GPI)-anchored

proteins in the outer leaflet and dual-acylated proteins anchored

in the inner leaflet. However due to numerous ambiguities of

detergent treatment, significant concerns were raised as to the

extent to which DRMs represent domains of intact cell

membranes [13,14].

The involvement of membrane rafts as signaling platforms at

the T cell activation sites was initially proposed based on the
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association of several membrane-associated TCR signaling

proteins with DRMs [15], including acylated Src-related tyrosine

kinases Lck and Fyn, acylated transmembrane linkers and TCR

components. However, microscopy studies of intact T cells

revealed no coclustering of generic DRM-associated raft markers

such as GPI-anchored raft reporter proteins with activated TCR

[16]. In contrast, the membrane polarity reporter Laurdan

revealed unequivocally the formation of condensed plasma

membrane domains at T cell activation sites [17] demonstrating

physical hallmarks of rafts at these membrane regions.

The functional role of raft domains in T cell activation has been

previously examined by disrupting ordered membrane phases by

depletion of endogenous cholesterol using methyl-b-cyclodextrin

(mbCD) [18–20] or cholesterol oxidase [19,20]. In line with the

cholesterol dependence of lo phase formation, mbCD extraction

reduces the accumulation of condensed raft domains at T cell

activation sites [17] and causes the loss of DRM association of Lck

and LAT [18]. MbCD-mediated cholesterol extraction also

resulted in the inhibition of a key early T cell activation

response-the induction Ca2+ fluxes in response to TCR triggering.

Further analyses showed that mbCD extraction led to depletion of

Ca2+ from intracellular stores which are essential for T cell

activation [20]. Thus manipulation of cholesterol can disrupt

several T cell functions, which makes it difficult to draw

conclusions and the functional role of plasma membrane

condensation in T cell activation responses remains a fundamen-

tally important, yet unanswered question. Here, we specifically

inhibit membrane condensation at T-cell activation sites using the

oxysterol 7-ketocholesterol (7KC), which inhibits tight packing of

saturated acyl chains and monitor the effects of 7KC on T cell

signaling and early activation responses.

Results

Inhibition of membrane condensation at T cell activation
sites by 7-ketocholesterol

The T cell plasma membrane bilayer condenses at the site of

activation within minutes post stimulation [17]. In order to

specifically interfere with this condensation we incorporated 7-

ketocholesterol (7KC) into naı̈ve T cells and T cell lines. 7KC

differs from cholesterol only by an additional ketone group, which

protrudes perpendicular from the cholesterol ring. While cellular

processing and intracellular trafficking of 7KC is identical to

cholesterol [21], substitution of 7KC for cholesterol decreases lipid

order and increases bilayer polarity [22].

We incubated Jurkat-derived T cell lines or primary T cells with

identical amounts of sterols (58 mM)-either cholesterol (CH) or

7KC alone, or as mixtures of CH and 7KC at 2:1 or 1:2 molar

ratios. Sterols were incubated with the cells as water-soluble

complexes with methyl-b-cyclodextrin (mbCD). The mbCD

concentration in these experiments was 0.5 mM which is ,2–

20-fold lower than the concentration generally used for extraction

of endogenous cholesterol from cells. Control cells were neither

incubated with sterols nor with mßCD. In both Jurkat-derived T

cell lines, sterol treatment resulted in a 1.4–2.0-fold increase of

total cellular sterol levels (Table 1A). Upon sterol enrichment,

similar cholesterol levels were measured in all treatment conditions

in Jurkat 8.2 cells (38.368.1 nmol/mg protein) and in JCaM2 wt

LAT cells (35.067.6 nmol/mg protein). 7KC levels ranged from

0–68% of total sterol (0–40 nmol/mg protein in Jurkat 8.2 cells; 0–

38 nmol/mg protein in JCaM2 wt LAT cells).

Sterol-treated Jurkat 8.2 cells, which express the 5C.C7 TCR

reactive to the moth cytochrome C (MCC) peptide 87–103 in

the context of IEk class II MHC, were conjugated with6MCC

peptide-pulsed CH27 IEk expressing B-cells (Fig. 1). JCaM2 wt

LAT cells, which are fully TCR responsive, were conjugated to

polystyrene beads coated with TCR-activating anti-CD3

monoclonal antibodies (mAb) or with anti-transferrin receptor

(TfR) mAb coated control beads which do not activate T cells

(Fig. 2).

Plasma membrane structure at the respective T cell activation

sites was visualized (Fig. 1A, B; Fig. 2A, B) and quantified

(Fig. 1C, D; Fig. 2C, D) as described previously [17] using the

fluorescent membrane dye Laurdan (5 mM labeling concentra-

tion) and 2-photon microscopy. Laurdan shifts its peak emission

wavelength from ,500 nm in fluid to ,440 nm in ordered

membranes [23]. Thus the normalized ratio of two, simulta-

neously recorded, intensity channels, defined as the generalized

polarization (GP), is a relative measure of membrane order with

fluid domains in cellular membranes yielding typically a GP value

below 0.3 [24].

To demonstrate that interactions with TCR membrane proteins

are not solely responsible for the spectral properties of the probe,

we conducted fluorescence resonance energy transfer (FRET)

studies in activated T cells using tryptophan fluorescence as a

donor for Laurdan excitation [25]. At low Laurdan concentrations

in the labeling media (,10 mM), Laurdan was not in the vicinity of

tryptophan-containing proteins to result in detectable FRET. High

levels of the probe resulted in FRET (Fig. S1A) concomitant with a

small increase in mean GP value at the activation site (Fig. S1B).

The high concentrations of Laurdan required to achieve FRET

indicate that the probe does not specifically interact with proteins.

Further Laurdan within the vicinity of proteins reports similar GP

values than outside the FRET range (estimated to be 14 Å in

liposomes [25]) with a variation in mean GP of60.04. Thus the

probe is likely to report the overall membrane structure of a

defined region.

GP values were pseudo-colored in cell images, as indicated in

Figs. 1A and 2A. We measured the contact site between MCC

peptide-pulsed versus not pulsed CH27 B-cells with Jurkat 8.2 cells

(Fig. 1) and between JCaM2 wt LAT cells and beads coated with

monoclonal antibodies (mAb) to CD3 versus transferrin receptor

(TfR, Fig. 2) to compare GP values at activation with those of non-

activation control sites. As previously reported [17], we observed a

significant condensation at the site of Jurkat 8.2 cell activation by B

cells pulsed with antigenic peptide (Fig. 1A, Table 1B) and the site

of JCaM2 wt LAT cell contacts with anti-CD3 coated beads

(Fig. 2A, Table 1B). Cholesterol-only treatment did not affect this

activation-induced increase in membrane condensation, but 7KC

significantly reduced mean GP values and hence membrane

condensation at the T cell activation sites in a dose dependent

manner (Fig. 1 and Fig. 2; Table 1).

Under most 7KC loading conditions, we observed little effect on

the order of the plasma membrane outside T cell activation sites.

However, at the highest 7KC dose used, we observed a reduction

of the mean GP value (from ,0.22 to 0.123) at the sites of

conjugation of JCaM2 wt LAT cells with anti-TfR coated beads

(Fig. 2D). To further evaluate the global effects of 7KC on

membrane density, we deconvoluted the GP distribution of the cell

images to discriminate fluid and ordered membrane populations

(mean GP and coverage in parentheses, Table 1C), as described

earlier [17,24]. With increasing doses of 7KC in CD3-activated

JCaM2 wt LAT cells, the proportion of the ordered membrane

population decreased from 23% to 11% while the mean GP value

of this population did not change significantly. Non-stimulated

cells exhibited no significant decrease in the ordered membrane

population in response to 7KC (from 10.3% to 9.4%). Thus we

established conditions at which 7KC appears to specifically impair

Membrane Condensation
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membrane condensation at T cell activation sites while bulk

membranes and control, non-activation sites are not affected.

Effects of sterol enrichment on cell viability and protein
expression

It has been previously reported that high levels of 7KC induces

apoptosis by activating caspases [26,27] and generating reactive

oxygen species (ROS) [28]. We performed a series of experiments

to exclude the possibility that 7KC treatment had other effects,

which may be responsible for reduced T cell activation responses.

First, we tested whether 7KC caused cell death (Fig. 3A) as high

levels of 7KC have been previously reported to be cytotoxic in

some cells [29]. Indeed, we did observe increased cell death at the

highest 7KC loading (P,0.05) compared to control or cholesterol-

enriched cells but enrichment with lower 7KC concentrations with

2:1 CH:7KC or 2:1 CH:7KC had no significant effect (P.0.05) on

cell viability. Similarly, only cells enriched with the highest 7KC

concentration displayed a change in mitochondrial potential (Fig.

S2A), while lower concentrations had no significant effect. ATP

levels were decreased in all sterol loading conditions with no

differences between cholesterol and 7KC enrichment (Fig. S2B).

Table 1. Effect of sterol treatment on membrane composition and structure.

A. Sterol composition

JCaM2 cells Jurkat 8.2

Treatments CH+7KC nmol/mg 7KC (%) CH+7KC nmol/mg 7KC (%)

Control 30.7864.92 Not detect. 35.6561.61 Not detect.

CH 42.9064.75 Not detect. 48.9063.87 Not detect.

2:1 CH:7KC 52.9469.86 20.761.38 54.9564.07 20.6061.24

1:2 CH:7KC 58.8969.75 41.064.43 57.8561.46 39.6963.23

7KC 62.2665.11 68.465.53 53.7260.41 58.7263.36

B. GP values at TCR activation and control sites

JCaM2 wt LAT, 7 min Anti CD3 Ab beads Anti TfR Ab beads

Control 0.43760.054 (86)** 0.22060.076 (78)

CH 0.43760.063 (76)** 0.22760.098 (62)

2:1 CH:7KC 0.32560.080 (78)** 0.21560.087 (60)

1:2 CH:7KC 0.24760.078 (75) 0.22860.091 (61)

7KC 0.13060.078 (80) 0.12360.069 (60)

Jurkat 8.2, 7min With Antigen Without Antigen

Control 0.42560.061 (37)** 0.20160.066 (36)

CH 0.45460.045 (37)** 0.21060.072 (34)

2:1 CH:7KC 0.30660.066 (39)** 0.20760.075 (33)

1:2 CH:7KC 0.26260.079 (39)* 0.21660.064 (33)

7KC 0.22160.086 (38) 0.21660.072 (36)

Jurkat 8.2, 23min With Antigen Without Antigen

Control 0.34260.073 (44)** 0.22360.073 (38)

CH 0.33760.079 (39)** 0.20060.073 (33)

2:1 CH:7KC 0.27660.073 (39)** 0.20660.075 (39)

1:2 CH:7KC 0.23560.078 (41) 0.20360.080 (31)

7KC 0.18160.082 (45) 0.18660.059 (35)

C. Mean GP (and percentage coverage) of fluid and ordered populations

JCaM2 wt LAT, 7min Anti CD3 Ab beads Anti TfR Ab beads

Fluid/Ordered populations Fluid/Ordered population

Control 0.239 (77.7%) 0.400 (22.3%) 0.245 (89.6%) 0.409 (10.3%)

CH 0.246 (76.5%) 0.422 (23.5%) 0.251 (88.6%) 0.429 (11.4%)

2:1 CH:7KC 0.239 (83.2%) 0.402 (16.8%) 0.250 (88.6%) 0.394 (11.4%)

1:2 CH:7KC 0.241 (86.4%) 0.393 (13.6%) 0.239 (88.7%) 0.385 (11.3%)

7KC 0.238 (86.4%) 0.382 (11.5%) 0.178 (90.6%) 0.375 (9.4%)

A. Mean6standard deviation (3 experiments) of total sterol contents (CH+7KC) of JCaM2 and Jurkat 8.2 cells are given in nmol/mg cell protein. 7KC levels are a
percentage of total sterol levels. B. Mean6standard deviation (of n images) of GP values at contact sites between JCaM2 cells and beads after 7 min of activation and
between Jurkat 8.2 cells and B cells in the presence or absence of antigen after 7 min and 23 min of activation. Statistically significant differences between activation
and control sites are indicated with ** P,0.001, * P,0.05. C. Global GP values of JCaM2 cells after 7 min of activation. Normalized GP distributions were fitting to two
Gaussian populations (fluid and ordered). The mean GP value (and coverage) of each population is given.
doi:10.1371/journal.pone.0002262.t001
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Further, we found no differences between control and sterol

treatment conditions in caspase-3 activation (Fig. S2C), ROS

levels (Fig. S2D) and cell size (data not shown). In summary, toxic

effects of 7KC are unlikely to explain the impaired TCR signaling

and activation responses in T cells enriched with 20% 7KC

(treated with 1:2 CH:7KC) or ,40% 7KC (1:2 CH:7KC).

We also examined the expression of key signaling proteins (Fig.

S2E) and sterol-sensitive genes (Fig. S2F) in control, cholesterol-

and 7KC-enriched cells, with no significant differences in

expression between all five conditions. However, surface expres-

sion of TCR is reduced by 20–35% in all sterol-loaded Jurkat cells

but we found no difference between cholesterol-only and 7KC-

treated cells (Fig. 3B). In the following assays, we thus analyze T

cell responses of 7KC-enriched cells relative to cholesterol-

enriched cells to compare cells with similar TCR surface

expression. In summary, the correlation between membrane

structure and signal transduction is unlikely to be a consequence

of increased T cell death or altered TCR signaling protein

expression.

Early T cell signaling activities in sterol-enriched T cells
Cholesterol depletion with mßCD has been shown to inhibit

intracellular Ca2+ fluxes independent of membrane order (Pizzo et

al, 2002). We next tested the Ca2+ fluxes elicited by soluble OKT3

mAb-mediated TCR triggering in 7KC-enriched Jurkat cells.

FACS analyses of Jurkat cells labeled with Indo-1 fluorescent Ca2+

sensor (Fig. 4A) revealed no differences in mean Ca2+ fluxes

between control, cholesterol or 7KC-enriched T cells (Fig. 4B). To

measure Ca2+ fluxes when T cells are activated locally, sterol-

enriched cells were allowed to settle on anti-CD3 antibody-coated

coverslips on an inverted microscope. As soon as the cells made

contact with the activating surface, the fluorescence intensity of the

calcium indicator Fluo-4 was recorded. When cells were thus

activated with adhered antibodies, we also found no difference in

Figure 1. Membrane structure at immunological synapses in sterol-enriched T cells. Jurkat 8.2 T cells were treated without sterols
(control), cholesterol (CH), 2:1 CH:7KC, 1:2 CH:7KC or 7KC alone as described in Methods. Sterol-enriched, Laurdan-labeled Jurkat 8.2 cells were
conjugated to CMRA-labeled B cells for 7 min in the presence (with antigen, A, C) or absence (without antigen, B, D) of 2 mM antigen cytochrome c.
A–B. Cell couples were fixed, imaged and intensity image converted into GP images and pseudo-coloured (scale in A) as described previously. Inserts
show the corresponding transmission image with the orange fluorescence of CMRA overlaid to identify APCs. Bar 5 mm. C–D. GP values were
measured over the entire contact area between T cell-APC couples as indicated in A. Means (indicated by horizontal lines) and SDs are shown in
Table 1. In C, differences (P,0.05) were found between the means of all conditions except between control versus cholesterol and 1:2 CH:7KC versus
7KC. No differences were found in D. Difference of P,0.05 compared to control cells are marked with one asterisk; differences of P,0.05 to
cholesterol-enriched cells with two asterisks.
doi:10.1371/journal.pone.0002262.g001
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peak fluorescence corresponding to intracellular calcium concen-

tration (Fig. 4C) or response time (data not shown). Hence, we

established conditions that inhibit membrane condensation but do

not affect TCR-mediated Ca2+ fluxes. Thus tyrosine kinases,

adaptor proteins and signaling enzyme PLCc function sufficiently

to induce Ca2+ fluxes upon TCR triggering.

We further tested early signaling events upon TCR triggering in

whole cell lysates by probing for tyrosine phosphorylation with

immunoblotting (Fig. 5A and B) or multiplex analysis using a

microbead suspension assay (Fig. 5C). Surprisingly, we found no

differences in the degree or rate of specific (Fig. 5B) or total

tyrosine phosphorylation of CD3f, Lck, ZAP70, LAT, ERK and

CREB (Fig. 5C). We also found no differences between the five cell

conditions in PLCc1 phosphorylation upon TCR stimulation.

Differences within an assay such as the lower phosphorylation of

Lck in cholesterol-enriched T cells were not reproduced in

independent experiments. It is possible that the assays employed

here, particularly immunoblotting, are not sensitive enough to

detect small changes in overall phosphorylation rate but it appears

that signaling activities in whole cell lysates via tyrosine

phosphorylation are unaltered in sterol-enriched T cells.

Inhibition of T cells membrane condensation impairs
assembly of TCR signaling clusters on the cell surface

Multi-molecular signaling assemblies form upon TCR trigger-

ing in T lymphocyte plasma membranes. For detergent-free

biochemical characterization of these assemblies, we immunoiso-

lated TCR signaling domains from sterol-loaded Jurkat cells and

analyzed them by immunoblotting as established previously [30].

Briefly, Jurkat T cells were conjugated on ice to magnetic beads

coated with TCR triggering anti-CD3 mAb, then activated by

incubation at 37uC. Subsequently the conjugates were homoge-

nized mechanically by nitrogen cavitation. Plasma membrane

fragments containing the TCR signaling domains bound to the

magnetic beads were retrieved with a magnet and subjected to

immunoblotting.

Figure 2. Membrane structure at activation sites in sterol-enriched T cells. Sterol-enriched JCaM2 T cells were conjugated to polystyrene
beads coated with anti-CD3 mAb (Anti CD3 mAb, A, C) or anti-transferrin receptor (Anti TfR mAb, B, D) for 7 min. A–B. Cell-bead conjugates were
fixed, imaged and intensity image converted into GP images and pseudo-coloured (scale in A) as described previously. Inserts show the
corresponding transmission image to identify the location of the bead. Bar 5 mm. C–D. GP values were measured over the entire contact area
between cells and beads. Means (indicated by horizontal lines) and SDs are shown in Table 1. In C, differences (P,0.001) were found between the
means of all conditions except between control versus cholesterol. No differences were found in D except between 7KC-treated cells and all other
conditions (P,0.05). Difference of P,0.05 compared to control cells are marked with one asterisk; differences of P,0.05 to cholesterol-enriched cells
with two asterisks.
doi:10.1371/journal.pone.0002262.g002
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We probed isolated signaling complexes for CD3f, ZAP70,

LAT and PLCc (Fig. 6A). As described previously [30], activation

of non-sterol treated (control) cells resulted in formation of TCR-

LAT signaling assemblies with a strong and sustained recruitment.

In 7KC-enriched cells (2:1 CH:7KC), recruitment of CD3f,
ZAP70, LAT and PLCc is clearly less efficient with a delayed

assembly of the signaling complexes, while this is not the case in

cholesterol-enriched cells (Fig. S3A). We quantified the recruit-

ment of CD3f (Fig. 6B), ZAP70 (Fig. 6C) and LAT (Fig. 6D)

isolated from control, cholesterol and 7KC-enriched (2:1

CH:7KC) cells. The similar levels of antibody heavy chain

recovered in the immuno-isolated membrane fragments indicates

equal recovery of beads post cell homogenation (Fig. S3B). In

sterol-loaded cells, recruitment of CD3f to the anti-CD3 isolates

was only reduced in comparison to control cells, which may be

caused by the reduced TCR surface expression (Fig. 3B). In

cholesterol-loaded cells, neither the recruitment of CD3f nor of

ZAP70 and LAT to the anti-CD3 immunoisolates exhibits

significant difference to control cells. Only 7KC enrichment

resulted in a consistent and significant reduction of ZAP70 and

LAT to the anti-CD3 isolates compared to cholesterol-loaded cells.

This effect was particularly striking in the amount of LAT that was

found in the anti-CD3 isolates. In summary, we observed that

7KC reduced the formation of TCR signaling assemblies.

We independently monitored the formation of TCR activation

clusters using total internal reflection fluorescence (TIRF)

microscopy in sterol-treated Jurkat T cells (Fig. 7). The cells were

allowed to settle on anti-CD3 mAb coated coverslips for 10 min at

37uC, fixed and probed for total tyrosine phosphorylation (pY,

Fig. 7A and colored green in Fig. 7C), stained with phalloidin for

F-actin (Fig. 7B and colored red in Fig. 7C), probed for ZAP70

phosphorylated at tyrosine 319 (Fig. 7D), LAT phosphorylated at

tyrosine 191 (Fig. 7E) or PLCc1 phosphorylated at tyrosine 783

(Fig. 7F). In control and cholesterol-loaded cells, a large number of

tyrosine phosphorylation spots were visible at the activation site

surrounded by a ring of F-actin as described previously [31,32].

With increasing levels of 7KC, activation sites were smaller,

tyrosine phosphorylation positive spots reduced in number and

brightness (quantification in Fig. S4A) and the F-actin ring became

less pronounced (Fig. S4B) with some small and bright F-actin

spots visible in 7KC-enriched cells. Jurkat cells plated on poly-L-

lysine- or transferrin receptor (TfR)-coated coverslips, under all

sterol treatments spread and formed similarly bright phalloidin-

stained lamellipodia (data not shown) indicating that 7KC-

enriched cells are capable of actin polymerisation but are

specifically deficient in producing TCR signals to mediate

formation of actin rings. The intensity of phospho-ZAP70 staining

was similar in control cells and cells enriched with cholesterol or

2:1 CH:7KC but reduced significantly at higher doses of 7KC

(Fig. S4C). In contrast, phospho-LAT was significantly reduced in

all sterol conditions (Fig. S4D) correlating with the reduced TCR

surface expression (Fig. 3B). Importantly, as in immuno-isolated

TCR activation sites, 7KC enrichment reduced phospho-LAT at

the cell surface in a dose-dependent manner and to a greater

extent than cholesterol enrichment. Similarly, PLCc1 was

significantly lower in 7KC-enriched cells compared to cholester-

ol-enriched or control cells so that the degree of pLAT correlate

well with pPLCc1. In summary, the microscopy data of reduced

tyrosine phosphorylated proteins at the cell surface agrees

extremely well with our biochemical observations of diminished

signaling complexes in the plasma membrane of 7KC-enriched

cells. Taken together, our data suggests that 7KC modulates the

location of TCR signaling proteins with less signaling proteins

recruited or retain at the cell surface and this impacts more

severely on LAT or actin restructuring than on upstream

components such as ZAP70 or elements of the CD3 complex.

Downstream activation responses of sterol-enriched T
cells

We next evaluated IL-2 secretion from CD3/CD28 expanded

primary mouse lymphocytes by TCR stimulation with anti-CD3

antibody coated on 96-well plates (Fig. 8A). We also measured

activation-induced IL-2 secretion of Jurkat 8.2 T lymphoma cells

stimulated with MCC peptide-pulsed CH27 B cells (Fig. 8B). In

both cell types, 7KC incorporation into the T cell membrane

caused a dose dependent reduction of IL-2 secretion in response to

T cell activation (P,0.05 at 2:1 CH:7KC and P,0.001 at 1:2

CH:7KC and 7KC alone). The Jurkat cells treated only with

cholesterol secreted similar quantities of IL-2 as untreated controls.

In primary T cells, IL-2 secretion was lower but not significantly

reduced by the cholesterol-only treatment, which may be

explained by the lower TCR surface expression under this

condition. Similarly, to IL-2 secretion, phosphorylation of

Figure 3. Viability and TCR surface expression sterol-enriched
T cells. A. Viability of sterol-treated Jurkat cells was determined with
annexin-5 staining to detect apoptosis and propidium iodide for
necrotic cells. Viability was normalized to control cells. One asterisk
denotes P,0.001 compared to control; two asterisks indicate P,0.05
compared to cholesterol-enriched cells. B. Surface expression of CD3
was determined by flow cytometry in wild-type Jurkat and Jurkat 8.2
cells and normalized to control cells.
doi:10.1371/journal.pone.0002262.g003
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ERK1/2 after 24 h of stimulation was also decreased by 7KC

enrichment in a dose-dependent manner (Fig. S5A). We further

tested the responsiveness of sterol-enriched cells by assessing IL-2

transcription (Fig. S5B) when TCR activation is bypassed by

stimulation with ionomycin and PMA. Only when cells are treated

with 7KC alone did we find a reduced responsiveness in IL-2

transcription to non-specific activation.

Taken together, our data shows that 7KC incorporation

specifically inhibits membrane condensation at T cell activation

sites. This leads to reduced formation of LAT-based signaling

complexes at plasma membrane and a failure of actin rings to

polymerize at TCR activation sites. Consistently IL-2 secretion

upon TCR engagement is reduced. These data indicate that T cell

receptor signals are not effectively transduced when formation of

ordered membrane domains is impaired.

Discussion

The plasma membrane of T lymphocytes condenses at sites of T

cell activation to form a zone rich in ordered membrane domains

[17]. Rafts in lipid bilayers are defined as liquid-ordered (lo) phases

in a liquid-disordered (ld) non-raft environment [33]. Thus

membrane condensation at T cell activation sites is a physical

reflection of raft accumulation. Here, we address the functional

Figure 4. Calcium flux upon TCR triggering. A. Jurkat cells (untreated controls or treated with 2:1 CH:7KC) were loaded with Indo-1 and
evaluated for Ca2+ mobilization by stimulation with 5 mg OKT-3 (anti-CD3 mAb) after 60 s (see arrow). The mean Ca2+ flux is indicated by the blue
lines. B. Mean calcium mobilization upon TCR triggering for the indicated sterol conditions. C. Maximum fluorescence intensity of Fluo-4-labeled
Jurkat cells (15–40 cells per condition) stimulated anti-CD3-mAb adhered to microscopy coverslips. No differences between cell conditions were
found (P.0.05).
doi:10.1371/journal.pone.0002262.g004
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role of this membrane condensation in the activation of T

lymphocytes. We found that enrichment of T cell membranes with

7-ketocholesterol (7KC) specifically inhibits membrane condensa-

tion at T cell activation sites. Following TCR activation 7KC–

enriched cells exhibit normal early TCR signaling responses such

as induction of calcium fluxes and phosphorylation of signaling

proteins when whole cell lysates were examined. However, TCR

triggering results in fewer TCR signaling complexes in the plasma

membrane, reduced accumulation of tyrosine phosphorylated

proteins on the cell surface and impaired re-structuring of actin

cytoskeleton at the activation sites in 7KC-enriched T cells. Such

differential localization of signaling activities correlates with an

inhibition of the late response, IL-2 secretion following prolonged

stimulation. Taken together, our data indicates that plasma

membrane condensation is required for the sustained T cell

activation process by possibly retaining signaling activities on the

cell surface and that lipid-driven interactions are an important

mediator of this condensation.

Figure 5. Signaling activities upon TCR triggering in whole cell lysates. A. Control and sterol-enriched Jurkat cells were activated with 5 mg
of UCHT1 (anti-CD3 mAb) for the indicated periods of time. Whole cell lysates were probed for ZAP70 phosphorylated at tyrosine 319. B.
Quantification of tyrosine 319 phosphorylation of ZAP70. The data show the mean and range of two independent experiments. C. Multiplex analysis
of T cell signaling. 26106 sterol-enriched Jurkat wt cells were activated with 5 mg/ml of anti-CD3 UCHT1 antibody for 0-15 min at 37uC. Non-site
specific tyrosine phosphorylation of CD3e, Lck, ZAP70, LAT and ERK1/2 (Tyr185/Tyr187) as well as serine phosphorylation of CREB (Ser133) in whole
cell lysates was assessed by multiplex microbead suspension assay. The data is one representative experiment; error bars represent standard
deviations. Legend shown in B applies to data in C.
doi:10.1371/journal.pone.0002262.g005
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An increasing number of reports suggest a link between altered

lipid homeostasis, as in hypercholesterolemia, and changes in

immune cell activity [34] and immune responses. For example,

failed T cell activation correlates with ganglioside expression in

systemic lupus erythematosus [35,36]. Cellular cholesterol levels

are implicated in impaired T cell signaling [18] and in determining

the internalization rates of surface receptors in anergic B cells [37].

Elucidating the molecular link between ordered membrane

domains and immune cell activation could thus be important for

the understanding of the effects of dyslipidemia on immune

functions.

The functional importance of raft domains in T cell activation

has been previously addressed by mbCD-mediated cholesterol

extraction. Indeed, DRM-association of several membrane-

anchored T cell signaling proteins, for example LAT and Src

related tyrosine kinase Lck, is lost after cholesterol extraction [18].

However, mbCD treatment may also disturb other non-raft

related functions [13]. This is exemplified in the case of T cell

signaling by the inhibition of TCR triggering-induced Ca2+ fluxes

by mbCD extraction, which is most likely due to the depletion of

Ca2+ from intracellular stores [20] and thus independent of plasma

membrane rafts. However 7KC loading had no effect on the

induction of Ca2+ fluxes following triggering of TCR. Thus the

machinery required for the induction of TCR-triggered Ca2+

fluxes remains functional upon inhibition of membrane conden-

sation with 7KC. Furthermore, the general expression of T cell

signaling proteins and tyrosine phosphorylation rates as well as cell

viability are unaffected. This is strong evidence that the defective

T cell activation responses caused by 7KC incorporation are a

direct consequence of inhibition of membrane condensation at the

activation sites.

Enrichment with 7KC effectively prevented the formation of

ordered domains at T cell activation sites in a dose dependent

manner. 7KC differs from cholesterol by an additional ketone

group at the 7th position of the sterol ring. The ketone group of

7KC protrudes perpendicular from the planar sterol ring and

limits the depth of 7KC insertion into the membrane and its

interaction with phospholipid acyl chains, orienting the two polar

moieties of the oxysterol near the membrane-water interface

[22,38]. Importantly, the alignment of the sterol ring of 7KC with

trans-configured saturated acyl chains of sphingo- and glyceroli-

pids is impaired, causing decreased formation of ordered

Figure 6. Formation of signaling complexes in sterol-enriched T cells. A. Sterol-treated Jurkat T cells (A control and 2:1 CH:7KC) were
conjugated with magnetic beads coated with anti-CD3 monoclonal antibodies. Cell-bead conjugates were activated for 0–15 min at 37uC and
subsequently homogenized by nitrogen cavitation at 4uC. Proteins from the recovered beads were separated by SDS page electrophoresis and
probed for signaling proteins CD3f, ZAP70, LAT and PLCc. Detection of proteins indicates recruitment to the activation site. The star denotes the
antibody heavy chain. B–D. Quantification of the recruitment of CD3f (B), ZAP70 (C) and LAT (D). One asterisk indicates a significant difference
compared to control cells (P,0.05); two asterisks indicate a significant difference compared to cholesterol-enriched cells (P,0.05).
doi:10.1371/journal.pone.0002262.g006
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membrane domains [22]. The capability of an oxysterol to impair

cell membrane condensation suggests that the physical properties

of ordered domains in T cell membranes rely on the bilayer’s

sterol content and is thus lipid mediated.

Early TCR signals are transduced by TCR-LAT assemblies

(TLAs) which form in the plasma membrane by anchorage of

transmembrane linker protein LAT in the vicinity of triggered

TCR [5,30,32]. In an elegant study, Douglass and Vale

demonstrated that protein-protein interactions are the driving

force for TLAs [39] creating cooperative association of

cytoplasmic proteins with LAT clusters in the membrane

[40,41]. In response to TLAs, the membrane condenses at the

T cell activation site [17]. We propose that protein-mediated,

lateral clustering of LAT mediates plasma membrane condensa-

tion. LAT clustering and the anchoring of other raft-philic

proteins at the T cell activation sites may drive the recruitment of

pre-existing rafts or de novo formation of large raft domains. It is

noteworthy that LAT recruitment and phosphorylation at the cell

surface was more severely impaired by 7KC than signaling

proteins further upstream of LAT. The balance of protein- and

lipid-mediated interaction in the formation of TLAs remains to

be investigated. Our data further suggests TCR triggering

without membrane condensation results in insufficient signals

to polymerize actin around the activation site. This in turn

could affect the patterning of immunological synapses and thus

the internalization and recycling rates of TCR signaling clus-

ters. How membrane organization and actin restructuring are

linked on the molecular level is an important subject of future

research.

Materials and Methods

Cells and Reagents
Jurkat 8.2 cells, JCaM2 wtLAT cells, Jurkat cells and CH27 B

cells were maintained as described previously [17,42]. A1 (F)

RAG-12/2 CD4 T cells were isolated from spleen using

Dynabeads Mouse CD4 (L3T4) and DETACHaBEAD Mouse

CD4 (both Dynal Biotech) according to the manufacturers

recommendations. Purified CD4 T cells were expanded using

Mouse CD3/CD28 T cell expander (Dynal) in culture medium

supplemented with 10 U/ml IL-2 for 6–8 days. Expanded cells

were rested for 24h in IL-2 free medium before use. 7-

ketocholesterol (7KC, 5-cholesten-3b-ol-7-one) was purchased

from Steraloids (Newport, USA). Monoclonal antibodies KT3

(anti-mouse CD3) and OKT3 (anti-human CD3) were purified

from hybridoma supernatant and purchased from eBioscience,

respectively. Grb2 and ZAP-70 antibodies were purchased from

Transduction Laboratories. PLCc antibodies were from Cell

Signaling Tech and its phospho-specific analogue from BD

Biosciences. Phospho-specific ZAP70 and LAT antibodies were

purchased from Cell Signaling Tech and Biosource, respectively.

LAT rabbit antiserum was from Upstate Laboratories. Anti-b-

actin (goat) was purchased from Abcam and anti-CD3c (goat)

from Santa Cruz.

Sterol treatment
Aqueous stock solutions of 50 mg/mL methyl-ß-cyclodextrin

(mßCD) complexed to 1.5 mg/mL sterol were prepared as

described previously [43]. In brief, 5% mßCD in water was

heated to 80uC and 4610 mL aliquots of 15 mg/mL sterol in

ethanol added every 5–10 min. 1–106106 cells were incubated

with 15 mL (total) of mßCD-cholesterol, mßCD-7KC or a

combination of the two sterols in 1mL RPMI supplemented with

1 mg/mL BSA and 50 mM HEPES for 30 min at 37uC. Cells

were washed twice and conjugated, activated or lysed for sterol

and gene analysis. Cellular sterols were extracted with hexane/

methanol and analyzed on a reverse phase HPLC system as

previously described [21].

T cell activation
Jurkat, JCaM2 wt LAT or CD4 T cells were incubated with

anti-CD3 antibody (OKT3)-coated M450 Dynabeads (Dynal) for

isolation [30] or antibody-coated polystyrene beads [17] for

microscopy on ice (bead to cell ratio 1:2) and activated for the

indicated time at 37uC. Jurkat 8.2 cells (2 6 105) were activated

with B cell lymphoma cells CH27 (56105) in the presence or

absence of moth cytochrome c (MCC) peptide 86–103 [42]. For

microscopy CH27 were labeled with CMRA (CellTracker

Orange, Invitrogen) [17].

Figure 8. IL-2 secretion from stimulated sterol-enriched T cells.
Jurkat 8.2 cells (A) and primary mouse T lymphocytes (B) were sterol
treated with cholesterol and 7-ketocholesterol at the indicated ratios.
Jurkat 8.2 cells were stimulated with antigen-conjugated B cells (A) and
antigen exposed mouse T lymphocytes were activated with anti-CD3
mAb-coated beads (B). IL-2 secretion was determined by ELISA after 24h
incubation. One and two asterisks indicates a significant difference to
control cells of P,0.05 and P,0.001, respectively.
doi:10.1371/journal.pone.0002262.g008

Figure 7. TIRF microscopy images of TCR activation sites of sterol-enriched T cells. Sterol-treated Jurkat cells were activated for 10 min on
anti-CD3 mAb-coated glass coverslips, fixed and stained for phosphotyrosine (pY, A), phalloidin (B), ZAP70 phosphorylated at tyrosine 319 (D), LAT
phosphorylated at tyrosine 191 (E) or PLCc1 phosphorylation at tyrosine 783 (F). T cell activation sites were imaged by TIRF microscopy with a
penetration depth of ,100 nm. Panel C show the merged images with pY in green and F-actin in red. Bar 5 mm.
doi:10.1371/journal.pone.0002262.g007
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Laurdan microscopy
Verdi/Mira 900 multi-photon laser system and images were

recorded simultaneously with emission in the range of 400–460nm

and 470–530nm with a DM IRE2 Microscope (Leica, Australia)

[24]. Microscopy calibrations were performed as described

previously [23]. For other fluorescence and transmission images

a helium-neon laser was used to excite CMRA (Ex: 543nm, Em:

550–620nm) and record transmission images (Ex: 633nm, Em:

650–720nm), respectively. For all images a 1006 oil objective,

NA = 1.4 was used and imaged at RT.

Image analysis
The Generalised Polarisation, GP, defined as

GP~
I 400{460ð Þ{I 470{530ð Þ
I 400{460ð ÞzI 470{530ð Þ

was calculated for each pixel using the two Laurdan intensity

images, using the software WIT [24]. GP images were pseudo-

colored in Adobe Photoshop. To determine GP values at

activation sites or synapses, the mean GP area of the region of

interest adjacent to the bead or APC was determined as previously

described [17]. GP distributions were obtained from the

histograms of the GP images, normalized (sum = 100) and fitted

to two Gaussian distributions using the non-linear fitting algorithm

(Microsoft Excel).

TIRF microscopy
TIRF images were recorded with a Axiovert 200M microscope

(Zeiss) and a 1006 Plan-FLUAR objective (Zeiss), NA = 1.4 as

previously described [44]. Images were acquired with a 16-bit

MicroMAX:512BFT CCD camera (Roper Scientific) driven by

Metamorph (Universal Imaging). Exposure time for all images was

100 ms. Fluorescein isothiocyanate (FITC) and tetramethylrhoda-

mine-isothiocyanate (TRITC) were excited with a multi-line

Innova 900 laser (Coherent Scientific) at 488 nm coupled to a

dual-port TIRF condenser (Till Photonics). Filter sets were from

Chroma Technology Corp.

Immunoisolation
Immunoisolations were performed as described previously [40].

Briefly, 56107 cells were incubated with antibody coated M500-

subcellular beads (Dynal) for the indicated time at 37uC. The

bead-cell conjugates were N2-cavitated using a nitrogen cavitation

bomb (Model 4639, Parr Instrument Company), beads were

retrieved with a magnet and subjected to immunoblotting analysis.

Proteins or 30 mg of cell lysates were separated by 10% SDS-

PAGE and transferred to Immobilon-P (Millipore) followed by

incubation with primary antibodies and the appropriate peroxi-

dase-conjugated secondary antibodies (Jackson Immunoresearch)

and ECL detection (Amersham Pharmacia Biotech).

Signaling
The signaling assay using Beadlyte 7-plex human TCR

signaling kit (Millipore) were carried out as described by the

manufacturer. Briefly, sterol-loaded and control Jurkat wt cells

were activated with anti-CD3 UCHT1 antibody (Millipore) at

37uC for the indicated time periods. Cells were lysed and cell

lysates incubated overnight with antibody-coated beads in 96-well,

filter-bottomed plates. Beads were washed and incubated with the

phospho-antibodies and detection reagents and analyzed with a

Bio-Plex 200 System (BioRad) instrument.

Calcium flux
56106 untreated or sterol-loaded Jurkat T cells were incubated

with 1 mM Indo-1 in 1ml RPMI (1% FCS) for 1h at 37uC in the

dark. Subsequently cells were washed twice and re-suspended in

1ml RPMI. Cells were kept on ice in the dark and analyzed on a

MoFlo (Cytomation) cell sorter at 37uC. The filter set-up for Indo-

1 was for calcium bound Indo-1 violet FL-5 405/20 nm filter and

unbound Indo-1 green FL-6 530/30 nm filter. Calcium flux was

measured as a ratio between calcium bound Indo-1 and unbound

or FL-5/FL-6. For localized stimuation, Fluo-4-labeled cells were

incubated with anti-CD3-coated glass coverslips and fluorescence

intensity recorded with an inverted microscope.

IL-2 secretion
2.56105 Jurkat 8.2 cells were incubated together with 56105

CH 27 B cells in 0.5 mL RPMI containing 10% FCS

and62.5 mg/mL antigen for 18–24 hours. Cells were removed

and the two aliquots of the supernatant (200 mL each) were used

for human interleukin-2 (IL-2) ELISA assay (eBioscience).

Background absorbance (determined from cells incubated without

antigen) was subtracted. IL-2 standards were used to determine

absolute IL-2 levels. For mouse IL-2 secretion, 96-well plates

(Corning) were coated with 10 mg/ml anti-CD3 mAb (KT3) at

4uC overnight. Subsequently wells were washed three times with

PBS and 26105 CD4 positive mouse T cells in 200 ml culture

medium were plated on each well. 50 ml aliquots of the culture

supernatant were used in a mouse IL-2 ELISA essay (eBioscience)

after 24h incubation at 37uC.

Cytotoxicity
106 T cells (sterol-loaded or control) were incubated in cell

culture medium for 24h at 37uC. The apoptosis and necrosis rate

in the incubated cultures was determined using the Annexin-V-

Fluos and propidium iodide staining kit (Roche Biosciences)

according to the manufacturer’s recommendations. Labeled

samples were analyzed on a FACScalibur (BD Bioscience)

fluorescence activated cell sorter. To determine caspase-3 activity,

26106 Jurkat wt cells (sterol-loaded and control) were lysed

(10 mM Tris-HCl pH 7.4, 130 mM NaCl, 1% Triton X-100) and

15 mg of each lysate was incubated with 20 mM of Ac-DEVD-

AMC (BD Biosciences) in protease assay buffer (40 mM HEPES

pH 7.5, 20% glycerol and 4 mM DTT) for 1h at 37uC.

Fluorescence emission upon Ac-DEVD-AMC cleavage was

determined in a plate spectrofluorometer (Ex: 380 nm; Em:

445 nm). Lysates from Jurkat wt cells treated with 2 mM

staurosporine (Sigma) for 4 h were used as a positive control. To

determine ROS generation, 106 Jurkat wt cells were pre-loaded

with 10 mM DHR (Invitrogen) for 30 min before sterol enrich-

ment. After 30 min incubation in culture media, the production of

ROS was measured by fluorescence intensity of DHR by flow

cytometry. To determine the mitochondrial membrane potential

106 Jurkat cells were labeled with 5 mg of JC-1 (Invitrogen) and the

red/green fluorescence shift analyzed by flow cytometry. The

cellular ATP content of Jurkat was measured using the ATP

bioluminescent assay kit from Sigma following the manufacturer

instructions.

CD3 surface expression
106 T cells were incubated with anti-CD3-FITC antibody

(eBioscience) for 1h at 4uC. The amount of surface fluorescence

in the stained cells was determined by flow cytometry was

analyzed using Weasel Flow Cytometry Software (WEHI,

Melbourne).

Membrane Condensation

PLoS ONE | www.plosone.org 12 May 2008 | Volume 3 | Issue 5 | e2262



Gene transcription
Reverse transcription was performed with Superscript III

(Invitrogen) using 1 mg total RNA in each reaction. qRT-PCR

was performed on a RotorGene 3000 (Corbett Research) using

Quantace SensiMix SyBr Green reagent as the detection system.

b2 microglobulin was used as a housekeeping gene. Melting curve

analysis was performed for each PCR product at the end of each

run (confirming a single PCR product in each reaction).

Statistics
Multiple comparisons were compared with one-way, nonpara-

metric ANOVA with Tukey’s post-testing.

Supporting Information

Figure S1 FRET between tryptophan and Laurdan in activated

T cells. Jurkat cells were labeled with Laurdan concentrations of

0–75 mM and conjugated to anti-CD3 mAb-coated beads (bead to

cell ratio.1) for 10 min and fixed. A. 105 cell-bead conjugates

were resuspended in PBS in a quartz cuvette and tryptophan

fluorescence (Ex = 28065 nm, Em = 330610 nm), Laurdan

(Ex = 40065 nm, Em = 450610 nm) and FRET

(Ex = 28065 nm, Em = 450610 nm) determined. FRET values

were corrected for cross talk of Laurdan and tryptophan, which

was determined in egg PC liposomes and activated T cells without

Laurdan, respectively. Corrected FRET levels were normalized to

Laurdan intensity (FRETL). The insert shows Laurdan intensity.

B. GP values at the activation site was determined for Jurkat cells

labeled with 2.5–75 mM Laurdan as described for Figure 2.

Activation sites contain 4–5% of total Laurdan fluorescence.

Means are indicated by horizontal lines and are: 0.43660.065

(2.5 mM), 0.44360.069 (5 mM), 0.44260.058 (10 mM),

0.47560.059 (25 mM), 0.48460.078 (50 mM) and 0.48560.059

(75 mM).

Found at: doi:10.1371/journal.pone.0002262.s001 (0.32 MB TIF)

Figure S2 Effects of sterol enrichment on mitochondria

potential (A), ATP levels (B), caspase-3 activity (C), ROS

generation (D), protein (E) and gene expression (F). A. Percentage

of cells with altered mitochondrial membrane potential (DY) as

assessed by JC-1 staining and flow cytometry after sterol

treatment. Cells were sterols loaded for 30 minutes or treated

with 1mM H2O2 for 24 hours (positive control), and labeled with

JC-1 for 20 minutes. Data are from 3 independent experiments. B.

ATP content of Jurkat cells after sterol treatment. ATP levels of

control and sterol-loaded Jurkat cells were measured using a

luciferin/luciferase assay. Results are mean6SEM of four

experiments. C. Caspase-3 activity was assessed by the cleavage

of Ac-DEVD-AMC resulting in a fluorescent signaling. T cells

treated with 2mM staurosporine for 4 h were used as a positive

control (right y axis). 15 mg of lysate of sterol-enriched cells was

incubated with 20 mM of Ac-DEVD-AMC for 1 h at 37uC. No

difference in fluorescence intensity was found between control and

sterol-enriched cells. D. Jurkat cells pre-labeled with 10 mM DHR

(dihydrorhodamine 1,2,3) were either left untreated (control) or

enriched in sterols. Treatment with 500mM H2O2 for 30 min at

37uC was used as a positive control. DHR fluorescence indicates

the production of hydrogen peroxide (H2O2), hypochlorous acid

(HOCl) and peroxynitrite anion (ONOO2). No significant

differences between control and sterol treatments were found. E.

Immunoblots of signaling proteins of whole cell lysates of wild-type

Jurkat and Jurkat 8.2 cells. F. Relative mRNA levels of sterol-

sensitive genes in Jurkat cells. Similar results were found in other

types of T cells. A–D. One asterisk indicates a significant

difference compared to control cells (P,0.05); two asterisks

indicate a significant difference compared to cholesterol-enriched

cells (P,0.05).

Found at: doi:10.1371/journal.pone.0002262.s002 (1.09 MB TIF)

Figure S3 Immunoisolation of cholesterol-treated Jurkat cells

and loading controls. A. Jurkat T cells (control or enriched in

cholesterol only) were conjugated with magnetic beads coated with

anti-CD3 monoclonal antibodies. Cell-bead conjugates were

activated for 3–15 min at 37uC and subsequently homogenized

by nitrogen cavitation at 4uC. Proteins from the recovered beads

were separated by SDS page electrophoresis and probed for

signaling proteins CD3f, ZAP70, LAT and PLCc. Detection of

proteins indicates recruitment to the activation site. Asterisk (*)

denotes the antibody heavy chain. B. Quantification of heavy

chain of the CD3 antibody conjugated to the beads in immuno-

isolated membrane fragments indicates similar protein recovery

from control, cholesterol- and 2:1 CH:7KC-enriched cells.

Found at: doi:10.1371/journal.pone.0002262.s003 (0.51 MB TIF)

Figure S4 Fluorescence intensity of TIRF images. A–B.

Maximum (hollow bars) and average fluorescence (filled bars)

intensity of anti-phosphotyrosine staining (A) and phalloidin

staining (B) were determined of 150–200 TIRF microscopy

images per sterol treatment and normalized to control cells.

Two asterisks indicate a significant difference to control cells of

P,0.001. C–E. Integrated intensity of 150–200 TIRF images

stained for ZAP70 phosphorylated at tryrosine 319 (C), LAT

phosphorylated at tyrosine 191 (D) or PLCc1 at tyrosine 783 (F).

A–E. One asterisks indicates a significant difference compared to

control cells (P,0.05); two asterisks indicate a significant

difference compared to cholesterol-enriched cells (P,0.05).

Found at: doi:10.1371/journal.pone.0002262.s004 (0.58 MB TIF)

Figure S5 Down-stream responses and responsiveness of sterol-

enriched T cells. A. Phosphorylation of ERK1/2, expressed

relative to total ERK1/2 in sterol-enriched T cells after 24 h

activation with 5 mg of OKT3 (anti-CD3 antibody). B. IL-2

luciferase activity in sterol-enriched T cells treated with 1 mM

ionomycin and 1 mM PMA for 24 h at 37uC. One asterisks

indicates a significant difference compared to control cells

(P,0.05); two asterisks indicate a significant difference compared

to cholesterol-enriched cells (P,0.05).

Found at: doi:10.1371/journal.pone.0002262.s005 (0.25 MB TIF)
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