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Abstract

Background: Eukaryotic cells are large enough to detect signals and then orient to them by differentiating the signal
strength across the length and breadth of the cell. Amoebae, fibroblasts, neutrophils and growth cones all behave in this
way. Little is known however about cell motion and searching behavior in the absence of a signal. Is individual cell motion
best characterized as a random walk? Do individual cells have a search strategy when they are beyond the range of the
signal they would otherwise move toward? Here we ask if single, isolated, Dictyostelium and Polysphondylium amoebae bias
their motion in the absence of external cues.

Methodology: We placed single well-isolated Dictyostelium and Polysphondylium cells on a nutrient-free agar surface and
followed them at 10 sec intervals for ,10 hr, then analyzed their motion with respect to velocity, turning angle, persistence
length, and persistence time, comparing the results to the expectation for a variety of different types of random motion.

Conclusions: We find that amoeboid behavior is well described by a special kind of random motion: Amoebae show a long
persistence time (,10 min) beyond which they start to lose their direction; they move forward in a zig-zag manner; and
they make turns every 1–2 min on average. They bias their motion by remembering the last turn and turning away from it.
Interpreting the motion as consisting of runs and turns, the duration of a run and the amplitude of a turn are both found to
be exponentially distributed. We show that this behavior greatly improves their chances of finding a target relative to
performing a random walk. We believe that other eukaryotic cells may employ a strategy similar to Dictyostelium when
seeking conditions or signal sources not yet within range of their detection system.
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Introduction

It is generally believed that eukaryotic cells are large enough to

detect and then move toward a signal by counting receptor

occupancy. This can work because the relatively large eukaryotic

cell is not subject to Brownian motion and can therefore use spatial

differentiation to detect the direction of the signal over the relevant

time scale. How this spatial differentiating is accomplished is an

active area of research in fibroblasts, neutrophils and Dictyostelium,

where the major components of the chemotactic response system

are well known.

Of comparable interest is the behavior of these cells in the

absence of a chemotactic (or other) signal. We might imagine, for

example, that cells move about randomly in such a situation

(Fig. 1A), or that they have evolved a strategy that somehow

optimizes their chances of finding the source of the signal, even

when they cannot sense it (Fig. 1B–D).

Is there indeed such a thing as an optimum search strategy?

Recent theoretical work has suggested that a Lévy walk is the

optimum for revisitable targets, that is, targets that repopulate at

the same location after a period of time [1–4]. A Lévy walk is a

special class of random walks whose step lengths (l) are best

described by a power-law: N(l),l2a where 2,a,3. Thus there is

no intrinsic scale to the step lengths, and very long steps can occur

(Fig. 1B). Although there was thought to be experimental evidence

for Lévy walk behavior in animal populations, a recent reanalysis

of the data makes this unlikely [5], but see also [6]. In a search for

non-replenishable targets, where, like hide and seek, each target

can be found only once, it has been suggested that a two-state

model optimizes the search [7–9] (Fig. 1C). A searcher alternates

between a local random search and a fast linear relocation. Target

detection does not occur during the linear phase, both phases stop

at random times, and each new phase is initiated in a random

direction. It has been suggested that such intermittent behavior

may be used by foraging animals [10,11].

Do any of these processes describe the behavior of single cells

searching for a hidden target? A great deal is known about how

neurons [12], amoebae [13], and fibroblasts [14] find their targets

once the signal has been sensed. In all three cases, more or less

linear trajectories with variable low amplitude random behavior is

the likely rule once the target is in range. But before pioneer

neurons sense and begin to move up (or away from) a graded
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signal, do they send out filopodia at random, or do they bias their

search to enhance the chances of finding the as yet undetected

target? Do neutrophils wander at random before they detect

bacterial peptides, or do they bias their motion in some fashion

that provides a more efficient search algorithm?

We studied these questions by placing well-separated Dictyoste-

lium amoebae on an agar surface free of food at a density of

,1 cell/cm2, ,1000 cell diameters between cells, a distance

chosen so that the amoebae could not sense and signal to each

other. Our results are of two kinds: First, these cells show long

directional persistence. They bias their motion by making turns

every 1–2 min, remembering their last turn and turning away

from it in a zigzag fashion. Similar results were obtained with the

distantly related slime mold Polysphondylium. We provide a model

that satisfactorily captures the turning bias of freely moving cells,

and links short and long-term cell motion persistence times.

Second, although we cannot say that this behavior has been

optimized by selection, we do demonstrate that it is only somewhat

less efficient than straight-line behavior.

We believe this is the first experimental evidence for a biased

walk in a foraging eukaryotic cell in the absence of spatial and

temporal cues. Because the machinery underlying eukaryotic cell

motion has been so highly conserved during evolution, we think it

is likely that similar behavior is characteristic of other target-

seeking eukaryotic cells.

Results

Nomenclature
Depending on which branch of science the reader hails from,

the meaning of terms such as ‘‘random walk’’ and ‘‘Brownian

motion’’ may differ. To eliminate at least this source of possible

confusion we offer our own definitions here.

Brownian motion refers only to the passive random motion,

reported by Robert Brown, of particles suspended in a fluid.

Random walk is taken to mean a stochastic path consisting of a

series of steps, whose direction is chosen at random and where all

directions are equally probable. The step size can be either

random or fixed.

Random motion is the most general term and refers to any

stochastic path describing the motion of a particle. There may or

may not be a preferred spatial direction, correlations in step size,

persistence in direction of motion, oscillations in the velocity, etc.

The only demand is that there be some element of stochasticity in

the motion.

A long directional persistence
In Fig. 2A we show the behavior of 3 representative Dictyostelium

cells, each one followed for 8–10 hrs corresponding to ,300 cell

lengths, with a sampling interval of 10 sec. We found that

amoebae traveled at an average speed of 7 mm/min for up to

10 hr (Fig. 2B), demonstrating that they maintained an adequate

energy source over the course of these experiments. Thus, our

modeling is not confounded by changes in average cell speed over

time. On the time scale of minutes the speed was found to fluctuate

around this average speed (Fig. 2B, insert).

The mean-squared displacements (MSD) of the individual cells

are summarized in Fig. 3A and B as Æd(t)2æ vs t, and Æd(t)2æ/t vs t
respectively. t is the time interval between any two positions,

d tð Þ~~rr tztð Þ{~rr tð Þj j, and d(t)2 was averaged over all pairs of time

points for each trajectory. For a random walk, e.g. Brownian

motion, Æd(t)2æ/t is constant. The 3 cyan curves are measurements

from the trajectories shown in Fig. 2A, and the red curves are from

an additional 9 trajectories. For t,30 min, cell movement

deviates significantly from the random walk expectation and is

essentially ballistic, i.e., the cells are on average moving in a

straight line with constant velocity. For time intervals t between 10

and 100 min, the population-averaged data were well fitted by an

exponential cross-over from directed motion to a random walk,

Figure 1. The search problem and search models. Four characteristic types of random motion: (A) Random walk. (B) Levy walk. Step lengths
were picked from a power-law distribution, and thus very long steps are possible. A Levy walk is considered to be the best strategy for searching
revisitable scarce targets. (C) Two-state motion. Here a ballistic relocate phase is followed by a diffusive search phase. Switching between states
occurs at random times and in random directions. This model is believed to optimize the search for low density non-revisitable targets, for example,
hide and seek in the patchy environment shown here. (D) Simulation of Dictyostelium searching based on features reported in this study. The speed
and number of steps is the same in A and B.
doi:10.1371/journal.pone.0002093.g001

Cells Searching sans Signals
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Æd(t)2æ = 2tpv
2(t2tp(12exp(2t/tp))) [15], where v = 5.460.1 mm/

min is a characteristic speed and tp = 8.860.1 min is a persistence

time (Fig. 3B, yellow curve). Note that a cell displaces itself

approximately 3 full cell diameters (,50 mm) in 8.8 min. This

transition from directed to random walk is characteristic of the

entire time record of more than 10 hr, and the persistent time is

independent of where on the trajectory we begin our analysis.

We calculated cell velocities as ~vv tð Þ~ ~rr tð Þ{~rr t{tð Þð Þ=t for

different values of t and plotted vx vs vy (Fig. 4). With increasing t,
bigger and bigger gaps appear in the centers of these plots.

At very much larger values of t, greater than 30 min, the distribution

of vx vs vy values again approaches Gaussian behavior, as expected

(Fig. 4). As we show in the discussion, these results essentially

rule out two well-understood models of random motion, worm-like-

chain (WLC) [15] and Ornstein-Uhlenbeck (OU) [16] models for

Dictyostelium cell trajectories.

Angular changes and cell motion
In order to quantify the behavior of a cell we first introduce a

measure of the cell’s instantaneous direction of motion (Fig. 5).

This measure is chosen as the cumulative angle Q, between the cell’s

velocity vector and a fixed direction in space: If, initially

Q(t = 0) =Q0, and the cell at some time t later has moved through

a complete, counter-clockwise, circle, then the new direction of

motion is Q(t) =Q0+2p. That is, the angle Q tracks not only the

instantaneous direction of cell motion, but also the winding

number of the cell trajectory, and thus, to an extent, the history of

the cell’s directional changes.

Figure 2. Cell trajectories and speeds. (A) Three typical 10 hr cell trajectories. Boxed regime, see Fig. 5 caption. (B) Cells do not slow down over
the ten-hour observation time, so we can think of them as being in a stationary (time-independent) state. However, on the time-scale of minutes the
speeds do show fluctuations around their average, time-independent values (see insert). The error bars were obtained by first using a 30 min window
to average each of twelve trajectories, and then, for each 30 min average, calculating the standard error of the twelve averages.
doi:10.1371/journal.pone.0002093.g002

Figure 3. Mean-squared displacement. (A) Log-log plot of the mean-squared displacement vs time interval t. (B) Mean-squared displacement
divided by t plotted as a function of t. Random walk would gives rise to a line with zero slope. Cyan, data from the 3 trajectories showed in Fig. 2;
Red, additional 9 trajectories; Blue, average of all 12 trajectories. Yellow, fit of an exponential cross-over from directed to random walk in the interval t
[10:100] min: Æd(t)2æ = 2tpv2(t2tp(12exp(2t/tp))), where v = 5.460.1 mm/min is a characteristic speed, and tp = 8.860.1 min is a persistence time.
doi:10.1371/journal.pone.0002093.g003
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With this definition, periods of straight-line motion correspond to

a constant angle; small zig-zags in the direction of motion show up as

oscillations in the angle (Fig. 6C); large turns as large increases and

decreases in the angle (red box, Fig. 6A); and circling behavior adds or

subtracts 2p per circle completed in the counter-clockwise and

clockwise direction (Fig. 6B), respectively. In Fig. 6 we see all of these

classes of behavior except the first one: The cells are never observed

to move in a completely straight line. However, any given cell will at

times appear to move in a certain fixed direction h, around which

the instantaneous angle Q fluctuates. In Fig. 6C, the cell maintained

an average direction h= 2p/4 for about an hour and Q fluctuated

around this value with a characteristic time of 2–3 min and

amplitude near p/4.

Turning preference
To further investigate cell motion, we studied the occurrence of

discrete turns in the cell trajectories. Over a range of user-defined

parameters, such as the threshold for calling a turn, the results

reported below are robust (see Materials and Methods).

We observed the same frequency of left and right turns, and

thus choosing one hand over the other does not contribute to the

observed wiggling behavior. However, these data do reveal a

strong turning preference, in which cells tend to turn away from

their last turn. Fig. 7A illustrates our turn-run-turn analysis. Fig. 7B

plots data from all 12 experimental runs. The turning ratio was

biased by a factor of 2.160.1 (mean6sem, n = 12 cells), obtained

by classifying 4822 consecutive turns from all trajectories. The

correlation coefficient for consecutive turning directions, for all

cells, was 20.36, with a P-value,1024, a highly significant anti-

correlation. There is a weak, but significant, positive correlation

between the last and the second-from-last turn, but cell memory

does not extend much further back (Fig. 7C). For comparison, the

insert in Fig. 7C shows the autocorrelation from a Monte Carlo

simulation of the WLC model.

Fig. 7D shows a histogram of the turn amplitudes. Its tail is

best described by an exponential distribution (characteristic

angle<0.67 rad). Small angles are rarely observed, partly

because of limitations in the turn detection algorithm, but also

because of the pseudopod-branching process we discuss later. No

significant temporal correlation was observed (upper right panel).

Fig. 7E is the histogram of time intervals between turns. It is also

an exponential distribution (characteristic time<0.67 min) and

again no significant autocorrelation was observed, consistent

with a Poisson process. Fig. 7F gives the histogram of distances

between the positions of the cells at consecutive turns. Its tail is

well fitted by an exponential distribution (characteristic

length<5 mm).

Biased motion in Polysphondylium
These experiments were repeated with the distantly related

slime mold amoeba Polysphodylium pallidum with essentially the same

results (Figure S1, S2). Polysphodylium and Dictyostelium are in

different Genera, use different chemotactic signals, have different

fruiting body morphologies, and diverged ,500,000 years ago

[17]. This suggests that the dynamic behavior documented here is

highly conserved and suggests further that it may be a feature of all

migratory eukaryotic cells.

Discussion

Non Ornstein-Uhlenbeck (OU) and non worm-like-chain
(WLC) motion

We have learned that Dictyostelium cell motion cannot be

described by a random walk. Next, we show that two other

standard models also fail to capture our data. First, note that an

exponential crossover of the form we used to fit the MSD data

(Fig. 3B) arises in several models describing disparate physical

phenomena: Both WLC [15] models from polymer physics, and

OU [16] processes from the modeling of Brownian motion, have

this feature. Thus, an exponential crossover is not in itself enough

to pin down the dynamics of cell motion.

We observed larger and larger gaps appearing in the centers of

vx vs vy plots, with increasing t (Fig. 4). This is because at very

short time intervals the cells have moved very little, and the data

shows essentially random micron-scale jiggling about the

centroid of the cell. This Gaussian behavior at very small t also

Figure 4. Non-Gaussian velocity distribution. Velocities were
calculated for different t: ~vv tð Þ~ ~rrt{~rrt{tð Þ=t and vx was plotted vs vy

with increasing t. Larger and larger gaps at the centers of the
distributions with time demonstrate that the cell velocity distributions
are non-Gaussian. As expected, at very large t, the distribution
approaches a Gaussian again. Inserts, histograms of the x component
of the velocities for the intervals defined by the parallel lines.
doi:10.1371/journal.pone.0002093.g004

Figure 5. Cells move in a zig-zag manner. Enlarged view of the
rectangular box in Fig. 2. The magenta scale-bars are 10 mm. Turns are
marked by black crosses. Motion following left turns is blue and motion
following right turns is yellow.
doi:10.1371/journal.pone.0002093.g005
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indicates a non-WLC movement, because a WLC motion has a

constant speed, thus giving rise to a circular plot. With increasing

t, the behavior is distinctly non-Gaussian, ruling out the OU

process because it predicts a Gaussian distribution for all t. Two-

dimensional velocity histograms with a crater shape are one of

the hallmarks of self-propelled persistent motion and have been

predicted to occur when cells migrate [18]. To the best of our

knowledge, this is the first published experimental demonstration

of this effect.

Modeling angular change
To capture the behavior observed in cumulative angles (Fig. 6),

we write down dynamic equations for the angles Q and h. The

average direction of motion h is modeled as a random walk,

reflecting the experimental fact that there are no preferred

directions of motion in the absence of a chemotactic signal. The

instantaneous direction of motion Q, was observed to be somewhat

enslaved by h, exhibiting noisy oscillations around it with a

characteristic time-scale. We therefore model Q as a sum of a

random walk h, and noisy oscillations y (Eqs. 1–3).

Fig. 8 illustrates the biological processes and features

corresponding to the two terms in Eqs. 1 and 2. In our model,

each cell has an ‘‘intrinsic vector’’ that establishes an angle h
relative to an arbitrary, but fixed, direction in space. We leave

the molecular components of this intrinsic vector undefined, but

remark that it could e.g. be given by a vector connecting the cell

nucleus with the centrosome [19]. This intrinsic vector is

assumed to change its orientation only slowly over time, and it

consequently does not track the instantaneous direction of

motion, which will fluctuate around h. The instantaneous

direction of motion Q, is determined by short-lived processes,

such as a stick-slip event, or the extension of pseudopods, as

illustrated in Fig. 8. Although the sum of all the fast processes is

ultimately the cause of the changes in h, we model this sum

simply as a random number, independent of Q. That is, we

model the orientation h, of the intrinsic vector as a random walk

and ignore its causal connection with Q:

dh

dt
~

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dhgh

p
, ð1Þ

where Dh is a diffusion coefficient and gh (t) is a normalized,

Gaussian, white noise term whose mean is zero.

Figure 6. Cumulative angles. (A) Angles were corrected by +/22p for changes larger than p. As shown by trajectories in red boxes, sharp turns
correspond to large drops or rises; continuous turns in one direction appear as continuous drops or rises (box 1, enlarged view in B); and periods of
directed motion are summarized as plateaus (box 2, enlarged view in C). On average, angles change but slowly with time. Box 3, see Fig. 8 caption.
(B) Enlarged view of box 1 in A. The transition from 0 to 24p is continuous. (C) Enlarged view of box 2 in A. To reduce the influence of noise, angles
were calculated at a larger t (30 s) for most of the analyses. Thus from each trajectory, 3 interlaced time-series of angles were obtained. They are
marked by different colors in the lower panel.
doi:10.1371/journal.pone.0002093.g006
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Figure 7. A left turn is followed by a right turn –a Poisson process. (A) Definition of angle of turns (a), direction of turns (left or right), time
between turns and length between turns. (B) The jth turn plotted against the (j+1)th turn for the data from all 12 trajectories. There are 3263 data
points in the second and fourth quadrant, 1559 in the first and third, and thus the (j+1)th turn is biased by the jth turn by a factor of 2.1. (C)
Autocorrelation function for the turn directions (see text for details). Blue: Experimental values and standard errors. Black: Theoretical expectation
value for a Markov process with probabilities taken from panel B (see text for details). Insert: Verification that turn-correlations are real and not an
artifact of the turn-detection algorithm. Blue: Autocorrelation function for synthetic data. The angle-dynamics was simulated by a worm-like-chain
model (WLC) with parameters taken from the MSD of the real data. A small, negative, artifactual correlation is detected which extends for around 3
turns. Black: Same as the main-panel, shown for comparison. (D) Histogram of turn amplitudes. Its tail is well fitted by an exponential distribution
(characteristic angle = 0.67 rad). The rounding off at small values is caused by thresholding in the turn-detection algorithm and this sharp cut-off is
smoothed by the coarse-graining applied when calculating the angles. Lower left panel: Histogram of a. Upper right panel: Autocorrelation function
for turn amplitudes, no correlation was observed. The positive value at time-lag one is a verified artifact of the turn-detection algorithm. (E)
Histogram of time intervals between detected turns. These data are well fitted by an exponential distribution (characteristic time = 0.67 min). Data is
from all 12 trajectories. Lower left panel: Same histogram but on linear scale. The smallest detected value for tj+12tj is 40 sec, the cut-off shown by
the grey bar. Upper right panel: Normalized autocorrelation function for time between turns. No significant correlations were observed, consistent
with a Poisson process. (F) Histogram of length between turns. Its tail is well fitted by an exponential distribution (characteristic length = 5 mm).
Distribution of length is trivially exponential if cell averaged speed is constant and times between turns are exponentially distributed.
doi:10.1371/journal.pone.0002093.g007
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The time-development of the instantaneous direction of motion

is governed by

Q tð Þ~h tð Þzy tð Þ, ð2Þ

where the second term on the right-hand-side y(t) is colored noise:

It is the solution to the second order stochastic differential

equation describing a noise-driven, harmonic oscillator with

resonance at 2pf0~
ffiffiffiffiffiffiffiffi
k=m

p

m
d2y tð Þ

dt2
~{c

dy tð Þ
dt

{ky tð Þzc
ffiffiffiffiffiffiffiffiffi
2Dy

p
gy tð Þ, ð3Þ

where m is a persistence parameter (in a mechanical model of a

block on a spring it would be the inertial mass, but mass plays

no role here), c is a dissipative parameter (friction in a mechani-

cal model), k is a restoring-force parameter (spring constant), Dy

gives the strength of the driving force (noise) gy(t), which is nor-

malized and has zero mean, but is not necessarily Gaussian, or

white.

Does this model adequately capture the essential features of

the data? We calculated the expected power spectral density

(PSD) of Q (Materials and Methods), and compared the results

to our experimental PSD (Fig. 9A). We also included the aliasing

effect of finite sampling frequency and introduced a noise term

accounting for measurement errors (dotted line; and see

Materials and Methods). Fig. 9A shows that our model fits the

experimental PSD well. Two time scales were obtained from the

fitting parameters and found to be consistent with other analyses

discussed here. The value for f0, the resonance frequency, gives

a characteristic time of 2.460.1 min, consistent with the

average oscillation period observed in the time series of Q. h is

the overall direction of motion, and its value is subject to a

random walk (Eq. 1). Given the fitted diffusion coefficient Dh,

we estimate that after 1 rad2/Dh<8 min, the MSD of h grows

large enough that we can consider cells to have lost their

original direction. This is also consistent with the persistence

time described in Fig. 3.

In order to further test our model we ran Monte-Carlo

simulations of Eqs. 1–3 with parameters obtained from a fit to

the experimental PSD. We then subjected the synthetic data to the

same analysis as the experimental data. As an example, Fig. 9B

shows the close agreement between the measured autocorrelation

function of DQ(t) =Q(t)2Q(t2t) for both experimental and

synthetic data. We also formed the histogram of DQs and found

that it follows a Laplacian (double-exponential) distribution,

Fig. 9C. The same distribution was found for the synthetic data

(data not shown). A Laplacian distribution describes the difference

between two independent, identically distributed, exponential,

random variables, implying that Q itself is exponentially distrib-

uted. Such exponential distributions for motility data are thought

to arise from the interplay of various cellular processes combined

with a finite rate of ATP production [20].

Dictyostelium cells move by continuously extending new pseudo-

pods. A restoring force exists because pseudopods cannot extend to

infinity, and thus oscillations should be restricted about h. The

driving force in our model is a sum of white noise contributed by

all lateral pseudopods, and an oscillating force applied by the

leading pseudopods. A colored noise term captures these

contributions. Normally, a pseudopod leads cell motion for 1–

2 min before a new pseudopod forms and dominates, consistent

with the observed periods of oscillations shown in Fig. 6.

A quantitative picture of cell motion
The observation that cumulative angles oscillate, and the way

that cells move by extending pseudopods, inspired us to describe

cell motion as a discrete, but easily pictured turn-run-turn model.

The anti-correlations found in turn directions is consistent with

the discovery that new leading pseudopods arise mostly by

dividing old ones [21]. These correlations can be understood in

Figure 8. A model for Dictyostelium motion. (A) The blue line is hand drawn to guide the eye and represents h, a one-dimensional random walk.
The black line Q, is an enlarged view of the data in box 3 of Fig. 6. In our model, Q is the net effect of h and colored noise centered on h. The
stochastic differential equations used to describe the behavior of Q and h are explained in detail in the text. (B) h is the angle assumed to be fixed by
a cell’s intrinsic polarity, possibly a vector directed from the center of nucleus (light blue) to the position of the centrosome [19]. Black arrow,
pseudopod extensions and retractions lead to stochastic oscillations. New pseudopods bifurcate from old, and they swing back and forth about the
internal vector. (C) A cartoon describing directional control.
doi:10.1371/journal.pone.0002093.g008
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a quantitative manner with the smallest possible set of assump-

tions. Next to having no memory at all (as in the flipping of a coin),

the simplest kind of memory is one that only extends one step back

in the past. Processes that have this kind of memory are called

Markov processes. Assume that the turns are given by a Markov

process and ascribe a value of +1 to left-turns and 21 to right-

turns, or vice versa. The autocorrelation function for the turns is

then easily found to be cm = (p2q)m, where m is the time-lag

measured in turns, p is the probability of making a turn in the same

direction (left-left or right-right) and q is the probability of making

a turn in the opposite direction (left-right or right-left). Both p and

q are known to us, since p+q = 1 and q/p = 2.160.1 (see Results).

The near-exact equivalence of the data and the theory shown in

Fig. 7C supports this interpretation of the turn-memory in

Dictyostelium.

Taken together, the data presented in Figs. 7 & 9 support the

following descriptive model of migration: Each cell is polarized

(has an intrinsic vector) and moves (runs) in a random direction for

a random period of time by the extension of pseudopods. Because

the duration of a run is exponentially distributed and uncorrelated

with any previous run duration it is tempting to think of each run

as corresponding to an actin-polymerization event nucleated by a

protein complex anchored to the leading edge of a pseudopod. If

the association (dissociation) of this actin-nucleating protein

complex with the membrane is equally probable at all times, it

would be described by a Poisson process and the time between on/

off events would follow an exponential distribution. Why the

direction of migration follows a double-exponential distribution is

less obvious, but may reveal that there are just a few limiting steps

underlying the behavior documented in Fig. 7D.

We may compare our results to the pioneering work of others

with Dictyostelium and the results of Hartman et al with neutrophils

[22,23]. Potel and Mackay carried out a very thorough analysis of

aggregation-competent Dictyostelium cells plated at a cell density

orders of magnitude larger than the one we have used. In their

experiments, cell-cell interactions were common. Their results on

cell speed as a function of time, and change in direction between

successive times as an approximate demonstration of a persistence

time, are in broad agreement with ours. However, their time

resolution, and the fact that the cells were responding to each

other’s presence, confounded their results, and in the end they

concluded that a simple, persistent, random walk best fit their

data. Hartman et al found local non-Markov displacements in their

study with neutrophils. Although their time resolution was high,

their analyses were applied to cell traces that are typically only a

few cell-diameters long, and thus their experiments did not last

long enough to detect the features we report here.

An efficient search strategy?
In the Introduction we described three well-studied models have

been used to characterize searching behavior (Fig. 1). Dictyostelium

motion differs from each of them. Unlike the intermittent behavior

in the two-state model, no obvious searching and relocating phases

are observed. However, we note that Dictyostelium cells appear to

have gone one step further by not pausing on the search, and

detecting signals as they move. Instead of choosing turns randomly

in amplitude and direction (random walk) or sampling from a

power law distributed run length (a Lévy walk), both Dictyostelium

and Polysphondylium bias their motion by remembering their last

turn and employ a persistence time of ,9 min. This means that

cells cover more territory in a given number of steps than they

would in a random walk (Fig. 1A,D). Also, they pick turn

amplitudes randomly from an exponential distribution rather than

a Gaussian distribution, which has been suggested to help optimize

Figure 9. Statistics of the cumulative angles and fit to the
theory. (A) Experimental power spectral density (PSD) of Q and fit of
the theory to the data. Two time-scales were returned by the fit:
(f0)21 = 2.3560.08 min and 1 rad2/Dh = 7.660.3 min, approximately the
duration of a pseudopod and the time it takes for a cell to lose its sense
of direction, respectively. Twelve individual PSDs, one for each cell, are
shown in yellow. The average over the cells is shown in blue. The solid
black line is a fit of the theory to the averaged signal. Dashed, dash-
dotted, and dotted lines indicate the contribution to the PSD for the
colored noise, the random walk, and the tracking-error terms,
respectively (see Materials and Methods for details). (B) Autocorrelation
function for DQ. Qs were calculated for t= 30 s. Blue: Experimental
values and standard errors. Black: Theoretical expectation value
calculated from a Monte Carlo simulation on Q based on Eqs. 1–3,
with parameters obtained from a fit to the PSD. (C) Experimental
histogram of DQs calculated for t= 30 s. Insert: Same histogram shown
on a semi-logarithm scale demonstrating the non-Gaussian, exponential
tails. With increasing t, the distribution of DQ becomes more and more
Gaussian (data not shown).
doi:10.1371/journal.pone.0002093.g009

Cells Searching sans Signals

PLoS ONE | www.plosone.org 8 May 2008 | Volume 3 | Issue 5 | e2093



search efficiency when targets are randomly distributed in a patch

of finite size [24].

The character of this search algorithm was examined by

comparing our results to straight-line and random walk searches

with respect to the efficiency of searching, defined as the number

of targets captured per unit time, the number of cell diameters

over which a cell can recognize a close-by target, and the target

density. In these simulations, which assume that targets are

arrayed at random on an infinite plane, straight-line searching is

the most efficient because for a given detection radius R all

deviations from a straight line cover some fraction of the area

already covered; and, as expected, the efficiency is lowest for

random walk searches. Dictyostelium cells are about half as efficient

as a straight-line search, and 1.6 to 2.4 fold more efficient than

random walk searching.

The improvement in search efficiency relative to a random walk

is due to the fairly straight motion of the amoebae. Although the

cells move by the extension of a series of discrete pseudopods, the

direction of protrusion of these processes is coordinated in a

manner that gives rise to an overall directed motion: Each new

pseudopod propels the cell in a direction slightly angled relative to

the general direction of motion, but the pseudopods are generated

in a left-right-left-right fashion such that the cell zigzags it’s way

forward. This propensity to zigzag is quantitatively described by

the anti-correlation between turns, see Fig. 7 A–C. Without the

anti-correlation, the persistence length would drop from the

observed value of 48 mm to just 20 mm (calculated from the

equivalent two-dimensional freely-rotating-chain model, with

segment length = 5 mm and angle = 0.67 radians).

In addition, the comparatively long persistence time of ,9 min we

discovered might help amoebae not only while foraging on their own,

but also during the earliest stages of multi-cellular life when starving

cells begin to signal to each other. The signaling system consists of

cyclic AMP waves that propagate as spirals or circles from a core of

signaling cells. These waves continue to organize morphogenesis as

cells begin to stream towards the signaling centers guided by the

traveling wave front. During the earliest stages of signaling, wave

periodicity is 6–10 min, depending on the strain and growth

conditions. This time corresponds closely to the 9 min persistence

time reported here, and suggests to us that once cells are given an

orientation in the wave, they propagate towards the center without

further information from the cyclic AMP gradient. This may also help

explain how cells discriminate between the back of a receding wave

and the front of an approaching one. They use the persistence time

once oriented to move in a more or less straight line toward the center

and away from the periphery. Because this bias is in our view

stochastic in nature, this might also help explain why cells occasional-

ly move in the wrong direction, i.e. away from the signaling center.

Summary
We have discovered that Dictyostelium and Polysphondylium cell

motion is not a simple random walk. Unlike a Lévy walk, no

intrinsic scale invariance in cell trajectory is apparent. Unlike an

Ornstein-Uhlenbeck process, cell velocity distributions deviate

from a Gaussian velocity distribution. Unlike a worm-like-chain

model, the observed oscillations in angles indicate a well-

developed and organized cellular mechanism driving the observed

behavior. With respect to searching strategy, a left turn tends to be

followed by a right turn. Cells move forward in a zig-zag manner

and maintain a long directional persistence. In this way, time

wasted on exhaustive back and forth searching is greatly

reduced, thereby enlarging the search area and improving search

efficiency.

Materials and Methods

Cell Culture
Dictyostelium discoideum AX4 and Polysphondylium pallidum PN500

were grown on lawns of Escherichia coli B/r at 22uC as described

[25]. Vegetative amoebae were harvested and bacteria removed

by centrifugation. The cells were suspended in PB (20 mM

KH2PO4, 20 mM Na2HPO4?7H2O) and plated at densities of

,1 cell/cm2 on 2% agar in distilled deionized water. At this cell

density the ratio of cell area/agar surface area is ,461026.

Cell Tracking
Cell movement was followed by phase contrast microscopy

using a 106 objective. Movies were recorded at 10 sec intervals

for 8 to 10 hr. (Movie S1, S2).

Data Analysis
Cell locations were defined as the centroids of a cell’s contours

(Movie S1, S2). The trajectory of each centroid consisted of a

sequence of paired coordinates Dt = 10 sec apart: (~rrj~~rr tj

� �
,tj~

jDt,j~1,2,3 . . . ). A displacement between any two cell positions

was defined as (~ssj tð Þ~~ssj nDtð Þ~~rrj{~rrj{n,n~1,2,3 . . .). Velocities

were then calculated (~vvj tð Þ~~vvj nDtð Þ~~ssj nDtð Þ=nDt~~ssj tð Þ
�

t,n~
1,2,3 . . . ). Instantaneous angles were calculated (bj = atan[(yj2

yj21)/(xj2xj21)]), then corrected by +/22p if the changes between

consecutive angles were larger than p, and added to the previous

angle: Qj =Qj21+bj. Also, if the change in two consecutive angles

was bigger than p, it was identified as a false jump. The jump was

then replaced by two random numbers from a Gaussian

distribution with zero mean and the same standard deviation as

obtained from experimental data. Further analysis and original

programming was carried out in MATLAB.

Recognizing turns
Cell trajectories were first smoothed by a moving average over 5

consecutive positions (~rrj~ ~rrj{2z~rrj{1z~rrjz~rrjz1z~rrjz2

� ��
5).

Then the time series of angles (Qj) and changes in consecutive

angles (DQj =Qj2Qj21) were calculated with t= 10 s using

smoothed positions. DQj represent cell turning rates as a function

of time. When its amplitude goes above a threshold value, a cell is

considered to be making a turn and the corresponding time points

were marked. Next, the marked time points were clustered: First,

all consecutive points were clustered and the largest cluster-

member was picked to represent this turn; Second, if the time

interval between any two consecutive turns was less than 30 sec, it

was considered to be part of the same turn and again the largest

value was picked. Each cell had an individual threshold value,

chosen as the average amplitude of that cell’s DQ series. If the turn

had a positive value for DQ it was recorded as a left turn

(counterclockwise), otherwise, as a right turn (clockwise).

Cumulative angle analysis: PSD, autocorrelation and
histogram

To reduce noise in the analysis of cumulative angles (Fig. 9), Q
was calculated with t= 30 s using unprocessed original positions.

Thus, from each cell trajectory, 3 interlaced time series of Q were

obtained and analyzed.

Simulating Search Efficiency
A Monte-Carlo simulation was employed to compare

Dictyostelium trajectories to random walks and straight-line

searches. Targets were distributed randomly on an infinite

plane with a characteristic average density. Searchers using
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different strategies were compared: Amoeboid motions were

parameterized using our experimental data, random walks were

simulated using the average speed for Dictyostelium, and straight-

line movement at a constant speed used the mean speed of

these amoebae. If a target site lay within a ‘detection radius’ (R)

from the searcher, then this target was scored as found and

removed. Efficiency was defined as the ratio of the mean

number of targets found to the total traveling time. In each

simulation, cells were allowed to search for 10 hr. The

simulation was repeated with a range of target densities

(1022 mm22–1025 mm22), and the detection radius was varied

from 5 mm to 75 mm, 1/3 to 5 cell diameters, respectively.

Simulation of cumulative angles
We simulated the harmonic noise by first solving Eq. 3 on the

discrete time-interval Dt ( = 30 sec) to obtain the recursive rela-

ftion:

yjz1

ujz1

� �
~e{MDt

yj

uj

� �
z

Dyj

Duj

� �
, M~t

0 {1

k=m
c=m

s,

where u = dy/dt, and we demand that Dyj and Duj be exponentially

distributed random numbers of zero mean and flat power

spectrum. Note that the distributions for Dyj and Duj depend on

Dt because exponential distributions, unlike Gaussian ones, are not

stable under integration. That is, as Dt is increased, these

distributions will tend to Gaussians.

Power spectral analysis
The frequency content of Q was examined by Fourier-

transforming the two independent equations of motion, Eqs. 1 & 3,

{2pifk
~hhk~

ffiffiffiffiffiffiffiffiffi
2Dh

p
~ggh,k

and

{2pifkð Þ2m~yyk~2pifkc~yyk{k~yykz
ffiffiffiffiffiffiffiffiffi
2Dy

p
c~ggy,k

where

~xxk~

ðtmsr=2

{tmsr=2

x tð Þei2pfktdt,

x = h, y, gh, or gQ, and tmsr is the measurement time.

From which we form the power spectral density:

Pk:
S ~QQkj j2T

tmsr

~
Dw

�
2p2
� �
f 2
k

z
Dy

�
2p2
� �

2pm
c

� �2

f 2
0 {f 2

k

� �2
zf 2

k

:

Where we have used the following characteristics of the noise

terms

S~ggh,kT~S~ggy,kT~0; S~gg�h,k~ggh,lT~S~gg�y,k~ggy,lT~tmsrdk,l ;

S~ggh,k~ggy,lT~0;

We see that the PSD consist of two terms, one that decays as f22

(first term on the right-hand-side corresponding to free diffusion)

and one that, potentially, has a resonance peak at fk = f0 (second

term on the right-hand-side).

Aliasing/finite sampling frequency
For reasons of mathematical ease, the above treatment

implicitly assumed continuous sampling. In an experiment,

however, data are taken at discrete time-intervals, leading to

aliasing. This means that, for frequencies near fsample, the

measured power can be more than 100% larger than predicted

from the above theory [26]. Taking aliasing into account is

straightforward and introduces no extra fit-parameters, as shown

below.

The aliased version of the first term, corresponding to free

diffusion, is:

P
aliasð Þ

k ~
Dh

.
f 2
sample

1{cos 2pfk

�
fsample

� �
The correct aliased version of the second term is considerably

more involved and we refer the reader to (Nørrelykke & Flyvbjerg,

unpublished). For completeness, we also include a term for the

measurement error in the fit. The measurement error is assumed

to be white noise and thus has a flat power spectrum, so its shape is

unaltered by aliasing.

We zero-padded time-traces of Q to the nearest power of two

greater than the longest trace, before fast Fourier transforming.

Zero-padding artificially increases the frequency resolution of the

PSD. This results in the PSD values no longer being independent

of each other, so the error-bars in the residual plot underestimate

the true standard error.

Least squares fitting
We fitted the above expression to the experimental PSD in the

least-squares sense (via the built-in lsqnlin procedure in MatLab),

using as weights Pk
(alias). That is, we minimized:

x2~
X P

aliasð Þ
k {P

exð Þ
k

P
aliasð Þ

k

. ffiffiffi
n
p

0
@

1
A

2

Least squares fitting presupposes each data point to be drawn from

a Gaussian distribution – which is not the case here! Rather, the

power at a given frequency, averaged over n individual PSDs, is

Gamma-distributed and tends to a Gaussian distribution as nR‘

(Nørrelykke & Flyvbjerg, unpublished).

A Gamma-distribution is skewed, and this skewness leads to an

overestimate of some of the fit-parameters by a factor of 1/n when

doing least-squares fitting (Nørrelykke & Flyvbjerg, unpublished).

But this effect is well understood, and was taken into account.

The fit parameters obtained were: f0 = 0.0072 rad21 s216

3.5%; c/m = 0.067 s2169.4% ; Dc = 0.012 rad2 s2163.2%; and

Dh = 0.023 rad2 s2164.3%. A harmonic oscillator has three

qualitatively different solutions, depending on whether the

parameter f~c
� ffiffiffiffiffiffiffiffiffi

4km
p

is greater than, equal to, or smaller than

unity. In the first case (f.1) the system in over-damped and no

oscillations occur; in the third (f,1) the system is under-damped

and displays exponentially decaying oscillations; when f= 1 the

system is poised at a critical point separating the two classes of

behavior. In our case f= 0.74612.9%, that is, we are in the

under-damped, oscillating regime, but still rather close to the

critical point, which is why we observe no clear resonance peak in

the power spectrum.

The error-bars cited on the fit parameters were taken from the

formal covariance matrix, calculated as the inverse of the Jacobian

matrix of x2 multiplied by its own complex conjugate. Since the
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residuals are neither independent nor Gaussian distributed these

variances are only estimates of the true ones.

Supporting Information

Movie S1 Left panels: phase contrast movies of single Dictyos-

telium cells moving on a 2% agar surface. The cells are ,15 mm in

diameter. The movie frames were captured at 10 sec intervals and

these clips are 20 min long. Right panels: finding and tracking the

centroids for the cells shown in the left panels.

Found at: doi:10.1371/journal.pone.0002093.s001 (0.64 MB

MOV)

Movie S2 Left panels: phase contrast movies of single Dictyos-

telium cells moving on a 2% agar surface. The cells are ,15 mm in

diameter. The movie frames were captured at 10 sec intervals and

these clips are 20 min long. Right panels: finding and tracking the

centroids for the cells shown in the left panels.

Found at: doi:10.1371/journal.pone.0002093.s002 (0.69 MB

MOV)

Figure S1 Polysphondylium motion on an agar surface. (A) Mean-

squared displacement plotted for 17 cells. Yellow, fit of an

exponential cross-over from directed to random motion in the

interval t [15:150] min: ,D(t)2. = 2tpv
2(t2tp(1-exp(-t/tp))), where

v = 3.160.1 mm/min is a characteristic speed, and tp = 11.76

0.2 min is a persistence time. (B) Cell velocity distributions are

non-Gaussian.

Found at: doi:10.1371/journal.pone.0002093.s003 (3.47 MB TIF)

Figure S2 Polysphondylium motion on an agar surface. (A) The jth

turn plotted against the (j+1)th turn for the data from all 17

trajectories. There are 2023 data points in the second and fourth

quadrant, 1218 in the first and third, and thus the (j+1)th turn is

biased by the jth turn by a factor of 1.7. (B) Autocorrelation

function for the turn directions. Blue: Experimental values and

standard errors. Black: Theoretical expectation value for a Markov

process with probabilities taken from panel A. Insert: Verification

that turn-correlations are real and not an artifact of the turn-

detection algorithm. Blue: Autocorrelation function for synthetic

data. The angle-dynamics was simulated by a worm-like-chain

model (WLC) with parameters taken from the MSD of the real

data. A small, negative, artifactual correlation is detected which

extends for around 3 turns. Black: Same as the main-panel, shown

for comparison. (C) Histogram of turn amplitudes. These data are

well fitted by an exponential distribution (characteristic an-

gle = 0.72 rad). Lower left panel: Histogram of a. Upper right

panel: Autocorrelation function for turn amplitudes, no correlation

was observed. (D) Histogram of time intervals between detected

turns. These data are well fitted by an exponential distribution

(characteristic time = 0.98 min). Data is from all 17 trajectories.

Lower left panel: Same histogram but on linear scale. The smallest

detected value for tj+12tj is 1 min, the cut-off shown by the grey

bar. Upper right panel: Normalized autocorrelation function for

time between turns. No significant correlations were observed,

consistent with a Poisson process. (E1) Experimental power

spectral density of Q is well fitted by theory. Two time-scales

were returned by the fit: (f0)21 = 4.360.2 min and 1 rad2/

Dh = 7.960.5 min. (E2) Experimental autocorrelation function

for DQ (blue) is consistent with the theoretical expectation (black)

calculated from a simulation. Qs were calculated for t= 50 s in E1

and E2.

Found at: doi:10.1371/journal.pone.0002093.s004 (4.14 MB TIF)
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biological Lévy flights stands. arXiv:08021762v1 [q-bioPE]; http://arxivorg/

abs/08021762.

7. Benichou O, Coppey M, Moreau M, Suet PH, Voituriez R (2005) Optimal

search strategies for hidden targets. Phys Rev Lett 94: 198101.

8. Benichou O, Loverdo C, Moreau M, Voituriez R (2006) Two-dimensional

intermittent search processes: An alternative to Levy flight strategies. Phys Rev E

74: 020102.

9. Shlesinger MF (2006) Mathematical physics - Search research. Nature 443:

281–282.

10. Kramer DL, McLaughlin RL (2001) The behavioral ecology of intermittent

locomotion. Am Zool 41: 137–153.

11. Obrien WJ, Browman HI, Evans BI (1990) Search Strategies of Foraging

Animals. Am Sci 78: 152–160.

12. Flanagan JG (2006) Neural map specification by gradients. Curr Opin Neurobiol

16: 59–66.

13. Willard SS, Devreotes PN (2006) Signaling pathways mediating chemotaxis in

the social amoeba, Dictyostelium discoideum. Eur J Cell Biol 85: 897–904.

14. Arrieumerlou C, Meyer T (2005) A local coupling model and compass

parameter for eukaryotic chemotaxis. Dev Cell 8: 215–227.

15. Rubinstein M, Colby RH (2003) Polymer physics. Oxford New York: Oxford
University Press. 440 p.

16. Uhlenbeck GE, Ornstein LS (1930) On the theory of the Brownian motion. Phys
Rev 36: 0823–0841.

17. Schaap P, Winckler T, Nelson M, Alvarez-Curto E, Elgie B, et al. (2006)

Molecular phylogeny and evolution of morphology in the social amoebas.
Science 314: 661–663.

18. Erdmann U, Ebeling W, Schimansky-Geier L, Schweitzer F (2000) Brownian
particles far from equilibrium. Eur Phys J B 15: 105–113.

19. Xu J, Van Keymeulen A, Wakida NM, Carlton P, Berns MW, et al. (2007)
Polarity reveals intrinsic cell chirality. Proc Natl Acad Sci U S A 104:

9296–9300.

20. Czirok A, Schlett K, Madarasz E, Vicsek T (1998) Exponential distribution of
locomotion activity in cell cultures. Phys Rev Lett 81: 3038–3041.

21. Andrew N, Insall RH (2007) Chemotaxis in shallow gradients is mediated
independently of PtdIns 3-kinase by biased choices between random protrusions.

Nat Cell Biol 9: 193–200.

22. Potel MJ, Mackay SA (1979) Pre-Aggregative Cell Motion in Dictyostelium. J Cell
Sci 36: 281–309.

23. Hartman RS, Lau K, Chou W, Coates TD (1994) The fundamental motor of
the human neutrophil is not random: evidence for local non-Markov movement

in neutrophils. Biophys J 67: 2535–2545.
24. Garcia R, Moss F, Nihongi A, Strickler JR, Goller S, et al. (2007) Optimal

foraging by zooplankton within patches: the case of Daphnia. Math Biosci 207:

165–188.
25. Cox EC, Vocke CD, Walter S, Gregg KY, Bain ES (1990) Electrophoretic

karyotype for Dictyostelium discoideum. Proc Natl Acad Sci U S A 87: 8247–8251.
26. Berg-Sorensen K, Flyvbjerg H (2004) Power spectrum analysis for optical

tweezers. Rev Sci Instrum 75: 594–612.

Cells Searching sans Signals

PLoS ONE | www.plosone.org 11 May 2008 | Volume 3 | Issue 5 | e2093


