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Abstract

Background: Advanced intercross lines (AIL) are segregating populations created using a multi-generation breeding
protocol for fine mapping complex trait loci (QTL) in mice and other organisms. Applying QTL mapping methods for
intercross and backcross populations, often followed by naı̈ve permutation of individuals and phenotypes, does not
account for the effect of AIL family structure in which final generations have been expanded and leads to inappropriately
low significance thresholds. The critical problem with naı̈ve mapping approaches in AIL populations is that the individual is
not an exchangeable unit.

Methodology/Principal Findings: The effect of family structure has immediate implications for the optimal AIL creation
(many crosses, few animals per cross, and population expansion before the final generation) and we discuss these and the
utility of AIL populations for QTL fine mapping. We also describe Genome Reshuffling for Advanced Intercross Permutation,
(GRAIP) a method for analyzing AIL data that accounts for family structure. GRAIP permutes a more interchangeable unit in
the final generation crosses – the parental genome – and simulating regeneration of a permuted AIL population based on
exchanged parental identities. GRAIP determines appropriate genome-wide significance thresholds and locus-specific P-
values for AILs and other populations with similar family structures. We contrast GRAIP with naı̈ve permutation using a large
densely genotyped mouse AIL population (1333 individuals from 32 crosses). A naı̈ve permutation using coat color as a
model phenotype demonstrates high false-positive locus identification and uncertain significance levels, which are
corrected using GRAIP. GRAIP also detects an established hippocampus weight locus and a new locus, Hipp9a.

Conclusions and Significance: GRAIP determines appropriate genome-wide significance thresholds and locus-specific P-
values for AILs and other populations with similar family structures. The effect of family structure has immediate
implications for the optimal AIL creation and we discuss these and the utility of AIL populations.
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Introduction

The often-striking variation in heritable traits is usually

produced by a multitude of polymorphic genes and a variety of

environmental factors. Quantitative trait locus (QTL) mapping

provides an effective approach to localizing regions of the genome

that are likely to contain modifiers of the phenotype. Coarse

mapping of a QTL to a 15–30 cM interval has become a relatively

routine matter in traits with at least moderate heritability [1,2], but

fine mapping–narrowing the QTL interval to include only a few

candidate genes–is still a much more challenging task. Numerous

genetic strategies for narrowing QTL intervals have been

attempted with varying degrees of success.

Advanced intercross lines (AILs), first introduced by Darvasi

and Soller [3], are one such strategy that is capable of producing a

population able to narrow mapping intervals for all QTLs for a

given trait at once, given genotype information across the relevant

intervals. Since their theoretical introduction, [3] AIL populations

have been used by several groups to refine the positions of QTLs

in mice [4–8]. The statistical analysis in each case that we are

aware of has been a standard mapping method designed for

application to intercross (F2), backcross (N2), or recombinant
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inbred (RI) and similar populations where each individual (or

strain in the case of RIs) can be treated as an independent

observation.

An AIL (Fig. 1, right panel) is generated by intercrossing a

population of F2 animals to generate an F3 population. Members

of the F3 population are themselves bred to create the fourth

generation of the cross (G4) and so on, either by randomizing the

choice of breeding pairs or by selecting the least related pairs for

breeding at each generation in order to minimize fixation. Note

that beyond F3, mating is not filial, which is indicted by the use of

‘‘G’’ for subsequent generations.

Given the complex breeding history of an AIL populations,

however, the assumption of independence is formally incorrect, and

this can become a serious problem depending on the details of the

construction of the testing population (N) from the breeding

population (Nb), following Darvasi and Soller’s nomenclature.

Darvasi and Soller consider populations where N = Nb as well as

populations where a large number of animals (N) are derived from a

moderate Nb. It is with variations on the latter population structure

that we are concerned here since populations where N = Nb quickly

become impractical given space and funding constraints.

Darvasi and Soller’s simulation assumes that when expanding

Nb to generate N animals for testing, one offspring is taken from

each of N crosses and tested (A. Darvasi, personal communica-

tion). In practice, AIL populations generated in the lab have

generally been expanded in the final generation either by

generating multiple litters from the same crosses (the UTHSC

cross described below for example), or by retaining a larger

number of animals in the penultimate generation and using this

expanded set of animals to produce one litter per cross [6,9]. In

the AIL population generated at UTHSC, for instance, there are

many offspring (41620; range 4–80 per cross) derived from 32

crosses in the final generation, with wide variation in family size.

We will refer to the offspring of each cross generically as a family,

but we are particularly concerned with the families resulting in the

final generation, in our case the G10 generation resulting from a

G9xG9 cross. Because there are few families, each with many

members, use of an analysis method that deals appropriately with

family relatedness and non-syntenic association in an AIL is

crucial. Despite rotation or expansion of parents in the final

generation, families will vary dramatically in their relatedness to

each other and in the extent of fixation and non-syntenic

association within each family and between closely related families

based on the relatedness of particular breeding pairs.

While family structure can probably be ignored if only one

animal per cross is tested and there are a large number of crosses,

there are several serious problems that result from neglecting

family structure in AILs when multiple animals per family make

up the N tested animals. First, simply shuffling genotypes and

phenotypes as can be done with a population of genetically

independent individuals constitutes over-randomization in an AIL

and gives low genome-wide significance thresholds. Consider an

analogous population—RIs. RI animals are fully inbred extended

intercrosses (Fig. 1, left panel) usually formed from two or more

inbred strains. Phenotyping a large population of several

recombinant inbred strains is similar to the AIL situation in that

the effective number of independent observations is smaller than

the number of animals, because within strain the RIs are highly

related (identical, in fact) to each other. This is similar to the

observation that AILs in the same family are more highly related

to each other than to AIL offspring in other families. This analogy

is not complete in that AIL offspring between families are not

independent while different RIs, at least those generated by pure

repeated intercrosses from inbred strains, are independent.

The second issue is non-syntenic association of markers within

the offspring of each cross. In each family, assuming a 1:1 ratio of

alleles in the population, which is the best-case scenario, 12.5% of

loci will be fixed in both parents and thus in all offspring [10]. If a

region containing a gene that affects the phenotype is fixed, all of

the other fixed loci in that family will be in disequilibrium with the

phenotypic variation, resulting in bias of particular loci and in false

positive QTLs, especially where the number of families is small.

While drift exacerbates this problem in AILs, it is the same

problem that would be present in a population of F3 animals if

more than one F3 from a particular F26F2 cross were phenotyped

and analyzed without respect to pedigree. (In such a population,

however, a granddaughter design [11] could be used for analysis if

the F2 genotype were known.) Of course, chance genotype

correlations will exist in independent populations as well, but their

strength will be rapidly reduced as the number of independent

individuals increases. Likewise, a larger number of families in the

final AIL generation will reduce the impact of this problem.

Figure 1. RI and AIL breeding schemes. The left panel of this figure diagrams breeding of a small recombinant inbred (RI) strain set. Each strain is
essentially a set of repeated intercrosses starting with inbred parental strains. The animals are considered inbred at 20 generations. The right panel is
an example of breeding an advanced intercross line. (Typically such lines consist of 50–100 animals at each generation rather than the 8 shown.)
Letters A–H indicate 8 unique F2 animals, and their offspring ‘‘inherit’’ these identifiers. Breeding pairs are chosen for minimum relatedness at each
generation.
doi:10.1371/journal.pone.0001977.g001

GRAIP: AIL Permutation Method
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A third problem is that there are likely to be different numbers of

animals per family. There might be five litters of a particularly

fecund family and one or two litters of a less fecund one if breeders

are not rotated regularly, for instance, as was the case in our G9xG9

expansion to generate our G10 generation for testing. The genotype

correlations present in larger families will have a greater effect on the

mapping outcome than those present in smaller families.

Another way to think about this problem is to take it to its

logical extreme – a set of RI lines. Typically in an RI analysis the

phenotypes of a number of RI animals of the same strain are

averaged and the mean is used as the strain’s phenotype, so each

paired phenotype and genotype are independent. If the individual

observations were used directly, instead, as would be the case with

an F2 population—one entry for each animal rather than each

strain, randomization by shuffling will obliterate the within-strain

structure, resulting in overly low significance thresholds, and even

small non-syntenic correlations would be exacerbated dramatical-

ly. This would be even more extreme than in an AIL because the

strains are fully inbred so fixed loci are more prevalent. If different

numbers of animals are selected to represent each strain’s

offspring, using the individual observations directly would also

mean that a more fecund RI strain would have a much larger

influence on the QTL map than a less fecund strain despite the

fact that each represents only one genome.

When evaluating the utility of AIL populations for fine mapping

QTLs when genotyped in a narrow interval and for nominating new

QTLs in a genome-wide scan, it is important to have an

understanding of the ways in which family structure affects nominal

significance at arbitrary points on the genome. Assumptions of

independence are violated in AIL populations, and non-syntenic

association can cause occurrence of nominally significant results to

be more frequent than expected. When using selectively genotyped

AIL populations for fine mapping purposes this is particularly

problematic since genome-wide changes in the distribution of

nominal significance measures will not be readily observable.

In order to appropriately address these challenges we developed

GRAIP, (Fig. 2) an approach that interchanges genomes in the

parents of the final cross of an AIL and appropriately simulates the

final generation. The GRAIP approach also calculates P-values by

locus to compensate for the non-random distribution of alleles at

each locus. We describe an application of this method to a large

(N = 1333 animals) AIL population developed at the University of

Tennessee Health Science Center (UTHSC) and densely geno-

typed at 329 markers in the expanded population of the final

generation. This extensively genotyped resource (most AIL

populations are only genotyped near known QTL regions)

facilitates generation of genome-wide QTL maps using an AIL

population and allows us to evaluate the potential of AILs, when

analyzed with approaches that account for family structure, for

discovery of new QTLs in addition to fine mapping of known loci.

By estimating the proportion of the genome above a given LOD

score, we also evaluate the likelihood of mistakenly identifying

signal in a QTL region when the strength of association at most

markers is unknown, as is the case in most AIL-based studies.

Results

A direct comparison of GRAIP with a naı̈ve permutation

(randomization of phenotypes without respect to family structure)

is shown below for two sample populations: an AIL and a set of RI

strains taken as individual observations using coat color as a

phenotype. Coat color is a well-characterized oligogenic trait for

which all loci that segregate between B6 and D2 are known. We

also present a comparison of GRAIP and naı̈ve permutation for

hippocampus weight, which is a far more polygenic phenotype

that has been previously but not exhaustively characterized. While

not all determinants for hippocampus weight are known, it is a

good model of a more polygenic trait.

Comparison of naı̈ve permutation and GRAIP using coat
color as a model phenotype

Using coat color and hippocampus size [12,13] as model

phenotypes with well established genetic determinants, we compared

the results of a naı̈ve QTL mapping and permutation protocol

(interval maps generated and permuted for significance as if the AIL

were an F2 population) with GRAIP. For coat color, the loci

expected to segregate between C57BL/6J (B6) and DBA/2J (D2) has

been exhaustively characterized. We expect to detect two segregating

loci: the brown locus (Tyrp1) on Chr. 4 at 80Mb and the dilute locus

(Myo5a) on Chr. 9 at 155 Mb. (The agouti locus does not segregate

between B6 and D2.) We generated both simple (naı̈ve permutation)

and GRAIP maps in the UTHSC AIL population (Fig. 3a) as well as

in the 34 C57BL/6J6DBA/2J (BXD) RI strains (Fig. 4b) available

from The Jackson Laboratory (TJL) as a control.

If we examine the raw LOD scores from mapping coat color in

the UTHSC AIL (Fig. 3a), using a naı̈ve approach, it is clear that

Figure 2. The GRAIP approach. This cartoon summarizes the GRAIP approach. First (1) parental happlotypes are regenerated if they are not
already known and (2) the parents are permuted. Next (3) the population of offspring is regenerated using the permuted genotypes and (4)
permuted maps are generated using the non-permuted phenotypes. Finally, (5) the significance of the permuted maps are compared at a pointwise
and whole genome basis with the original map.
doi:10.1371/journal.pone.0001977.g002

GRAIP: AIL Permutation Method
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there are strong loci on Chrs 4 and 9, as expected, but there are loci

with LOD scores above 4.1 (genome-wide adjusted p = 0.05 for the

naı̈ve permutation) on all chromosomes except Chr.10 (scale on left

axis, trace and line indicating genome-wide significance in red).

Admittedly, the strongest loci are Chrs 4 (maximum LOD score of

132) and 9 (maximum LOD score of 49) while other loci have LOD

scores below 25, but since we know that only two loci are

segregating, we can be relatively confident that the other loci

detected as influences on coat color are false positives.

Enumeration of new QTLs in this population would therefore

be impossible using a simple mapping method. Even confirmation

of QTLs observed in simpler populations would be quite

problematic given that, for coat color, 30% of the map is

associated with a LOD score of at least 4.1, which could easily lead

to mischaracterization of spurious association as confirmation of a

QTL interval in a more sparsely genotyped population, at least for

oligogenic traits.

In contrast, the GRAIP results for coat color mapping (Fig 3a;

scale on right axis, trace in black, significant loci shaded) show

significance only on Chrs 4 and 9, (genome-wide P,0.013, the

minimum possible P-value with 10,000 permutations since 1.3% of

permuted genome scans have at least one locus-specific P,0.0001)

exactly as expected. No other loci are close to a genome-wide

P,0.05.

Mapping coat color using BXD individual observations
using a naı̈ve permutation and GRAIP

RI strains are similar to AIL strains in that within each family (i.e.

strain), animals are genetically similar, albeit considerably more so

than in an AIL. Treatment of RI individuals as unique yields inflated

LOD scores [14] in a manner similar to AIL mapping experiments,

while application of GRAIP reconstitutes mapping results in a

manner similar to mapping using strain means.

We applied a slightly modified version of the GRAIP approach

(constrained to produce an inbred final generation) to a set of

individual observations of coat color in BXDs using a 680 animal

virtual population, (34 strains, with the number of animals per

strain varying randomly between 2 and 40, with a mean of 20)

assigning each animal the coat color associated with the strain.

Determining haplotypes of the BXD parents in the previous

generation was trivial since they are the same as the BXD

offspring, and recombination does not affect the outcome since the

parents and offspring are inbred.

The QTL map for the 34 BXDs from TJL for coat color is quite

clear—the locus on Chr. 4 is highly significant. (There are too few

strains to detect the locus on Chr. 9 using our coat color encoding

scheme.)

The comparison between the simple BXD coat color map based

on strain means (Fig. 4b) and the simple map with naı̈ve

permutation based on individual animals (Fig. 4a; scale on left

axis, trace and line indicating genome-wide significance in red) is

striking. Not only is the significance of the actual QTL on Chr. 4

dramatically inflated (LOD = 140 (figure truncates at LOD = 50),

up from LOD = 7 in the strain mean map) as would be expected

[14] but many other QTLs, including many with extremely high

LOD scores, have sprung up as well. In fact there is at least one

QTL with a LOD score over 5 (genome-wide P,0.05 for the

naı̈ve permutation) on every chromosome.

Figure 3. Coat color (A) and hippocampus weight (B) in the UTHSC AIL population Red traces are the simple mapping output, and
the red bar is genome-wide P = 0.05 by naı̈ve permutation. Black traces are GRAIP permutation output. Note that for ease of graphing on a -
log scale we have adjusted P,1/10000 to P = 0.0001, so the maximum –log P = 4. Simple mapping results are on the left hand scale, while GRAIP
results are on the right. On the Chr.4 coat color locus simple mapping value is truncated at LOD = 25, to simplify reading the graph. Shaded gray
regions are significant at genome-wide P = 0.05 or better in the GRAIP results.
doi:10.1371/journal.pone.0001977.g003

GRAIP: AIL Permutation Method
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Applying the GRAIP method eliminates these additional QTLs.

(Fig. 4a; scale on right axis, trace in black, significant loci shaded)

Only the Chr.4 QTL remains significant (P,1/5000 with 5000

permutations is a genome-wide adjusted P,0.024).

Hippocampus weight
For examination of hippocampus weight in AILs(Fig. 3b) we

focused mainly on the Hipp1a locus, which has been consistently

identified in other populations. There are clearly other loci

involved in a phenotype like hippocampus weight, and it would

not be surprising for us to identify additional loci. Indeed, a glance

at the simple mapping output for our AIL population indicates loci

significant by naı̈ve permutation (scale on left axis, trace and line

indicating genome-wide significance in red) on Chrs 1, 8, 9, 12,

and 16. The GRAIP results for the same population (scale on right

axis, trace in black, significant loci shaded) only attribute genome-

wide significance to loci on Chrs 1 and 9, however. Since the locus

on Chr.9 has not been previously observed, except as an

unpublished suggestive QTL for bi-lateral hippocampus weight

(observation made using data from Lu and colleagues [13]; BXD

published phenotypes record 10376 on www.genenetwork.org) we

have named it Hipp9a. While we cannot rule out the possibility

that the additional loci are also real, it is encouraging that Hipp1a

is replicated using the GRAIP approach and interesting that there

are fewer loci significant by naı̈ve permutation with hippocampus

weight (where many loci may exist) than with coat color (where

only two known loci are segregating).

How much does family matter?
As can be seen from the box plot of hippocampus weight, (Fig. 5)

there is a significant effect of family (p,0.0001) on this phenotype,

a phenomenon that we have observed for a variety of heritable

characters including coat color (p,0.0001). In order to evaluate

the relative importance of a large number of crosses versus sheer

number of animals, we sub-sampled our observations of

hippocampus weight, progressively removing either entire families

or an equal number of randomly selected animals. A typical result

of performing this procedure once is shown in Fig. 6, We predicted

that the number of families is more important than the total

number of animals to the power of the population to detect

linkage. The locus specific P value, for the well-established Hipp1a

QTL on distal Chr. 1, chosen at the point of the best P-value in

the original map, decreases relatively smoothly with number of

samples in the randomly diminished population. In the population

where individuals are removed by family, however, the change in

significance is less monotonic. This is a direct result of the family

effect on the phenotype. For instance, if a given family has a high

overall score in a phenotype but an allele at a given QTL that

would predispose for a low phenotype, each member of the family

will reduce the evidence for that QTL. In some cases (the first

three sets of two families removed) the level of significance is

reduced while in the last four it is increased. The removal of some

families seems to have a negative effect on the significance of a

given locus while removal of others has a strong positive effect,

while the removal of randomly chosen animals has a much more

Figure 4. BXD coat color QTL-maps. Coat color QTL maps treating BXD observations as independent individuals versus mapping strain means.
(A) Comparison of simple mapping and GRAIP for BXDs treated as individuals. Red traces are simple mapping output, and the red bar is P = 0.05 for
the naı̈ve permutation. Black traces are GRAIP mapping output (5000 permutations) and shaded gray region is significant at genome-wide 0.05 or
better in the GRAIP results. (B) simple mapping output for BXD strain means. Black bar indicates P = 0.05 for the naı̈ve (appropriate, in this case)
permutation.
doi:10.1371/journal.pone.0001977.g004

GRAIP: AIL Permutation Method
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consistently negative effect on overall significance. Choosing

different families or order of families to remove consistently shows

these non-monotonic effects on significance, while the effect of

removing groups random individuals on significance is consistently

monotonic.

The value of locus-specific P values
The common assumption in QTL analysis of large populations

with independent observations is that any position in the genome

is equally likely to be the best P-value in the genome under the null

hypothesis of no linkage. Put another way, the assumption is that

the P-values at all positions are identically distributed if there is no

influence of genotype at that position. In the case of the UTHSC

AIL population, however (Fig. 7) this is very clearly not the case.

For coat color, the LOD score equivalent to a locus-specific

P = 0.05 (referred to as 95% LOD) by GRAIP on Chr.1 varied

from 6.4 to 14.7. For body weight the same range was 1.8 to 3.1—

both considerably more varied than is typical for even medium

sized F2 populations [15]. The exact origin of this variation is

unclear, but we examined several possible relationships in a set of

50 permutations. In this set, variation in the LOD score equivalent

to a locus-specific P = 0.05 is not correlated with the fraction of

missing data at the locus. (r = 20.07, P = 0.62) for coat color as it is

for small RI strain sets [15].

Figure 5. Box plot of hippocampus weight by family. Whiskers represent the distribution of the highest and lowest 25% of observations. The
line across the box represents the median value, while the ‘‘+’’ indicates the mean. Family 2 is missing because there were not hippocampus weight
observations in that group.
doi:10.1371/journal.pone.0001977.g005

Figure 6. Effects of progressively removing samples from a
population. Measurement were taken at the position with the best P-
value in the Hipp1a locus. Samples removed either by family or by an
equivalent number of randomly selected individuals. –log P measured
at the most significant position in the original BXD data set for
hippocampus weight, near the physical center of the Hipp1a interval.
doi:10.1371/journal.pone.0001977.g006

Figure 7. Variation in LOD score distribution by position on
Chr 1. Distribution of 95th percentile LOD scores by marker for 10,000
GRAIP permutations of coat color and body weight QTL mapping in the
AIL population. Note that the maximum and minimum values of the
95th percentile on this chromosome alone are separated by a difference
in LOD of 8.3 for coat color and 1.3 for body weight, which indicates
that the same LOD score is equivalent to a considerably different P
value depending on position and original phenotype.
doi:10.1371/journal.pone.0001977.g007

GRAIP: AIL Permutation Method
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In order to examine whether the variation in 95% LOD scores is

related to a marker’s correlation with unlinked markers known to

affect the phenotype (non-syntenic correlations), we calculated the

absolute value of the Pearson’s correlation coefficient between

genotype at the major (Tyrp1) locus for coat color in the original data

and genotype at 24 unlinked test markers on Chr.1 in data permuted

using GRAIP, averaged over 1000 permutations (marker-Tyrp1

correlation). We then calculated the Pearson’s correlation coefficient

between the marker-Tyrp1 correlation and the 95% LOD score,

which was significantly positive (r = 0.56, P = 0.004). In other words,

GRAIP re-shuffled markers that were more highly correlated with

the Tyrp1 locus were associated with higher 95% LOD scores.

This strong positive relationship may also explain the striking

difference between variation in locus-specific P-values for body

weight and coat color since coat color (using our encoding scheme)

has only one major determinant and one minor determinant, while

body weight has many influences of small effect. As described above,

the LOD score at each position in each GRAIP permutation for coat

color therefore varies widely depending on its correlation with the

original genotype at Tyrp1, the major segregating coat color locus

detected using our encoding of coat color.

Discussion

We have developed and implemented GRAIP, a permutation and

simulation-based mapping approach for the analysis of AIL data,

based on the idea that the identity of the parents of the final,

phenotyped generation is an interchangeable unit, but the

individuals in the final generation themselves, at least where the

final generation expanded beyond one individual per pair of parents,

are not. This concept is similar to permutation by interchanging the

identity of parents used to generate a recombinant inbred intercross

(RIX) population, [16,17] though generation of haplotypes and

handling of segregation in generation of the permuted population is

obviously unnecessary in an RIX population, and typically

phenotypic measurements are made on the RI6RI F1 means rather

than being applied to individual animals.

The GRAIP approach is necessary for most AIL populations

because a naı̈ve permutation approach does not take into account

the effects of family structure in the AIL population, which are

important when multiple offspring from the final generation are

phenotyped. A naı̈ve permutation is appropriate for a population

without substantial family structure because it permutes the

relationship of individual and phenotype. When the genetic factors

we are attempting to detect are confounded with family identity,

however, studying linkage without respect to the relatedness of

family members yields significant non-syntenic linkage. The more

oligogenic the trait the more different it is between families, and

the stronger apparent non-syntenic QTLs will be, though family

differences are significant even in a highly polygenic trait like

hippocampus weight. GRAIP addresses this problem by account-

ing for the family structure of the AIL cross and choosing an

appropriate unit, parental identity, for permutation. It also utilizes

locus-specific P-values to account for the widely varying

relationship between LOD score and P-value in the AIL

population, which allows us to extend the utility of the method

to genome-wide QTL analysis with appropriate genome-wide

adjusted significance thresholds.

Mapping of both hippocampus weight and coat color in an AIL

population using GRAIP returned expected loci. In addition,

analysis of hippocampus weight using GRAIP returned a novel

locus on Chr.9. For coat color, where only two loci are segregating

between the parental strains, novel loci would have been indicative

of a serious flaw of the method to discriminate false positives from

true positives, but only the expected loci were returned. This was

precisely the case when a naı̈ve permutation was compared with

GRAIP for coat color. In contrast, loci significant by naı̈ve

permutation for coat color were found on nearly all chromosomes.

The approach also performed well on individual observations of

RI phenotypes rather than strain means, again returning the

expected coat color loci. Treating multiple RI animals as

individual observations is clearly not itself a valid method of

analysis [14] and is not a good choice for RI data even when

adjusted using GRAIP. It is, however, a useful qualitative test of

the approach.

The genome reshuffling and R/qtl mapping steps necessary to

generate an original QTL map and GRAIP permutations can be

executed in a day on a modern desktop computer for a small

(3000-4000 permutations of a densely genotyped data set—a

number sufficient to define the criteria for a genome-wide P,0.05)

number of permutations and in 4–5 days for a larger (15,000–

20,000) set of permutations. Naturally, for smaller sets of

genotypes much more typical in AIL experiments these times will

also be considerably reduced.

After applying GRAIP we used a simple mapping model to

calculate the original and permuted QTL maps, which are then

used to generate locus-specific P-values and genome-wide

significance thresholds. Since GRAIP preserves the correlation

structure, the distribution of permuted LOD statistics at each locus

can be meaningfully compared to the LOD at each locus in the

observed data to calculate locus-specific and genome-adjusted P-

values that will ensure appropriately controlled type I error rates.

The use of a more complex analysis method, such as a mixed

model with random effects of parents, might improve the power to

detect QTLs, and would not require modification of the GRAIP

procedure itself.

Alternate approaches and limitations of the GRAIP
approach

One of the difficulties in analysis of this particular AIL pedigree

was lack of complete genotype and pedigree information for all

generations. Complete pedigree information, if available, would

have allowed simulation of inheritance of each allele for the full

pedigree. The approach we have taken accounts for relationships

that come only from the final generations, and so does not fully

solve the problem of uneven relatedness, for instance of members

of the parental generation which was chosen as the permutable

unit. We expect kinship coefficients, calculated assuming the

parents are unrelated, will not be too much smaller than the true

kinship coefficients, and so our approach accounts for the

majority, but not all, of the relationship problem.

Assuming a lack of complete pedigree information, a intuitive

alternative approach would be to permute phenotype within

sibship. Unfortunately, this approach does not very fully break the

association between genotype and phenotype. Siblings have more

similar genotypes and also more similar phenotypes, and so real

evidence for linkage would still appear in data permuted in this

way. Likewise, permutation of genotype within sibship or

regeneration of genotypes within sibship from parental haplotypes

without permuting parental identity does not fully break the

genotype/phenotype association.

The usefulness of AILs for mapping of QTLs
The most broadly applicable question related to AILs is whether

they are a good population for fine mapping QTLs. Of particular

concern are differences in the extent of non-syntenic correlation with

observed markers, since this could affect the relative significance of

neighboring and distant markers and bias the interpretation of
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mapping position. While AILs generated with larger numbers of

smaller families, rotated breeding in the final generation, and a larger

number of founders will very likely suffer much less severely from the

reduction in power due to family structure, in our view the

fundamental problem of fixation of loci within families and non-

independence of samples remains as long as more than one animal

per cross in the final generation is phenotyped, and these issues could

substantially interfere with estimation of the QTL confidence

interval. Although researchers have narrowed identified regions in

AIL crosses that have subsequently shown overlap with congenic

analyses [4], it is unclear to what extent this reflects widespread utility

of the method.

While we have found our AILs quite valuable as a founder

population for a set of new, highly recombinant BXD RI strains

there are better methods for generating useful and highly

recombinant RI strains with two [18] or more [19,20] progenitor

strains that result in full independence of recombination events

between strains, so this use in itself probably does not constitute a

reason to generate a high-generation AIL.

Alternative strategies such as large F2 crosses, RI mapping

experiments with larger mapping panels [18,21] especially in

conjunction with transcriptome-QTL and genetic correlation

approaches [22,23], RIX crosses, [24] or construction of congenics

[25], offer more rapid turnaround and, except perhaps in the case

of the RIX, much simpler analysis procedures.

The RIX population deserves particular mention here. Because

it is based on intercrossing RI lines, which have several times the

recombination density of F2 crosses, (especially if constructed

using RI lines generated by inbreeding of AIL progeny) it offers a

rapid means of generating a non-inbred population with a high

density of recombination—essentially the goal of creating an AIL

population. Since RI lines are in general already densely

genotyped, balanced crosses emphasizing recombinations in areas

of interest are relatively straightforward to construct and can be

analyzed in combination with parental RI lines. In addition, RIX

crosses have a distinct advantage over AILs in that they share with

RIs the property of being a reference population [23]. Thus

multiple animals can be phenotyped to reduce variation or

examine the genetic relatedness of multiple phenotypes.

Recommendations on making an AIL population in mice
and other populations

The GRAIP approach is designed to account for the effects of

family structure on the phenotypes of an AIL population.

Minimizing these effects reduces the differences we would expect

between GRAIP and a naı̈ve permutation approach, which

immediately suggests several recommendations for improving AIL

populations.

We believe that the issues described here in mice should apply

to AILs developed in other organisms, where the final generation

is expanded, but in organisms whose breeding characteristics allow

large populations in intermediate generations and do not require

expansion of the final generation to create enough individuals for

QTL mapping projects, for instance Arabidopsis or maize, the

issues we discuss can be alleviated.

Since this approach is not always feasible, subject to the relative

costs of breeding and phenotyping, we would recommend

expanding the AIL population 1-2 generations before the final

generation of an AIL and making sure to rotate parents frequently

in the process of generating the final generation. An AIL

population based on 150 distinct families with 6 offspring each is

likely to be a more powerful mapping population than one based

on 30 crosses with 30 offspring each though in both cases 900

animals are being phenotyped.

The approach taken by Iraqi and colleagues [6] of dramatically

expanding the set of parents of the final generation and using a

small number of animals per family should also dramatically

improve the power of AILs as a mapping population. The small

effect of randomly removing sample size shown in Figure 6

suggests that analysis of large numbers of animals from each family

is relatively inefficient, though as in the case of RI populations this

may be less the case when heritability is low.

Additionally, we would suggest retaining DNA samples from

each member of each generation of the cross and, again subject to

the cost of phenotyping, considering generating phenotypes for

parents and grandparents of the final generation. It is possible that

more complex models may allow retention of more information as

in similar populations with more extensively retained histories [26]

, and at a minimum retention of DNA samples at each generation

will dramatically simplify determination of haplotypes in the final

generation.

Finally, we would also recommend testing only loci that are well

established using other, simpler populations and analyzing data

using the GRAIP method rather than applying a simple mapping

method. These precautions will improve the likelihood that fine

mapping results using an AIL population represent genuine

improvements in the location of genes underlying quantitative loci.

Summary
AILs are an interesting approach to the problem of fine

mapping, but generation of an AI population with strong mapping

potential is more dependent on careful design of the breeding and

testing populations than on sheer number of animals produced.

Family structure is a serious problem with implications for

published and future studies using this type of population and

must be taken into account both at the design and analysis stages

in order to avoid frequent false positive results and bias in

identification of exact QTL positions, which will simply look like

unexpectedly good fine mapping results in the absence of more

genome-wide genotype data. The AIL approach is a potentially

valuable method for fine mapping, provided care is taken in the

generation of the mapping population. It is particularly important

that family effects in the final generation be minimized by using a

few individuals from any particular cross in the final generation—

one offspring per cross is ideal!—and to generate the final

phenotyped generation using as many crosses as possible.

Methods

Intercross and RI strain breeding and care
C57BL/6J (B6) and DBA/2J (D2) male and female animals were

purchased from TJL (Bar Harbor, ME) and bred at UTHSC in a

specific pathogen free (SPF) facility to generate B6D2F1 and D2B6F1

animals, which were intercrossed to generate an F2 population as

described previously [27]. All animals, parental, BXD, and all of the

AIL families considered in this paper were bred and cared for

according to the animal care and husbandry guidelines of UTHSC.

Commercially available BXD strains were purchased from TJL

and bred in-house as required. These strains were generated by

repeatedly intercrossing offspring of B6 and D2 parental strains in

the mid-1970s (BXD1 through BXD32) and 1990s (BXD33

through BXD42) by Benjamin Taylor and colleagues [28,29].

Advanced intercross generation
B6 and D2 male and female animals were purchased from TJL

and bred at UTHSC in a specific pathogen free (SPF) facility to

generate B6D2F1 and D2B6F1 animals, which were intercrossed

to generate an F2 population. For all breeding following the F2
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generation, two males and two females were placed in a breeding

cage. When a female was observed to be pregnant, the other

animals were removed from the cage. Approximately 30 breeding

cages were maintained at each generation beyond F2. Animals

from the F2 pool were randomly chosen and mated to create a F3

population in this manner. Following F3, breeding followed a

version of the advanced intercross technique described by Darvasi

and Soller [3]. Instead of random breeding, however, matings

were chosen at each generation to minimize the number of

common parents by examining common ancestors in the third

generation prior to the generation being set up. Breeding partners

were chosen manually so that there was no more than one

common ancestor in the previous three generations.

Genotyping
Genotyping of our F2 [27] and the BXD RI strains [30] strains

has been described elsewhere. For the advanced intercross a total

of 329 microsatellite loci polymorphic between B6 and D2 strains

and distributed across all autosomes and the X chromosome were

amplified and typed. 329 loci gives a resolution of approximately

4.6 cM on the unexpanded map of the mouse genome. Since

Darvasi and Soller [3] estimated a n/2 expansion and we were

genotyping 10th generation AIL individuals we expected a post-

expansion genotyping density of 22.8 cM. Given the largen and

uneven family sizes in the final generation, however, the observed

expansion was extremely uneven, though average expansion was

similar to expectation. Markers only a few cM apart were

apparently unlinked, while other regions showed no expansion or

even contraction. This observation is likely to be exclusively an

artifact of the final generation expansion.

Genotypes were provided for all 1333 10th generation AIL mice

courtesy of the Mammalian Genotyping Service (MGS; National

Heart, Lung, and Blood Institute (NHLBI) Contract Number

HV48141), and the authors would like to express their gratitude to

Dr. James Weber and colleagues for this extensive and valuable

data set. Genotype files are currently available online at www.

nervenet.org/mmfiles/mmlist.html. Physical positions were taken

from the May 2004 University of California, Santa Cruise (UCSC)

mouse genome assembly (mm5), which used data obtained from

the Build 33 assembly by the National Center for Biotechnology

Information (NCBI).

Phenotyping
We used hippocampus weight and coat color as example

phenotypes. Coat color was assessed in the entire advanced

intercross while hippocampus weight was only measured in 679

animals. Measurement of these weights has been described

previously [13]. We used a numerical scale to encode coat color

(0 = black, 1 = gray, 2 = brown, 3 = DBA (dilute, brown, non-agouti))

as a ‘‘darkness of coat’’ observation. This is a convenient method of

capturing the dilute (d) and brown (b) loci, which segregate between

B6 and D2. The coat color loci segregating between B6 and D2 have

known molecular determinants: tyrosinase-related protein 1 (Tyrp1;

Chr.4: 79.1 Mb; also known as the brown (b) locus) and myosin 5a

(Myo5a; Chr.9: 75.4 Mb; also known as the dilute (d) locus).

Because of the encoding, we expect the brown locus

(phenotypes 0 and 1 have the black allele, while phenotypes 2

and 3 have the brown allele) to be more strongly detected than the

dilute locus (phenotypes 0 and 2 have the non-dilute allele, while

phenotypes 1 and 3 have the dilute allele), depending on the exact

number of animals with each coat color. This combination of what

are actually multiple separate effects into a single scale is typical of

complex traits, where the multiple contributions of separate genes

are almost always collapsed along a single axis.

Estimation of parental haplotypes
Parental haplotypes were estimated using SimWalk 2.6 [31,32],

selecting at most 13 siblings per family for speed of computation

and considering one chromosome at a time. Where the software

was unable to predict to which strand a particular allele belonged,

we assigned allele to strand so as to minimize number of

recombination events. In regions where both parents were

heterozygous the phase was often ambiguous. Provided that

individual genotypes in the penultimate generation can be

accurately inferred from the final generation, however, these

haplotypes are sufficient for simple single marker association

because analysis occurs only at the marker and does not require

flanking marker status. Inclusion of grandparental identity and

thereby relations among families helps to reduce uncertainty, but

simple single marker-only mapping is still preferable if the density

of markers is sufficient. All haplotypes used are available at http://

www.nervenet.org/papers/GRAIP.html.

Genome reshuffling for AI permutation (GRAIP)
genotypes

Since the unit to be exchanged is the identity of the parents of

the final, phenotyped generation, we first shuffled the identities of

individuals within sex in this generation. Next we generated virtual

gametes and combined them to create the genotypes of the

permuted final AIL generation. Briefly, the number of chiasmata

per chromosome in each gamete is determined by drawing from a

Poisson distribution with mean equal to the length of the

chromosome in Morgans. Positions of the chiasmata are drawn

from a uniform distribution of the length of the chromosome,

iteratively thinned to ensure a maximum of one recombination in

a given distance (default is 10 cM) centered around a given

chiasma. This estimate is slightly low because simulating

interference in this manner lowers the mean number of

recombinations. However, even separate runs with two-fold

variation in recombination rates were extremely similar. This is

expected since we are estimating association only at actual marker

positions. We are using standard MGI (Mouse Genome

Informatics) estimates of genetic position, not AIL-based calculat-

ed genetic positions which are highly biased by repetition of early

recombinations in the population, to estimate missing physical

positions (below). Recombination positions could also be simulated

using a more sophisticated model [33].

A starting haplotype is then randomly chosen and the script

imposes the recombination pattern on the marker positions and

switches between haplotypes as needed to simulate recombination.

Since sex is assigned to each generated individual, the X

chromosome from the father is either assigned as an intact,

randomly chosen haplotype (for females) or treated as null (for

males), and the genotype of the X chromosome in the zygote is

generated appropriately. The output of this process is a set of

genotype files each containing the set of genotypes of a permuted

AIL population.

Mapping
The original population, naı̈ve permutations, and GRAIP

permuted genotypes were treated identically with respect to

generation of QTL maps. Since the AIL we are using as a test

population is relatively densely genotyped we mapped using

regression at marker locations in all cases, which also had the effect

of halving the time required and eliminating potential worries

about the accuracy of assigning genotype probabilities between

markers. We used the multiple imputation method of Sen and

Churchill [34] as implemented in the R/qtl package for the R
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environment [35] to handle missing data, imputing 16 sets of

genotypes per map. (No significant differences were observed

between output using 16 and 64 imputations, and mapping results

omitting imputation are also quite similar.) The X chromosome

was handled as if it were an autosome since the mapping model is

designed for an F2 population and requires identity of the cross

direction to handle X chromosome data correctly, so loci on this

chromosome should be treated with care. Genome-wide adjusted

significance thresholds for naı̈ve permutations were generated by

the method of Churchill and Doerge. [36]

Generating locus-specific P-values for physical positions
We permuted AIL parental identities, regenerated permuted

final AIL generations, and performed QTL mapping for all

permutations using the mapping protocol described above. Once

all GRAIP permuted maps were generated, we calculated locus-

specific p-values for each marker for the original data using the

observations from the permuted genome maps at each locus as a

null distribution. While locus-specific P-values derived from

permutations are not crucial for all populations, the AIL family

structure causes dramatic variation between LOD score at a given

locus and corresponding P-value.

We describe determination of locus specific P-values and discuss

their usefulness for different data sets in detail elsewhere [15].

Briefly, at every locus j we compare L(j), the LOD score at that

locus in the original data with L*(i,j), the LOD scores at locus j in

each of i permuted data sets. The locus-specific P-value, P(j) is the

proportion of L*(i,j) #L(j). The distribution of locus specific P-

values was uniform for randomly generated phenotypes in which a

family bias was chosen and individual phenotypes selected from a

normal distribution around the family-biased mean.

P-values at regular intervals were interpolated based on the

known physical and genetic positions of markers. We linearly

interpolated missing physical positions using flanking markers with

known physical and genetic positions and linearly interpolated P

values on a regularly spaced set of physical positions.

Generating genome-wide adjusted P-values
We computed locus specific P-values, P*(i,j), for each L*(i,j) in

the manner described above where L(j) is L*(j) for a fixed ith

GRAIP permutation. Genome-wide adjusted P-value at locus j,

Pa(j), can then be computed by creating an ordered list, MP*, of

the minimum P-value from each GRAIP permuted map. Then

Pa(j) is the proportion of MP*#P(j). This is similar to Churchill

and Doerge [36] with the addition of explicit conversion of best

permuted observation (typically expressed as a LOD score) in each

genome scan to a locus-specific P-value.

Our implementation varied slightly from the procedure

described above in the final step. To generate MP* we sampled

with replacement at least 1000 times from our available set P*(i)

genome scans in order to maintain consistency with our general

approach to combining multiple data sets, described elsewhere

[15]. For large samples these methods produce essentially the same

MP* distribution.

Applying GRAIP to BXD RI data
As previously introduced, the BXD strains are similar to AIL

strains in that a population of BXD strains is usually organized

into a set of individual offspring. Since these offspring are inbred, a

phenotypic mean is often associated with a single copy of each

strain’s genotype to reduce non-genetic noise. We created two

virtual populations of BXD RI animals using the 34 strains from

The Jackson Laboratory and mapped coat color using three

approaches, each employing R/qtl as described. We first

associated our coat color phenotype with a single genome for

each strain as described above.

Next we generated a virtual population of 680 BXD RI animals,

with the number of animals per strain as a random, uniformly

distributed even number between 2 and 40, with a mean of 20. We

generated GRAIP-shuffled genomes for these populations as

described above with the slight modification that male and female

parent identities were permuted together, since in this case the

parents are themselves are constrained to be inbred.

Testing the effects of family structure on QTL significance
In order to provide an example of the effects of eliminating

different segments of the population on a more complex

phenotype, we examined hippocampal weight, a phenotype we

have measured and published on before [12,13] which has a

particularly reliable QTL on distal Chr.1, which is also detected in

the AIL population. In order to demonstrate the effect of families

on QTL significance, we progressively removed either entire

crosses or an equivalent number of randomly chosen individuals

from the original population (31 crosses, 679 individuals). We

evaluated significance using the locus-specific P value, evaluated at

a marker estimated to be near the middle of the well-established

Hipp1 interval on distal Chr. 1 on a physical scale.

Software
All software described is available at http://www.nervenet.org/

papers/GRAIP.html. For the analyses above, we wrote a script,

GRAIPGeno.py, using Python 2.4 to generate permutations of

final generation genotypes. Since each GRAIP-based permutation

requires generation of a complete QTL map, we wrote a simple R

[37] script, GRAIP.R, to automate the process, which was

performed using R/qtl [35]. Parsing of mapping output files from

R/qtl, generation of locus-specific P-values, and generation of

genome-wide adjusted P-values were all handled by Python scripts

described elsewhere [15].
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