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Abstract

Background: We describe new cranial and post-cranial marsupial fossils from the early Eocene Tingamarra Local Fauna in
Australia and refer them to Djarthia murgonensis, which was previously known only from fragmentary dental remains.

Methodology/Principal Findings: The new material indicates that Djarthia is a member of Australidelphia, a pan-
Gondwanan clade comprising all extant Australian marsupials together with the South American microbiotheres. Djarthia is
therefore the oldest known crown-group marsupial anywhere in the world that is represented by dental, cranial and post-
cranial remains, and the oldest known Australian marsupial by 30 million years. It is also the most plesiomorphic known
australidelphian, and phylogenetic analyses place it outside all other Australian marsupials.

Conclusions/Significance: As the most plesiomorphic and oldest unequivocal australidelphian, Djarthia may approximate
the ancestral morphotype of the Australian marsupial radiation and suggests that the South American microbiotheres may
be the result of back-dispersal from eastern Gondwana, which is the reverse of prevailing hypotheses.
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Introduction

Australia’s marsupials are the most iconic members of the

continent’s fauna, but much remains unknown about their origins

and early evolution. Current evidence suggests that the extant

Australian marsupial orders evolved from an ancestor or ancestors

that dispersed from South America, via Antarctica, sometime

during the Late Cretaceous or early Palaeogene [1,2], and that the

orders diverged prior to the late Oligocene [2]. Recent

phylogenetic analyses strongly support monophyly of Australidel-

phia [3–10], a pan-Gondwanan clade that includes all modern

Australian marsupial orders as well as the South American

microbiotheres (represented today by a single genus, Dromiciops).

However, uncertain relationships within Australidelphia (notably,

the position of the only extant South American australidelphian,

Dromiciops [3–10], and doubts about the affinities of possible fossil

australidelphians from South America [5,11], mean that both the

number and the direction of marsupial dispersals between South

America and Australia are unclear.

The only pre-Oligocene Australian metatherians (marsupials

and their stem-relatives) currently known are from a single site, the

early Eocene Tingamarra fauna in southeastern Queensland [12–

14]. The fossiliferous deposits at Tingamarra are green authigenic

illite-smectite clays that appear to have formed in a shallow, low-

energy aquatic environment [12,15]. K-Ar dating of the illite gives

a minimal age of 54.660.05 MYA ( = earliest Eocene) for the site

[12]. Geological evidence and biocorrelative data from madtsoiid

snakes [16], ‘graculavid’ birds [17] and an ‘archaeonycteroid’ bat

[18] support the radiometric date (Text S1). Two Tingamarran

metatherians have been described based on isolated teeth and

mandibular fragments: the bunodont Thylacotinga bartholomaii [14]

and the dilambdodont Djarthia murgonensis [13]. Neither can be

confidently referred to a specific metatherian clade based on their

preserved dental characters alone, so their relationship to the

modern Australasian marsupial radiation and to the marsupial

crown-group as a whole is unclear. Here we describe isolated

petrosal and tarsal bones from Tingamarra that we refer to Djarthia

on the basis of relative size, comparative morphology and

abundance. This new material clarifies the phylogenetic relation-

ships of Djarthia and provides significant new evidence regarding

key aspects of Gondwanan marsupial evolution and biogeography.

Results and Discussion

Tingamarran Metatherian Petrosals
Mammalian petrosals (which house the cochlea and semicircu-

lar canals) are highly complex bones that are commonly preserved

in fossil deposits, and studies have identified numerous phyloge-

netically informative petrosal characters [6,7,19–21]. Seven

isolated metatherian petrosals, representing a single morphotype,

have been recovered from Tingamarra (Figure 1). They can be

referred to Metatheria because they exhibit: cochlear coiling of

.360 degrees (a therian synapomorphy [20]); presence in some

specimens of a prootic canal (a mammalian plesiomorphy lost in

all known eutherians except Prokennalestes [20] and ‘zhelestids’

[21]); absence of foramina or sulci for the internal carotid or
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stapedial arteries (loss of these being a synapomorphy of

Metatheria [20,22]). The hiatus fallopii (the exit for the greater

petrosal nerve) opens dorsally, as in the Palaeogene North

American metatherian Herpetotherium [8], Palaeocene South

American metatherians [6,7] and extant caenolestids [19] and

marmosine didelphids [19], but unlike most australidelphians [23];

this feature may be plesiomorphic for crown-group Marsupialia.

The rostral tympanic process of the petrosal is better developed

than in deltatheroidans [22], most Late Cretaceous North

American metatherians [19] and Andinodelphys, Mayulestes and

Pucadelphys from the Middle Palaeocene of Bolivia [7], but

resembles the condition in some Late Palaeocene metatherians

from Brazil [6] and extant South American didelphids [19,23]

(with some exceptions, such as caluromyines [24]) and caenolestids

[19,23]; this feature may be a synapomorphy of crown-group

Marsupialia. Within Australidelphia, Dromiciops (and the early

Miocene microbiothere Microbiotherium tehuelchum [25]) dasyurids,

diprotodontians and some peramelemorphians show considerable

elaboration of either or both the rostral and caudal tympanic

processes of the petrosal; the relatively simple structure of both of

these processes in the Tingamarran petrosals is probably

plesiomorphic within Australidelphia. A complete stylomastoid

foramen within the caudal tympanic process for exit of the facial

nerve (apomorphically present in dasyurids and macropodoids) is

Figure 1. Isolated petrosals of Djarthia murgonensis. Specimens are illustrated by scanning electron micrographs of the cerebellar (A, E and I),
tympanic (B, F and J), and squamosal (C, G and K) faces, and by coronal CT images (D, H and L). Scale bar, 2 mm. ctpp, caudal tympanic process of
the petrosal; hf, hiatus fallopii; pc, prootic canal; rtpp, rostral tympanic process of the petrosal; smn, stylomastoid notch; Specimens illustrated
(Queensland Museum palaeontology collection): A–D, QM F36393 (a right petrosal); E–H, QM F36397 (a left petrosal); I–L QM F32322 (a right
petrosal).
doi:10.1371/journal.pone.0001858.g001
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absent. A small, horizontal prootic canal, which transmits the

lateral head vein [19], is present in three of the petrosals but absent

in two others (Figure 1). The prootic canal is a mammalian

plesiomorphy [20] retained by most stem-metatherians [19] but

lost in some crown-group marsupials [23] including most

australidelphians [23].

Tingamarran Metatherian Tarsals
Isolated tarsals are amongst the most commonly preserved

mammalian post-cranial elements in fossil deposits, and the

morphology of the tarsus-particularly the calcaneus and astraga-

lus-has played a key role in our current understanding of

metatherian phylogeny [5,9]. Three isolated metatherian calcanea

representing a single morphotype are known from Tingamarra

(Figure 2C), as is a single metatherian astragalus that closely

matches the calcanea in size and morphology of the conarticular

joint surfaces (Figure 2D). Collectively, the Tingamarran speci-

mens are clearly australidelphian because the ectal and sustentac-

ular facets are fused on both the calcanea and astragalus, forming

the diagnostic australidelphian ‘continuous lower ankle joint’ [5],

and the calcaneocuboid facet of the calcanea is subdivided into

three distinct facets (another synapomorphy of Australidelphia [5];

Figure 2C–F). These specimens are the oldest known that exhibit

this distinctive morphology. Features that are probably plesio-

morphic within Australidelphia include the gently rounded upper

ankle joint surface of the astragalus (indicating that the upper

ankle joint was extremely mobile, which suggests arboreality), a

broad fibular facet of the astragalus (a possible apomorphy linking

didelphids and australidelphians [5,9]), a large astragalar medial

plantar tuberosity that wraps under the sustentacular facet (absent

in most australidelphians) and a large peroneal process of the

calcaneus (greatly reduced in all other known australidelphians)

[5,9].

Referral of Tingamarran Metatherian Petrosals and
Tarsals to Djarthia murgonensis

We refer the petrosals and tarsals described here to Djarthia

murgonensis because: 1) Djarthia is by far the most common dental

taxon from Tingamarra, comprising ,25% of all mammalian

teeth from the site; 2) all metatherian petrosals and tarsals so far

identified from Tingamarra each comprise a single morphotype; 3)

regression analyses indicate that the sizes of these petrosals and

tarsals correspond closely to those predicted for Djarthia based on

dental measurements (Table S1, S2, Figure S1, S2).

Phylogenetic Analysis and Molecular Divergence Dates
Parsimony analysis of a 242 morphological character matrix [8]

(Figure 3A, Text S2, S3) and partitioned Bayesian analysis of this

matrix in combination with 20.1 kb of sequence data [10]

(Figure 3B) confirm that Djarthia is a member of Australidelphia,

but both analyses place Djarthia outside a clade comprising extant

Australasian marsupials (Figure 3A–B). Djarthia is therefore the

oldest known Australian crown-group marsupial by some 30

million years (over twice as old as the next oldest from Australasia

[2]) and one of the oldest anywhere in the world. Divergence dates

calculated using a Bayesian ‘relaxed molecular clock’ method [26]

(Figure S3, Table S3) indicate that Australidelphia originated

65.0–75.1 MYA (95% CI = 59.2–84.3 MYA) and that the extant

australidelphian orders diverged from each other 56.9–65.5 MYA

(95% CI = 51.1–71.8 MYA). These dates are compatible with

Djarthia as either a stem- or early crown-australidelphian. Because

Djarthia appears to be more plesiomorphic than any other known

Figure 2. Comparison of isolated tarsals of Djarthia murgonensis with an extant australidelphian marsupial and an extant non-
australidelphian (‘ameridelphian’) marsupial. Astragali (A, C, E) and calcanea (B, D, F) of the ‘ameridelphian’ didelphid Thylamys elegans (A–
B), Djarthia murgonensis (C–D) and the australidelphian microbiotheriid Dromiciops australis (E–F). Astragali illustrated in dorsal (top), distal (middle)
and ventral (bottom) views. Calcanea illustrated in dorsal (top) and distal (bottom) views. Scale bar, 1 mm. AFi, astragalofibular facet (green); ampt,
astragalar medial plantar tuberosity; CaCua, auxiliary calcaneocuboid facet (orange); CaCud, distal calcaneocuboid facet (orange); CaCul, lateral
calcaneocuboid facet (yellow); CaCum, medial calcaneocuboid facet (blue); CLAJP, continuous lower ankle joint pattern (red); cpp, peroneal process
of the calcaneus; Ec, ectal facet (red); Su, sustentacular facet (red). Presence of the continuous lower ankle joint pattern and subdivision of the
calcaneocuboid facet into three distinct facets are australidelphian synapomorphies [5]. Specimens illustrated (UNSW Palaeontology Laboratory
collection (a–b, e–f) and Queensland Museum palaeontology collection): A–B, unregistered specimen; C, QM F52750; D, QM F52747; E–F,
unregistered specimen.
doi:10.1371/journal.pone.0001858.g002
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australidelphian, it may approximate the ancestral morphotype of

the Australasian marsupial radiation or of Australidelphia as a

whole. The dentition of Djarthia indicates a generalised insectiv-

orous diet [13], whilst the tarsal remains suggest scansorial or

arboreal habits.

Biogeographical Implications
Khasia cordillerensis [27] from early or middle Palaeocene (59.2–

64.5 MYA) deposits at Tiupampa in Bolivia and Mirandatherium

alipoi [28] from late Palaeocene (58.7–59.2 MYA) deposits at

Itaborai in Brazil-both known only from dental specimens-have

been referred to Microbiotheria, rendering them the oldest

described australidelphians (although Djarthia is dentally more

plesiomorphic than both of these taxa). However, these referrals

have been questioned [5,11] because they are based solely on

characters of the dentition that are known to be highly

homoplastic. Furthermore, no australidelphian-type tarsals have

been found at either Tiupampa or Itaborai (even though tarsals of

at least 13 metatherian taxa are known from the latter site [5]),

and phylogenetic analyses of five different metatherian petrosal

morphotypes from Itaborai indicate that none are referable to

Australidelphia [6]. The oldest unequivocal South American

australidelphian is Microbiotherium tehuelchum, which is from the

early Miocene (16.2–16.6 MYA) Santa Cruz fauna of Argentina

(roughly 40 million years younger than Tingamarra) and which

exhibits distinctive microbiothere autapomorphies of the auditory

region [25]. Possible non-australidelphian crown-group marsupials

older than Djarthia include Carolopaulocoutoia (a possible paucitu-

berculate [29]), isolated petrosals [6] and didelphid-like tarsals [5],

all from Itaborai (which is approximately four million years older

than Tingamarra). However, the affinities of these highly

fragmentary taxa have yet to be investigated in the context of a

broad-scale phylogenetic analysis that combines morphological

and molecular sequence data. Djarthia is therefore the oldest

crown-group marsupial known from dental, cranial and post-

cranial remains, and the oldest with confidently resolved

phylogenetic relationships; as such, it represents a robust

calibration point for molecular dating analyses. The extremely

plesiomorphic australidelphian morphology of Djarthia and the

apparent absence of undoubted australidelphians from early

Palaeogene deposits in South America raises the possibility that

Australidelphia originated in Australia or elsewhere in eastern

Gondwana, perhaps from a Djarthia-like ancestor. If so, Australi-

delphia did not originate in South America (as has usually been

assumed [5,9]) and the South American microbiotheres are the

result of a later back-dispersal from eastern Gondwana. However,

the early Palaeogene record of metatherians in South America is

still relatively poorly known, particularly in the south of the

continent; it is feasible that undoubted early Palaeogene South

American australidelphians wait to be found. Possible micro-

biotheres have been described from the Middle Eocene La Meseta

Formation of Seymour Island, but these taxa are known solely

Figure 3. Phylogenetic relationships of Djarthia murgonensis. A, strict consensus of 2 most parsimonious trees (tree length = 886; consistency
index (CI) excluding uninformative characters = 0.357; retention index (RI) = 0.646) from analysis of a 242 morphological character matrix [8]. Position
of Djarthia highlighted in red. Australidelphia is indicated. Numbers above branches represent bootstrap values (2000 replicates); numbers below
branches represent Bremer support values. B, Bayesian 50% majority rule consensus from analysis of the morphological matrix in combination with a
20.1 kb molecular data set [10]. Position of Djarthia highlighted in red. Australidelphia is indicated. Numbers at nodes represent Bayesian posterior
probabilities.
doi:10.1371/journal.pone.0001858.g003

Australia’s Oldest Marsupial

PLoS ONE | www.plosone.org 4 March 2008 | Volume 3 | Issue 3 | e1858



from isolated teeth and are approximately ten million years

younger (and dentally more derived) than Djarthia [30].

Materials and Methods

Collection of fossils
All the fossil specimens described here were obtained by screen-

washing of clay samples from the Tingamarra Local Fauna and

subsequent microscope-assisted sorting of the concentrate.

Justification for referral of the isolated Tingamarran
metatherian petrosals and tarsals to Djarthia murgonensis

We base our referral of the isolated Tingamarran metatherian

petrosals and tarsals to the Tingamarran metatherian Djarthia

murgonensis (previously known only from dental specimens [13]) on

the basis of: 1) relative abundance; 2) comparative morphology; 3)

comparative size (using regression analyses).

D. murgonensis is by far the most common mammalian dental

taxon at Tingamarra, comprising approximately 25% of all dental

specimens. The second most common dental taxon is the

bunodont metatherian Thylacotinga bartholomaii [14], which is

considerably less common than D. murgonensis and is also

approximately three times larger in linear dimensions (measure-

ments taken from [14] and [13]) and is therefore far too large for

the Tingamarran petrosals and tarsals described here (see Table

S1, S2, Figure S1, S2). Other Tingamarran metatherians currently

represented by dental specimens are far less common than D.

murgonensis and T. bartholomaii. Thus, the Tingamarran petrosals

and tarsals are likely to belong to D. murgonensis on the basis of

relative abundance.

Collectively, the Tingamarran metatherian petrosals represent a

single morphotype with minor variations in morphology, and are

very similar in size (Figure 1). They can be referred to Metatheria

based on cochlear coiling of .360u (a therian synapomorphy

[20,21]) and absence of sulci or foramina on the petrosal for the

internal carotid or stapedial arteries (loss of these is a metatherian

synapomorphy [22]). The petrosals most likely represent a

plesiomorphic crown-group marsupial because of: 1) the absence

of a groove on the anterior pole of the promontorium for the

internal carotid artery (present in the South American stem-

metatherians Pucadelphys, Andinodelphys and Mayulestes from the early

or middle Palaeocene of Tiupampa in Bolivia and in some isolated

petrosals from the late Palaeocene of Itaborai in Brazil [6,7,31]); 2)

the presence of a well-developed rostral tympanic process of the

petrosal (absent in Pucadelphys, Andinodelphys and Mayulestes) which is

nevertheless not greatly enlarged as it is in some didelphids and

many australidelphians; 3) no evidence of a complete stylomastoid

foramen within the caudal tympanic process of the petrosal (this

foramen is a derived feature of dasyurids and macropodoids); 4)

loss in some specimens of the prootic canal (absence of this canal is

common in crown-group marsupials, but apparently also occurred

independently in borhyaenoids [23,32]). Variation in the presence

or absence of the prootic canal could potentially indicate that the

petrosals described here represent more than one taxon. However,

within marsupials polymorphism of this character has been

reported at the family-level (caenolestids, didelphids, peramelids,

peroryctids, dasyurids and phalangerids), genus-level (the dasyurid

Dasyurus) and species-level (the didelphid Philander opossum) [23,33].

The prootic canal has been described as present in Dasyurus

viverrinus [33], but a D. viverrinus specimen from the University of

New South Wales (AR6521) lacks an obvious prootic canal,

indicating that this character is polymorphic within at least one

australidelphian species. Although the prootic canal is apparently

absent in adults of Dromiciops gliroides, it has been found in a late

juvenile of this species, suggesting that this feature may be lost

relatively late in ontogeny [23]. The polymorphism seen in the

Tingamarran petrosals may reflect ontogenetic differences, or an

intermediate stage in the loss or gain of the prootic canal. The

Tingamarran petrosals cannot be unequivocally referred to

Australidelphia because possible australidelphian synapomorphies

of the petrosal [6,31] show considerable polymorphism when a

wider diversity of australidelphian taxa are considered [23].

Similarly to the petrosals, the Tingamarran metatherian tarsals

represent a single morphotype with minor variations in morphol-

ogy, and are also very similar in size (Table S2). They can be

referred to Australidelphia because they exhibit fusion of the ectal

and sustentacular facets, forming the australidelphian ‘continuous

lower ankle joint pattern’, and subdivision of the calcaneocuboid

facet into three distinct facets [5,34]. The Tingamarran tarsals

appear to be from a very plesiomorphic australidelphian because

of the presence of a large peroneal process of the calcaneus (this

process is reduced in all other known australidelphians [5]).

Based on its preserved dental features, D. murgonensis is probably

a plesiomorphic member of the marsupial crown-group [13],

although it could not be confidently assigned to either ‘Amer-

idelphia’ (a paraphyletic grade that includes the extant orders

Didelphimorphia and Paucituberculata) or Australidelphia be-

cause of an apparent absence of unequivocal australidelphian

dental synapomorphies [13]. Given that the Tingamarran

metatherian petrosals and tarsals appear to represent a plesio-

morphic crown-group marsupial and a plesiomorphic australidel-

phian respectively, referral of the petrosals and tarsals to D.

murgonensis appears reasonable based on comparative morphology.

Following Szalay [5], Ekdale et al. [21] and Ladevèze [6], we

have also used regression analyses to assess whether the

Tingamarran metatherian petrosals and tarsals are of appropriate

size for referral to Djarthia murgonensis. Ekdale et al. [21] and

Ladevèze [6] calculated the area of the promontorium of the

petrosal and molar area for a range of different eutherians and

metatherians respectively, and used these in regression analyses.

We have found that promontorium area is difficult to calculate

unambiguously because the precise extent of the promontorium

relative to adjacent regions of the petrosal is not always obvious,

and it cannot be calculated in intact skulls of taxa in which the

promontorium is not completely exposed in ventral view; instead,

we have measured maximum petrosal length in ventral view for a

range of different marsupial taxa (Table S1). We used mesiodistal

length of the second upper molar (M2) as our dental measurement

(Table S1), rather than molar area (as used by Ekdale et al. [21]

and Ladevèze [6]), because the lingual portions of the M2 and M3

in the holotype of D. murgonensis are missing and so areas cannot be

calculated for these teeth. Szalay [5] suggested that in metathe-

rians the width of the lower ankle joint (i.e. combined width of the

ectal and sustentacular facets of non-australidelphian taxa, or

width of the continuous lower ankle joint of australidelphians)

correlates with the mesiodistal lengths of the second upper and

second lower molars, although he did not provide quantitative

data to demonstrate this relationship. We therefore measured M2

mesiodistal length and lower ankle joint width (taken from the

calcaneus) for a number of marsupials (Table S2) to investigate the

allometric relationship between these measurements and to test

the association of the Tingamarran metatherian tarsals with D.

murgonensis. Measurements from specimens of a range of extant and

fossil marsupials available at the University of New South Wales

were taken using a Wild MMS235 measuring device. Graphs of 1)

M2 mesiodistal length against petrosal maximum length (Figure

S1), and 2) M2 mesiodistal length against lower ankle joint width

were plotted (Figure S2), lines of best fit and their associated

Australia’s Oldest Marsupial
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equations calculated and R2 values determined. Values for D.

murgonensis were then plotted on each graph, assuming that the

Tingamarran metatherian petrosals and tarsals are referrable to

this taxon. Because all the Tingamarran metatherian petrosals

referrable to D. murgonensis are incomplete, a composite measure-

ment for maximum petrosal length was estimated from QM

F36393, F36397 and F32322, which are three most complete

specimens and are illustrated in Figure 1. Lower ankle joint width

values for D. murgonensis were taken from QM F52747 (illustrated

in Figure 2), F52748 and F 52749, which are all right calcanea. Of

the dental specimens recovered from Tingamarra to date, those

referable to D. murgonensis show the best fit in terms of size to the

Tingamarran metatherian petrosals and tarsals, based on this

regression analysis.

Phylogenetic analyses
The morphological character matrix of Sánchez-Villagra et al.

[8] is the most comprehensive currently available for marsupials,

comprising 245 post-cranial, dental and cranial characters and

including representatives of 14 extant families and the stem-

metatherians Deltatheridium, Asiatherium, Pucadelphys, Andinodelphys,

Mayulestes and Herpetotherium. Djarthia was added to this matrix, with

scorings based on the petrosal and tarsal specimens described here

and on dental specimens described by Godthelp et al. [13]. In the

process of adding Djarthia, it became apparent that we have

interpreted a number of morphological features differently to

Sánchez-Villagra et al. [8], particularly those relating to the

petrosal and related basicranial structures (characters 205–245).

We have therefore scored a number of taxa differently for some

characters, redefined other characters and excluded three

characters that did not appear to us to comprise discrete states

(characters 100, 212 and 237). These modifications are indicated

in Text S2 and the modified matrix is given in Text S3. We have

maintained the character numbers used by Sánchez-Villagra et al.

[8] in their original matrix to faciliatate comparison with our

revised matrix. Following Sánchez-Villagra et al. [8], the following

morphological characters were ordered in all phylogenetic

analyses: 4, 9, 10, 15, 16, 22, 30, 34–36, 39, 51, 53, 71, 74, 78,

79, 82, 83, 87, 93, 99, 101, 103–105, 109, 112, 118, 121, 123, 129,

134–138, 141, 146, 147, 149, 150, 152, 154, 168, 169, 174, 185,

188, 192, 202, 222 (see [8] and Text S2 for details). Following

exclusion of characters 100, 212 and 237 (for the reasons given

above and in Text S2), the resultant matrix comprised 242

characters scored for 33 taxa (Text S3).

The morphological character matrix was analysed using

maximum parsimony as implemented in PAUP*4.0b10 [35].

The two-stage heuristic search used by Worthy et al. [36] was

employed here. Support values were calculated using boot-

strapping (2000 replicates using standard PAUP* settings) and

Bremer support (using the two-stage heuristic search strategy of

Worthy et al. [36]). The strict consensus of the most parsimonious

trees, together with support values, is given in Figure 3a.

The morphological dataset was combined with the 20.1kb

molecular supermatrix of Beck [10]-which comprises DNA

sequence data from 7 nuclear genes (APOB, BRCA1, IRBP,

PGK1, P1, RAG1, and VWF) and 15 mitochondrial loci (12S

rRNA, 16S rRNA, tRNA valine, and 12 H-strand protein-coding

genes)-and analysed using MrBayes 3.1.2 [37]. Further details

regarding the supermatrix are given in [10]. Following Beck [10],

the molecular supermatrix was partitioned by gene, codon position

(for protein-coding genes) and stem and loop regions (for

ribosomal genes), with each partition assigned the model selected

for it by MrModelTest 2.2 [38] assuming the Akaike Information

Criterion [39]. The morphological partition was assigned an

Mk+G model [37,40]. Using MrBayes 3.1.2, the combined

analysis comprised four independent runs, each comprising 8

MCMC chains (7 ‘heated’ and 1 ‘cold’), with the temperature of

the heated chains reduced from the default value of 0.2 to 0.15, to

improve mixing. These analyses were run for 5 million

generations, sampling trees every 100 generations. The first 4

million generations were discarded as burn-in, and a 50% majority

rule consensus was constructed from the last one million

generations (Fig. 3b).

BEAST molecular dating analysis
Molecular divergence dates were calculated using the 20.1 kb

molecular supermatrix of Beck [10] and the Bayesian relaxed

molecular clock method implemented in BEAST 1.4 [26]. The

partitioning scheme and models used in the MrBayes analyses (see

above) were followed, and an uncorrelated lognormal relaxed

clock [26] and a Yule tree prior (as recommended for species-level

phylogenies [41]) were assumed. Prior estimates for the divergence

dates for selected nodes were specified using transformed

lognormal distributions [26,41,42]: these require specification of

a ‘hard’ minimum bound (with a 0% probability of the divergence

being younger than this date), a mean estimate and a ‘soft’

maximum bound (with a 5% probability of the divergence being

older than this date). Here, the ‘hard’ minimum bounds were

based on the minimum age of the oldest fossil that can be

confidently assigned to a particular node. Given the incomplete-

ness of the marsupial fossil record (particularly in Australasia), the

mean estimates for divergence dates used here were taken from

recent molecular studies. However, some current molecular dating

methods may not be able to account for abrupt changes in the rate

of molecular evolution, leading to overestimated divergence dates

[43]; indeed, recent point estimates for divergences within

mammals based on molecular data often appear unrealistically

old from a palaeontological perspective (e.g. Wible et al. [44];

although the lower end of confidence intervals for these molecular

divergences usually agrees well with the fossil record). For this

reason, we selected lower bounds of estimated age ranges (usually

one standard deviation less than the point estimate for a particular

node) from previous molecular studies as mean values. The ‘soft’

maximum bound represents the oldest age for a divergence that, in

our opinion, appears feasible based on current molecular and

palaeontological evidence. The calibrations used are given in Text

S4.

Because third codon positions of mitochondrial protein coding

genes have been shown to mislead some phylogenetic analyses of

marsupials[4,10], two BEAST analyses were carried out: one using

the full molecular matrix ( = ‘full’), and one with the third codon

positions of the mitochondrial protein coding genes were excluded

( = ‘no mt3’). Following a pre-burnin of 1 million generations, both

BEAST analyses were run for 10 million generations, sampling

trees every 1000 generations. The first 9 million generations were

discarded as burnin, with a 50% majority rule consensus

constructed from trees sampled from the last 1 million generations.

The BEAST analyses supported the phylogeny given in Figure

S3 (analyses of the ‘full’ and ‘no mt3’ datasets recovered the exact

same topology except within macropodines-this conflict is

represented as an unresolved trichotomy). As seen in Figure S3

(nodes 1 and 3), both BEAST analyses recovered a sister-group

relationship between monotremes and marsupials ( = Marsu-

pionta), which is almost certainly anomalous given that monophyly

of marsupials and placentals ( = Theria) is now strongly supported

by both morphological and recent molecular data [45–47].

However, relationships within marsupials are congruent with

other recent molecular phylogenies [3,4,10,48]. The divergence
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dates and 95% confidence intervals calculated for each node, using

both the ‘full’ and ‘no mt3’ datasets, are given in Table S3.

Australidelphian synapomorphies must have evolved between

node 6 (the split between Australidelphia and Paucituberculata)

and node 7 (the first divergence within Australidelphia), giving a

range of 65.04–75.09 MYA (95% confidence interval = 59.21–

84.32 MYA). Nodes 7, 8, 18 and 19 represent the divergences

between the extant australidelphian orders; based on the results of

the BEAST analyses, these occurred over the period 56.85–65.5

MYA (95% confidence interval = 51.09–71.77 MYA).

Supporting Information

Text S1 Justification for an early Eocene age of the Tingamarra

Local Fauna

Found at: doi:10.1371/journal.pone.0001858.s001 (0.03 MB

PDF)

Text S2 List of morphological characters scored for Djarthia

murgonensis and/or modified from Sánchez-Villagra et al. [9].

Numbering follows Sánchez-Villagra et al. [9].

Found at: doi:10.1371/journal.pone.0001858.s002 (0.06 MB

PDF)

Text S3 Morphological character matrix

Found at: doi:10.1371/journal.pone.0001858.s003 (0.02 MB

PDF)

Text S4 Fossil calibration points used in the BEAST molecular

dating analysis Figure S3 50% majority rule consensus from

partitioned Bayesian analysis using BEAST (10 million genera-

tions, 9 million generation burn-in) of the ‘full’ and ‘no mt3’

versions of the molecular matrix of Beck [6]. Numbers correspond

to nodes given in Table S3.

Found at: doi:10.1371/journal.pone.0001858.s004 (0.04 MB

PDF)

Table S1 Measurements of maximum petrosal length and M2

mesiodistal length for a range of extant and fossil marsupials (fossil

taxa are indicated by {). Measurements for Djarthia murgonensis

assume that the Tingamarran metatherian petrosals QM F36397,

F36393 and F32322 (illustrated in Figure 1) are referrable to that

taxon. No petrosal measurement is available for Thylacotinga

bartholomaii because the petrosal of this taxon is currently unknown.

Found at: doi:10.1371/journal.pone.0001858.s005 (0.02 MB

PDF)

Table S2 Measurements of lower ankle joint width (taken from

the calcaneus) and M2 mesiodistal length for a range of extant

marsupials, plus Djarthia murgonensis and Thylacotinga bartholomaii.

Measurements for D. murgonensis assume that the Tingamarran

metatherian calcanea QM F52747 (illustrated in Figure 2), F52748

and F 52749 are referable to that taxon. No lower ankle joint

width measurement is available for T. bartholomaii, as the calcaneus

of this taxon is currently unknown.

Found at: doi:10.1371/journal.pone.0001858.s006 (0.01 MB

PDF)

Table S3 Molecular divergence dates within marsupials as

calculated by BEAST assuming an uncorrelated lognormal

relaxed clock. Dates were calculated using the supermatrix of

Beck [6], including (‘full’) and excluding (‘no mt3’) the third codon

positions of mitochondrial protein-coding genes. Node numbers

correspond to the phylogeny in Figure S3. Point estimates and

95% confidence intervals are given for each node.

Found at: doi:10.1371/journal.pone.0001858.s007 (0.01 MB

PDF)

Figure S1 Plot of M2 mesiodistal length against maximum

petrosal length for the specimens listed in Table S1. Specimens of

Djarthia murgonensis and Thylacotinga bartholomaii are identified by

squares and circles respectively. The predicted maximum petrosal

length for T. bartholomaii was calculated according to the equation

for the line of best fit.

Found at: doi:10.1371/journal.pone.0001858.s008 (0.04 MB

PDF)

Figure S2 Plot of M2 mesiodistal length against lower ankle

joint width for the specimens listed in Table S2. Specimens of

Djarthia murgonensis and Thylacotinga bartholomaii are identified by

squares and circles respectively. Predicted lower ankle joint width

for T. bartholomaii was calculated according to the equation for the

line of best fit.

Found at: doi:10.1371/journal.pone.0001858.s009 (0.04 MB

PDF)
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