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Galicia, Spain, 9 Department of Mathematics, University of Hamburg, Hamburg, Germany

Abstract

Only a limited number of complete mitochondrial genome sequences belonging to Native American haplogroups were
available until recently, which left America as the continent with the least amount of information about sequence variation
of entire mitochondrial DNAs. In this study, a comprehensive overview of all available complete mitochondrial DNA
(mtDNA) genomes of the four pan-American haplogroups A2, B2, C1, and D1 is provided by revising the information
scattered throughout GenBank and the literature, and adding 14 novel mtDNA sequences. The phylogenies of haplogroups
A2, B2, C1, and D1 reveal a large number of sub-haplogroups but suggest that the ancestral Beringian population(s)
contributed only six (successful) founder haplotypes to these haplogroups. The derived clades are overall starlike with
coalescence times ranging from 18,000 to 21,000 years (with one exception) using the conventional calibration. The average
of about 19,000 years somewhat contrasts with the corresponding lower age of about 13,500 years that was recently
proposed by employing a different calibration and estimation approach. Our estimate indicates a human entry and spread
of the pan-American haplogroups into the Americas right after the peak of the Last Glacial Maximum and comfortably
agrees with the undisputed ages of the earliest Paleoindians in South America. In addition, the phylogenetic approach also
indicates that the pathogenic status proposed for various mtDNA mutations, which actually define branches of Native
American haplogroups, was based on insufficient grounds.
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Introduction

America was the last continent to be colonized by humans, and

molecular data provided by different genetic systems [1,2] have

been extensively employed to shed light on the routes and times of

human arrival and dispersion into the New World. As for

mitochondrial DNA (mtDNA), it has been clear, since the early

nineties, that mtDNAs of Native Americans could be traced back

to four major haplogroups of Asian origin shared by North,

Central and South American populations [3–7]. These were

initially named A, B, C and D, and are now termed A2, B2, C1

and D1 [8]. Afterwards, a fifth haplogroup – now known as X2a –

was described in Native Americans, but in contrast to the four

‘‘pan-American’’ haplogroups, its geographic distribution is

restricted to some Amerindian populations of northern North

America [8–12]. Later, two more haplogroups – D2a and D3 –

were identified: D2a in the Aleuts and Eskimos [13,14] and D3

only in the Eskimos [15,16]. Most recently there were two further

(uncommon) additions – D4h3 and C4c [14,17] – bringing the

total number of Native American haplogroups to nine.

Since the early studies, the interpretation of mtDNA data has

been rather controversial with scenarios postulating one to

multiple migrational events from Beringia at very different times

(between 11,000 and 40,000 years ago) (for a review, see [7]).

Pinpointing an accurate timeframe for the arrival of the Native

American founders would be essential to solve such a debate. Yet,

accurate ages can only be based on large numbers of complete

mitochondrial genomes, and American mtDNA haplogroups were

only poorly represented in the total database of .3000 complete

mtDNA sequences until very recently. Thus, despite the

protagonist role of Native American mtDNAs in high-resolution

mtDNA studies 15 years ago [4], America remained the continent

from which we had the least information about the sequence

variation of entire mtDNAs. Worse, the available information had
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to be retrieved from the web in a hit or miss fashion and suffers in

part from improper documentation, oversights, and inadvertent

nomenclature (Text S1). The overall situation is now beginning to

change with some new data available in literature and public

databases [14,18,19], but the interpretation of subsets of these

data continue to remain controversial. For instance, the work by

Tamm et al. [14] suggests that the Asian ancestors of the first

Native Americans paused when they reached Beringia and that

their (swift) migration southward might have occurred only

,13,500 years ago.

Among the novel mtDNA sequences, there are 265 from

‘‘Hispanics’’ and ‘‘African-Americans’’ that recently became

available in GenBank [19]. A survey of their variation reveals

that 101 mtDNAs of Native American origin were included (47

belonging to haplogroups A2, 13 to B2, 30 to C1, and 11 to D1).

Those mtDNAs are not associated with either a specific Native

American population/tribe or a specific geographic region but are

undoubtedly of Native American origin. Furthermore, due to the

fact that these are all from individuals living in the US, they

probably provide a fairly good overview of the mtDNA pool of

extant or extinct Native American populations from North and

Central America plus the Caribbean (due to the contribution of

Mexicans, Puerto Ricans, Cubans, Salvadorans, etc. to the

present-day US American population), and their analysis might

provide important new clues about the process of human

colonization of the Americas and the origin of Native Americans.

Thus, the aim of this paper is not only to (i) perform a

comprehensive analysis of all available complete (or almost

complete) sequences of Native American ancestry belonging to

the four major pan-American haplogroups, (ii) identify their

internal clades and candidate founder sequences, and (iii) estimate

their expansion times into the Americas, but also to (iv) provide a

framework on which future phylogeographic studies, which

remain scarce, can build upon.

Results

The phylogeny of pan-American haplogroups A2, B2, C1,
and D1

To define the phylogeny of A2, B2, C1, and D1 at the highest

level of molecular resolution – that of complete mtDNA

sequences, it is necessary to evaluate (and possibly to expand)

the current data set of published mtDNA sequences in regard to

reliability as well as to update and correct the nomenclature (Text

S1). Figure 1 displays the roots of A2, B2, C1 and D1, together

with the complete sequences belonging to the much less common

Native American haplogroups C4c, D2a, D3, D4h3 and X2a

[8,9,12–15,20]. Moreover, for a better discrimination from closely

related Native American counterparts, some Asian (or Beringian)

branches (B4b1a2, A2a, A2b, C1a, C4a, C4b, D2b, and D4h1) are

illustrated. As for the phylogeny of haplogroup A2, we maintain

the codes A2a and A2b for the circumpolar branches [16]. For

branch A2a with the characteristic C16192T transition in HVS-I

(which on its own is insufficient to identify a haplogroup because it

is highly recurrent throughout the mtDNA phylogeny), coding-

region information is now available revealing the additional

diagnostic marker C3330T [14,18].

The complete variation of all available mtDNA sequences

belonging to haplogroups A2, B2, C1, and D1 is displayed in the

phylogenies of Figures 2 and 3. As for the phylogeny of A2

(Figure 2), we rename the ‘‘A2a’’ and ‘‘A2b’’ branches of

Accetturo et al. [21] as A2d and A2e, maintaining the definition

of A2c for the branch with the motif T12468C-G14364A.

Moreover, we define six novel branches (A2f - A2k) based on all

available information for haplogroup A2 (Table S1) and [20,22].

Numerous independent back mutations at nucleotide positions

(nps) 64, 146, 152, 153, 16111, and 16362 are evident (that on

their own do not justify support for subhaplogroup naming). Many

HVS-I and HVS-II lineages from haplogroup A2 reflect this

seemingly mosaic feature of instability. Some additional informa-

tion on the population distribution of the subhaplogroups can also

be drawn from the early high-resolution RFLP data [5,23] and an

extensive database of published control-region sequences (mainly

comprising HVS-I) (Text S2).

The phylogeny of haplogroup B2 (Figure 3A) reveals at least

four subhaplogroups (B2a - B2d). B2a is defined by the control-

region transitions C16111T and G16483A, while the sub-branch

B2a1 is defined by the coding-region transition A10895G

previously seen as a TaqI site at 10893 in haplogroup B mtDNAs

from the Navajo, Ojibwa, and Pima [5]. The branches B2b and

B2c are based on the presence of transitions G6755A and

A7241G, respectively. B2c was also identified as a RsaI site at 7241

in two mtDNA haplotypes from Mexico [23], while its sub-branch

B2c1 seems to be defined by a transition at np 9098. The branch

B2d (coding-region motif 4122-4123-8875-9682) is probably

rather widespread in lower Central America since it was found

in the Wayuùs and Ngöbes [14] and (as a HaeIII gain at np 8872)

in several other Chibchan-speaking populations [23,24].

As for haplogroup C1, all sequences appear to fall into one of

the three subhaplogroups C1b, C1c, and C1d (Figure 3B). These

are most likely spread all over the Americas. Indeed, the

transitions at nps 493 and 16051 that define C1b and C1d,

respectively, have been observed in haplogroup C1 control-region

motifs from a wide range of Native American populations,

including some from the southern part of South America. For

C1c, which lacks basal salient HVS-I or RFLP motifs, its presence

in South America is confirmed by its detection in Colombia [14]

and the observation that South American C1 mtDNAs are not

fully covered by subhaplogroups C1b and C1d [25], and thus the

remaining C1 lineages likely belong to C1c. These findings

support the scenario that C1b, C1c and C1d (and their

distinguishing mutational motifs) most likely arose early – either

in Beringia or at a very initial stage of the Paleoindian southward

migration [14].

As for D1 (Figure 3C), the basal mutation of D1a (sequence

#134) is based on the comparison with four coding-region

sequences (Am02, 10, 11, 14) reported by Kivisild et al. [26]. The

three additional sub-clades, D1b, D1c, and D1d have been defined

by using either the novel sequences reported in this study or those

from Parsons [19].

Overall, the four phylogenies appear to be quite starlike,

especially the B2 and D1 trees having high indices (,0.5) of

starlikeness (Table 1). In the case of haplogroup C1, the three

basal branches (C1b, C1c, and C1d) are themselves starlike, with

the exception of C1b where a very low index of starlikeness

(influencing also C1) is mainly due to an over-sampling (10

instances) of the root haplotype of the sub-branch C1b2a

(sequences #107). The significance of starlike patterns in the

Native American haplogroups would be that the successful

propagation event of these haplogroups and some of their major

branches (in Beringia or later on the move further south) can very

well be dated assuming a reliable calibration of the mtDNA

mutation rate. The point estimates for the coalescence times of

haplogroups A2 (without the branches A2a and A2b), B2, C1

(without the Asian branch C1a), and D1 yield 18.161.8,

21.262.4, 23.864.3, and 18.662.3 ky, respectively, based on all

219 coding-region sequences (Table 1) and by employing the

calibration of 1 coding-region substitution every 5,140 years [27].

Pan-American MtDNA Haplogroups
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The haplogroup ages thus fall into the range of 18–24 ky with an

average of about 20.2 ky (Table 1). This value is a little bit lower

(,19.0 ky) if the roots of the three branches of C1 (C1b, C1c and

C1d), instead of C1 as a whole, are considered as Native American

founders. This might be a (slight) underestimation because C1d is

clearly under-represented in this study (comprising only eight

mtDNAs). Thus, excluding C1d, the time frame is restricted to 18–

21 ky and these estimates are about 1.4-fold higher than the larger

time frame of 11–17 ky (A2: 13.962.0 ky; B2: 16.562.7 ky; C1b:

14.764.7 ky; C1c: 15.864.7 ky; D1: 10.862.0 ky) that was

recently estimated [14] in a smaller dataset (105 mtDNA

sequences) adopting a different calibration [26].

Detrimental mtDNA branches in Native Americans?
In some of the newly defined Native American branches, one

can identify mutations for which a pathogenic role was suggested

in the medical literature. The seemingly ‘detrimental’ status of

mutations G3316A and G13708A, defining haplogroups A2f and

A2e respectively, has already been questioned and discussed at

length in the East Asian mtDNA context [28]. The occurrence of

both mutations is not infrequent (also appearing, for instance, in

haplogroups B2 and D1) and therefore, not unexpectedly, they

participate in the motifs of several haplogroups. A similar case is

represented by the transition T1005C, which was proposed as a

primary mutation for non-syndromic hearing loss [29,30], and

defines for instance the Asian haplogroup F2. In the context of

Native American haplogroups, T1005C appears as a basal

mutation of C1b5 – a branch of haplogroup C1b. Thus, all of

these mutations are old and have been transmitted for at least

some hundreds of generations. Although an effect of ‘‘old’’

mtDNA mutations in some multi-factorial/complex (and com-

mon) diseases cannot be ruled out a priori, a pathogenic role

specific for such variants can, however, only be inferred from

association studies in which haplogroup frequencies are properly

evaluated in both patients and controls [31].

Figure 1. Basal tree encompassing the roots of Native American mtDNA haplogroups. The tree is rooted on the haplogroup L3 founder
and the position of the revised Cambridge reference sequence (rCRS) [49] is indicated for reading off sequence motifs. Closely related Asian branches
are indicated in green. Detailed phylogenies for the four pan-American haplogroups (A2, B2, C1, and D1, highlighted in red) are shown in the
corresponding figures. The complete sequences that are currently available for the other four Native American haplogroups (X2a, C4c, D2a, and
D4h3, highlighted in red) are also displayed. Haplogroup D3 is common among Inuit populations [16], but all complete sequences available are from
Siberia [13,18]. As for A2a, the HVS-I motif (16111 16192 16223 16233 16290 16319 16331) of the reported sequence (no. 1) is common in Na-Dené
groups [5]. Sequence no. 2 has been revised taking into account that the originally reported transitions at 4732 and 5147 [8] were artifacts due to a
sample mix-up, while sequence no. 6 represents the shared motif of six Aleutian mitochondrial genomes [13]. Mutations are transitions unless
specified: suffixes indicate transversions (to A, G, C, or T) or indels (+, d). Mutations back to the rCRS nucleotide are prefixed with @. Recurrent
mutational events are underlined. Mutations in italics are either disease-causing or heteroplasmic or likely erroneous (and do not enter age
calculations). We have followed the recent guidelines for standardization of the alignment in long C stretches [50], but disregarded any length
variation in the C stretches that would then be scored at 309 or 16193 (which is often subject to considerable heteroplasmy). A number flagging a
circled haplotype indicates the number of individuals sharing the corresponding haplotype (if .1). Additional information is provided in Text S4,
while Table S1 lists the source of the complete genomes.
doi:10.1371/journal.pone.0001764.g001
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An extremely interesting case of a mutational motif marking a

Native American branch of the mtDNA phylogeny is represented

by the T3308A transversion with a subsequent insertion of one C

(3308+C) that characterize haplogroup A2i. The insertion, first

reported in a patient with dystonia, leads to a frameshift mutation

for which a pathogenic role was proposed [32]. However, the

other mutation of the motif – the T3308A transversion –

eliminates the starting codon (methionine) of the ND1 subunit

by converting it to lysine, thus paralleling the scenario first

described for the T3308C transition that marks the African

haplogroup L1b [33]. The finding that the elimination of the

methionine codon AUA at position 1 of the ND1 subunit is

polymorphic in some populations clearly indicates that the

maintenance of that codon is not essential in our species, and

therefore the insertion of one C at 3308 does not cause a

frameshift for the entire gene. This is most likely due to the fact

that the third codon (AUG) of the ND1 subunit also encodes for

methionine, thus despite the shortening of two amino acids, ND1

could still retain its function.

A different case is the one concerning the homoplasmic mutation

T9205C detected in one mtDNA (no. 54) belonging to haplogroup

A2 (Figure 2). This mutation converts the termination codon of the

ATPase 6 subunit into a glutamine codon, and extends the subunit

by ten amino acids (Gln-Trp-Pro-Thr-Asn-His-Met-Pro-Ile-Met) at

the carboxyl-terminus. No information is available concerning the

health/disease status of the subject harboring this mitochondrial

genome. Thus, for the moment it cannot be ruled out that T9205C

is a benign or mildly deleterious variant, despite the considerable

extension of the amino acid chain. Such a scenario would parallel

the situation previously reported for mutations A7443G, G7444A,

and A7745C, which erase the termination codon of the COI

subunit and whose pathogenic role is unclear [34].

Another illustrative case of hypothesized association between

mtDNA mutations and a complex disorder is represented by the

Figure 2. Phylogeny of complete mtDNA sequences belonging to haplogroup A2. The sequencing procedure for the novel complete
sequences and the phylogeny construction were performed as described elsewhere [47]. Recurrent mutational events within the haplogroup are
underlined, while mutations in italics are either disease-causing or heteroplasmic or likely erroneous, and were not used for age calculations. Table S1
lists the source of the complete genomes. For additional information, see the legend for Figure 1.
doi:10.1371/journal.pone.0001764.g002
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G1888A transition which could play some role in the pathogenesis

of Type 2 diabetes [35] – a scenario that would be compatible with

the well-known common-disease/common-polymorphism hypoth-

esis. This transition is characteristic of both A2h and C1c, but is also

present in West Eurasia, mainly in haplogroup T [36], and in South

Asia, mainly on haplogroup M5 [37]. Unfortunately, the study of

[35], similar to the most recent work [38], which again implicitly

targeted haplogroup T, is absolutely insufficient to shield against

population substructure influencing patient cohorts and control

subjects in different ways. Especially in a country such as Brazil,

matrilineal population substructure matters a lot across the country

[39], as well as across social strata, which often correlate with

continental matrilineal ancestry. Case-control association studies

that do not consider the haplogroup context in which observed

mutations are embedded do not allow an objective evaluation of the

role played by mtDNA variants in disease expression either, because

additional variables (such as social strata and ethnicity) may

influence haplogroup frequencies (Text S3) [40].

Discussion

The estimated ages (18–24 ky) of the four pan-American

haplogroups A2, B2, C1, and D1 are quite similar with an

average value of 20 ky. Thus, if A2, B2, C1, and D1 entered the

Americas without variation in the coding region – in other words,

each with only a single (successful) founder sequence (the root

haplotype), their entry into the Americas would have occurred

right after the peak of the Last Glacial Maximum (LGM, centered

at ,21.0 kya and extending from 19.0 to at least 23.0 kya [41]), or

slightly earlier, so that a coastal (Pacific) route would have been the

Figure 3. Phylogeny of complete mtDNA sequences belonging to haplogroups B2 (A), C1 (B) and D1 (C). For additional information, see
the legends for Figures 1 and 2.
doi:10.1371/journal.pone.0001764.g003
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only option during such glacial periods. On the other hand, it is

quite plausible that some intra-haplogroup variation – hardly

noticeable at the level of HVS-I motifs – already existed in

Beringia and was carried directly further south into the American

double-continent. If one assumes that at least the root haplotypes

of A2, B2, D1, as well as of C1b, C1c, and C1d were of Beringian

origin, then the entry time would come slightly down (19.0 kya),

that is, falling exactly at the end of the LGM. Moreover, the

relatively lower coalescence time (,17 ky) of the entire hap-

logroup A2 (Table 1) – including the shared sub-arctic branches

A2b (Siberians and Inuits) and A2a (Siberians, Inuits and Na-

Dené) [5,14,16,18] – is probably due to secondary expansions of

haplogroup A2 from Beringia long after the end of the LGM,

which would have averaged the overall internal variation of

haplogroup A2 in North America – the main source of the A2

mtDNAs in this study.

In any case, all the abovementioned scenarios do not support

the ‘Clovis-first’ hypothesis, but are well in agreement with the

undisputed ages of the earliest Paleoindians in South America

[42]. This conclusion would not change if one adopted the

effectively faster rate of Kivisild et al. [26] based only on

synonymous substitutions, which would generally shrink ages by

a factor of ,3/4, as judged from a comparison with both the ages

of the Native American haplogroups [14] and those of super-

haplogroups L, L3, M, and N [43]. Therefore the main difference

between both rates seems to concern only the absolute calibration

as manifested in the estimated global coalescence times for super-

haplogroup L. It is dubious whether the partial utilization of the

coding-region information [14,26] leads to more credible age

estimates, taking into account the extremely low amount of

synonymous mutation data characterizing younger clades, such as

the Amerindian ones, and the extreme discrepancies with ages

based on control-region variation of some haplogroups such as H,

I, T, and U5 [44]. Moreover, if as suggested [26], the molecular

clock did not apply to the entire coding region, but only to the

synonymous mutations in the 13 genes coding for protein subunits,

it would be rather unlikely that an age overlapping such as that

reported for the well represented founder haplogroups (A2, B2,

D1, C1b, and C1c) in Table 1 would be observed. In any case,

with both clocks, a Beringian stage preceeding the expansion into

the Americas – estimated at slightly different starting times and

with a different duration depending on the clock employed – most

likely took place, thus explaining the differentiation of the pan-

American lineages from the Asian sister-clades (Figure 1).

Our snapshot of the phylogenies for haplogroups A2, B2, C1,

and D1 is only partially representative of Native American

mtDNA variation, since most likely it only marginally includes the

variation of Native American populations from Central and South

America. However, despite this limitation, it is clear that one has

to anticipate a pronounced starlike pattern near the root of each

respective founder haplogroup/branch. The starlike pattern

enhances the precision of the dating of the human entry into the

Americas, but inevitably hinges upon the calibration employed

and, perhaps more importantly, on a detailed founder analysis

across the double-continent. Therefore it will require major

sampling and sequencing efforts in the future for uncovering all of

the most basal variation in the Native American mtDNA

haplogroups by targeting, if possible, both the general mixed

population of national states and autochthonous Native American

groups, especially in Central and South America.

A widespread knowledge of the specifics for the Native

American haplogroups can also prevent the publishing of

effectively mutilated or distorted mtDNA sequences from complete

sequencing efforts in clinical studies [45,46], but most importantly,

the dissection of pan-American haplogroups into clades of younger

age and more limited geographic and ethnic distributions is

essential for reliable association studies between mtDNA hap-

logroups and complex disorders [31].

Materials and Methods

The source of the sequence data (171 complete mtDNA

sequences) employed for the phylogeny construction are listed in

Table S1 (and Text S5), together with 14 novel Native American

Table 1. Haplogroup coalescence time estimates

Haplogroup
No. (n) of
mtDNAsa

No. of base
sub-stitutionsa rb sc

Star-likenessd

r/(ns2) T (years)e DT (years)

A2 96f+1 321+3 3.340 0.322 0.332 17,200 1,700

A2 (w/o A2a, A2b) 86+1 304+3 3.529 0.348 0.335 18,100 1,800

B2 27+16 116+61 4.116 0.463 0.447 21,200 2,400

C1 (w/o C1a) 42+13 198+57 4.636 0.836 0.121 23,800 4,300

C1b 21+4 86+14 4.000 1.150 0.121 20,600 5,900

C1c 15+7 63+23 3.909 0.695 0.368 20,100 3,600

C1d 6+2 13+4 2.125 0.573 0.809 10,900 2,900

D1 17+17 67+56 3.618 0.441 0.547 18,600 2,300

Total g (A2,B2,C1,D1) 172+47 684+177 3.932 0.311 0.186 20,200 1,600

Total g (A2,B2,C1b,C1c,C1d,D1) 172+47 649+161 3.699 0.274 0.225 19,000 1,400

aFirst summand refers to the complete mtDNA sequences displayed in Figures 2 and 3 and second summand refers to additional entire coding-region sequences [1–3].
Three C to G transversions (at positions 14974, 15439, and 15499) [1] – likely candidates for phantom mutations [2] that went undetected – were disregarded.

bThe average number of base substitutions in the mtDNA coding region (between positions 577 and 16023) from the root sequence type.
cStandard error calculated from an estimate of the genealogy [4].
dStarlikeness (‘‘effective star size’’ [4]) can take values between 1/n (single haplotype representing n mtDNAs) and 1 (perfect star phylogeny).
eEstimate of the time to the most recent common ancestor of each cluster, using an evolutionary rate estimate of 1.2660.0861028 base substitutions per nucleotide
per year in the coding region [5], corresponding to 5,140 years per substitution in the whole coding region.

fThis includes one Apache A2a mtDNA (#1 in Table S1) and 9 Siberian mtDNAs (four A2a and five A2b) [6,7].
gWithout A2a and A2b mtDNAs.
doi:10.1371/journal.pone.0001764.t001
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mtDNA sequences (four each belonging to haplogroups A2 and

C1; three each belonging to B2 and D1) from the Dominican

Republic (N = 4), Canada (N = 3) and United States (N = 7). The

latter were completely sequenced as described elsewhere [47].

Additional 47 entire coding-region sequences [20,26] were

employed only for time estimation and inference of branching

nodes (see also Text S4).

The 101 complete mtDNA sequences [19] represent 13 of the

18 most common HVS-I & II haplotypes among the ‘‘Hispanic’’

component of the SWGDAM database [48]. Anonymous,

unrelated samples were identified and obtained from either an

internal Armed Forces DNA Identification Laboratory (AFDIL)

database, or from 575 regional ‘‘Hispanics’’ living in the southern

and northeastern regions of the US. The control region of their

mtDNAs was then sequenced in order to determine the common

HVS-I & II haplotypes [19].
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