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Abstract

Animals use odors as signals for mate, kin, and food recognition, a strategy which appears ubiquitous and successful despite
the high intrinsic variability of naturally-occurring odor quantities. Stimulus generalization, or the ability to decide that two
objects, though readily distinguishable, are similar enough to afford the same consequence [1], could help animals adjust to
variation in odor signals without losing sensitivity to key inter-stimulus differences. The present study was designed to
investigate whether an animal’s ability to generalize learned associations to novel odors can be influenced by the nature of
the associated outcome. We use a classical conditioning paradigm for studying olfactory learning in honeybees [2] to show
that honeybees conditioned on either a fixed- or variable-proportion binary odor mixture generalize learned responses to
novel proportions of the same mixture even when inter-odor differences are substantial. We also show that the resulting
olfactory generalization gradients depend critically on both the nature of the stimulus-reward paradigm and the intrinsic
variability of the conditioned stimulus. The reward dependency we observe must be cognitive rather than perceptual in
nature, and we argue that outcome-dependent generalization is necessary for maintaining sensitivity to inter-odor
differences in complex olfactory scenes.
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Introduction

Natural odors are typically composed of multiple volatile

compounds, each with its own concentration and molecular identity.

Both quantitative and qualitative aspects of odor composition appear,

however, to be subject to a high degree of variability even for odors

emitted from the same source [3,4]. This presents a considerable

challenge to potential receivers of odor signals: how is an animal to

maintain sensitivity to relevant inter-odor differences in spite of such

naturally-occurring heterogeneity in odor composition? Sensitivity to

irrelevant inter-odor differences could make it impossible for an

animal to recognize an odor and respond appropriately. Yet, failing

to discriminate subtle differences amongst odors would be a handicap

if such differences were relevant to the outcomes associated with

odors [5–8]. Since this dilemma is faced by all animals that use odors

as signals, we might reasonably expect a mechanism that supports the

ideal strategy (i.e. the ability to ignore trivial, naturally-occurring odor

fluctuations whilst retaining the capacity to discriminate subtle inter-

odor differences) to be both simple and general.

One candidate for such a mechanism is generalization [1], or the

ability to learn that perceptually distinct olfactory stimuli lead to

common outcomes. If generalization is to support the strategy set out

above, however, it would have to be the case that the extent to which

animals generalize from learned odor associations to encounters with

novel odor stimuli depends itself on the precise nature of the

associated outcome. The experiments reported here were designed

to test this hypothesis by determining whether the ability of

honeybees to generalize from learned odors to novel odors is

affected by changing the nature of the associated outcome. Floral

scents are excellent examples of intrinsically variable natural odors:

substantial variation in the ratios of the concentrations of scent

compounds is observed even for flowers produced by the same plant

[3,9–12]. Honeybees rely heavily on scent as a signal for recognizing

rewarding flowers; they adapt to rapid changes in the availability of

floral resources through learning [13]. They readily discriminate

odors that differ in molecular identity or concentration and can also

discriminate different proportions of two odors in a mixture [14,15].

It is the latter ability that forms the basis of our experiments: making

use of an assay originally developed to study olfactory learning in

honeybees [2], we trained honeybees to learn to associate fixed-

proportion binary odorant mixtures with one of several outcomes,

and then tested to see whether the honeybees’ tendency to generalize

to novel odor proportions was outcome-dependent.

Materials and Methods

Subjects
Worker honeybees (Apis mellifera carnica) were collected and

restrained as described in Wright and Smith (2004) [16]. We used

a total of 230 honeybees in our experiments. Each subject was fed

to satiety (,30 mL) with 1.5 M sucrose and left on the bench at

room temperature for ,24 hours before conditioning. At least

10 min before an experiment, the antenna of each subject was

stimulated with a droplet of sucrose solution to provoke the

proboscis extension reflex; if a subject did not respond by

extending its proboscis, it was not used in the experiments.
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Odor stimuli
The odors used in our experiments were 1-hexanol and 2-

octanone (99.8% purity, Sigma-Aldrich, St. Louis, MO); both of

these odors are found in floral scents, are perceptually quite

distinctive to honeybees [16] and have been used in several

previous investigations of honeybee olfactory learning [16–18].

These odors were mixed as proportions from a stock solution of

2.0 M; the original, neat odorants were diluted in hexane to obtain

the specific molar concentration in solution (as described

previously) [16]. Odors were presented as 4 s stimuli using an

apparatus described in Wright and Smith (2004) [16] at an inter-

trial interval of 5 min.

Odor ratios
To ensure that the inter-odor ratios present in our experimental

stimuli compared reasonably with those present in naturally-

occurring floral odor stimuli, we computed the distribution of the

inter-flower ratios of the inter-odor ratios of every possible pair of

ten odorant compounds sampled from a population of natural

floral odors (data reported in Wright et al., 2005)[12]. The median

of this ratio distribution was found to be roughly 3. Our stimulus

set was prepared such that the proportions of 1-hexanol (ph) in

each mixture were 0.1, 0.3, 0.5, 0.7, and 0.9. Odor pairings for the

differential conditioning paradigms were intended to produce a

modest, ecologically valid offset in ph and to test both ends of the ph

range, so either ph = 0.1 was conditioned with ph = 0.3, or ph = 0.9

with ph = 0.7. We argue that these pairings are ecologically

relevant on the grounds that when these proportions are converted

into ratios, the ratio of the two most similar odor ratios

experienced by the honeybees during differential conditioning is

0.9/0.1 divided by 0.7/0.3, again roughly 3.

Conditioning
Individual worker honeybees were trained using conditioning

techniques described in Bitterman et al. [2]. The relationships

between odor stimuli and outcomes were determined according to

one of three different reinforcement paradigms, as follows. Two of

these paradigms used a differential conditioning technique [2]: in

one paradigm (the + 2 condition), one odor was rewarded with

sucrose and the other was punished with salt, whereas in the second

paradigm (the + + condition) both odors were rewarded with sucrose.

In a third, control paradigm (the + condition) subjects experienced

non-differential conditioning (simple reinforcement): a single odor at

ph = 0.1 or 0.9 was reinforced with the sucrose reward. All subjects

received a total of 12 conditioning trials with an inter-trial interval of

5 min; in the two differential-conditioning paradigms, each subject

received 6 trials with each of the two odor stimuli.

In the (+ 2) paradigm, one odor stimulus was paired with a

sucrose reward and the other odor stimulus was paired with salt

punishment. The rewarded (R) and punished (P) trials were

interleaved in pseudo-random order (e.g. R-P-P-R-P-R-R-P-R-P-

P-R). In the (+ +) paradigm, both odor stimuli were paired with a

sucrose reward and interleaved in the same pseudorandom order.

In the (+) paradigm, subjects received 12 trials with the same odor

rewarded with 1.5 M sucrose on each trial.

For sugar-rewarded conditioning trials, the odor stimulus was

presented approximately 3 s before the delivery of a droplet of

sucrose to the antenna to initiate proboscis extension; when the

proboscis was extended, a 0.4 ml droplet of 1.5 M sucrose was

delivered using a Gilmont micrometer syringe. Subjects were

considered to have learned to associate odor with reward when

they extended the proboscis in the presence of odor alone. Salt-

punished conditioning trials were similar in all ways except that

1.5 M salt solution was administered to the antenna only. The

testing phase, which began ten minutes after each of the

conditioning paradigms, also had an inter-trial interval of 5 min;

each subject received a single, unreinforced trial with each of the

five different odor stimuli such that the order of presentation of the

odors was randomized across subjects.

Data pooling
Response probabilities were calculated by averaging the binary

responses over all subjects for each stimulus value of the test odors.

We balanced the design of the experiment such that one group of

individuals were conditioned with odor stimuli at the ph = 0.1–0.3

end of the range of ratios and another group were conditioned

with odor stimuli at the ph = 0.7–0.9 end of the range (Table 1) for

each of the conditioning paradigms. When we compared groups

conditioned at both ends of the range, we observed that the slope

of the generalization gradient did not depend upon which group of

odors were used as conditioned stimuli. This was true for all three

conditioning paradigms ((+): x4
2 = 0.35, P = 0.986; (+ +): x4

2 = 1.0,

P = 0.318; (+ 2): x4
2 = 0.15, P = 0.699) and meant that it was

possible to pool the data for both groups for each conditioning

paradigm. The data reported in the results section, therefore, are

these pooled data; since some subjects will have been conditioned

with low-ph stimuli and others with high-ph stimuli, results are

reported as a function of Dph, the absolute difference in ph between

the test odors and the respective CS (i.e. either ph = 0.1 or 0.9). At

least two different conditioning paradigms (e.g. the + + paradigm)

were employed on any particular day in an attempt to distribute

any day-to-day variation in the responses of individual subjects

across all of the experimental treatments.

Data analyses
Both binary logistic regression and signal-detection theory were

used to analyse response probabilities. Since both these techniques

can be ‘‘contaminated’’ by inattention to the task at hand (for

example, when the subject guesses the answer), the naive

linearization-transformations they employ are inappropriate; to

address this, we used the methodology detailed in Heinemann et

al. [19] to obtain estimates of the guess rate and thereby correct

the response probabilities prior to performing the analyses.

Table 1. Description of the odors used as conditioned stimuli (CS) in each different conditioning paradigm.

CS (+) N CS (+ +) N CS (+ 2) N

Group 1 CS(+): ph = 0.1 33 CS(+): ph = 0.1 and CS(+): ph = 0.3 41 CS(+): ph = 0.1 and CS(2): ph = 0.3 27

Group 2 CS(+): ph = 0.9 27 CS(+): ph = 0.9 and CS(+): ph = 0.7 47 CS(+): ph = 0.9 and CS(2): ph = 0.7 42

Footnotes: The ph refers to the proportion of 1-hexanol present in a binary mixture of 1-hexanol and 2-octanone. The (+) represents a paradigm where a honeybee
received conditioning with only one odor in association with 1.5M sucrose reward. The (+ +) paradigm represents conditioning with two odors, each associated with
1.5M sucrose. The (+ 2) paradigm represents conditioning with two odors where one is associated with 1.5M sucrose and the other is associated with 1.5M salt.
doi:10.1371/journal.pone.0001704.t001
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For the case of the logistic regression analyses, differences in the

regression-model gradients reflect differences in the slope of the

psychometric function (i.e. sensitivity) and are interpreted here as

changes in generalization gradient; differences in the regression-

model abscissa reflect lateral shifts in the psychometric function

(i.e. bias) [20]. Dunnett’s post-hoc multiple comparisons tests were

used to compare novel-odor responses to conditioned-odor

responses for each conditioning paradigm.

Our application of signal-detection theory (SDT) to these data

involved treating response probabilities as performance in a ‘same-

different’ discrimination task. Signal-detection theory is attractive

because it provides an independent measure of sensitivity and bias

in psychophysical data. This distinction is important here because

it is sensitivity shifts that are diagnostic of changes in generalization

gradient (for more information see Blough, 2001) [21]. The

application of SDT to the current work assumes that the subjects

in our experiments decide during the testing phase whether a

stimulus is ‘‘same’’ or ‘‘different’’ to a previously experienced

stimulus. SDT asserts that an observer decides between these two

hypotheses by comparing the stimulus pair and forming different

likelihood estimates under the ‘‘same’’ and ‘‘different’’ hypotheses.

Under the assumption that these two hypotheses are represented

in the relevant decision space by multivariate Gaussian probability

density functions of equal variance, the raw hit rates and the false-

alarm rates can be linearized by application of the inverse,

cumulative Gaussian transform; their difference after linearization

is the discrimination index, or d’, of signal-detection theory. The

value of d’ is thus effectively a summary statistic of observer

sensitivity, and thresholds can be estimated by specifying a

criterion level of d’ (a value of 1.0, common in the literature, was

used here). Moreover, provided that the hit rate and the false

alarm rate are binomially distributed across the trials, it is possible

to estimate the variance of the linearized scores and hence of the d’

itself using a bootstrapping method [22]. We employed this

technique to estimate the standard deviation of the d’ data.

Results

The data presented in Figure 1 show that the honeybees’ patterns

of response to the test odors depended clearly on the conditioning

paradigm. Pairwise comparisons of the slopes of the generalization

gradients for each type of conditioning (+ vs. ++, + vs. + 2, and ++
vs. + 2) show that all three gradients are significantly different (see

Methods; Z = 2.8,23.5,24.6; all P,0.05). The (+ 2) condition, in

which odors with a Dph = 0.2 are differentially reinforced, is

additionally associated with a significant negative bias relative to

the generalization gradients produced by the other two training

conditions (+ and ++) (Z = 25.1,210.0; P,0.05).

Within each condition, we also performed post hoc multiple

comparisons of the responses to the CS (+) (Dph = 0.0) versus the

responses to each of the novel test odours. For the (+ 2) condition,

the probability that a honeybee would respond to positively-

reinforced CS (Dph = 0.0) was always greater than the response to

all other test odor ratios (including the negatively-reinforced CS)

(see Methods; Z = 23.5 to 26.7; all P,0.05). With the exception

of the closest stimulus pair (Dph = 0.0 versus Dph = 0.2), this was

also true for the (+) condition (Z = 22.5 to 25.4; P,0.05). Finally,

the corresponding tests conducted for the (++) condition were

never significantly different (Z, = 20.001, P,1.0)).

Applying signal-detection theory to these data (see Methods)

yielded an estimated discrimination threshold of Dph,0.3 for the

(+ 2) condition. The less selective behavior of the honeybee in the

other conditions is thus consistent with the definition of

generalization–the bees associate perceptually distinct stimuli with a

common outcome– and, in accordance with previous studies of

generalization [1,16], we interpret the statistically significant changes

in slope as changes in generalization gradient. These are cognitive

changes arising from differences in outcome [1,17] and they have a

profound effect on the honeybees’ discrimination performance. The

same application of signal-detection theory also indicates that the

maximum possible shift in discrimination index d9 across conditions

(++ v. + 2) is similar to that across Dph values (0.2 v. 0.8), and that

the change from (++) to (+ 2) conditions roughly halves the

honeybee’s threshold (from Dph = 0.6 to 0.3) (Figure 2). Though these

changes in generalization gradient are clearly outcome-mediated,

they are also affected by the intrinsic variability of the conditioned

stimulus, as one might expect: the change in gradient from the

control to the (+ 2) condition is not the same as that from the (+ +)

condition to the (+ 2) condition, despite the fact that conditioning

stimuli were always rewarded for both the (+ +) and control

paradigms. This may indicate that honeybees can effectively de-tune

their sensitivity to the ratio of two odors in a mixture in situations

where highly variable odors lead to a common outcome.

Discussion

Our results imply that the honeybee has the ability to modulate

its perceptual sensitivities via an outcome-mediated cognitive

mechanism, since the outcome associated with a binary odor

mixture strongly affected a honeybee’s sensitivity to differences in

the ratio of two odors. Honeybees thus have the ability to use

precise information about the ratio of two odorants in a mixture in

order to identify a rewarding stimulus and to discriminate it from a

Figure 1. Honeybees’ responses to the test odors depended
upon conditioning paradigm. The filled circles represent the mean
response probabilities to the test odors; the error bars indicate the
standard errors predicted by a binomial response distribution. The
control condition (black circles) represented a situation where
honeybees received conditioning with one odor (the Dph = 0.0) in
association with sucrose reward (N = 60). The red line represents the (+
+) condition in which a honeybee was conditioned with two odors
(Dph = 0.0 and Dph = 0.2) both in association with sucrose reward
(N = 98). The green line represents the (+ 2) condition in which a
honeybee was conditioned with the same two odors, but Dph = 0.0 was
associated with sucrose and Dph = 0.2 was associated with salt
punishment (N = 69).
doi:10.1371/journal.pone.0001704.g001
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punishment-associated stimulus having a different ratio of the

same two odorants. Alternatively, if two stimuli differing in odor

ratios both lead to a rewarding outcome, honeybees can learn to

ignore information about the ratio of the two odorants and

thereafter respond to all mixtures of the same two odorants with

equal probability.

Although our stimuli were considerably less complex than most

natural odors, the experiments described here were designed such

that the odorant types, odor proportions, and inter-proportion

ranges used in this study are broadly concordant with data

reported from headspace analyses of floral scents (see Methods).

We would, therefore, contend that our experiments reflect an

ecologically valid task, and predict that the ability to generalize is

the means by which pollinators, and possibly other animals, are

able to discount irrelevant temporal or spatial odor fluctuations in

order to exploit more informative odor features.

The reliance on a cognitive mechanism to solve this problem

may reflect the difficulties associated with the encoding of olfactory

stimuli. Not only are there many different types of olfactory

receptor involved in processing a complex olfactory scene [25], but

absolute olfactory stimulus concentration also appears to contrib-

ute much more to stimulus identity than do absolute stimulus

levels (e.g. luminance) in other sensory modalities [11,16–18]. If

odor representations do not remain invariant as a function of

stimulus concentration, then changing the absolute quantities of

the two odorants in a binary mixture might also change the

perceptual qualities of the mixtures, and even where such

perceptual changes are minor, they could still make it difficult to

recognize an odor stimulus based on the molecular identities of the

two odorants alone. For efficient olfactory coding to occur,

invertebrates like the honeybee must implicitly not only be able to

solve these problems but do so in a sensory system that lacks the

remarkable functional specialization of, for example, the human

neocortex. Even if it was possible for the olfactory system to extract

information about an odor’s molecular identity and concentration

independently [26,27], it might be too expensive computationally

for such animals to do this over the entirety of their chemorecep-

tive range by means of hard-wired neural mechanisms. It may be

necessary instead for at least some of the encoding strategies

operated in other modalities by means of low-level physiological

mechanisms (lateral inhibition in many visual systems, for

example, maximises the stimulus signal-to-noise ratio in the face

of high-amplitude stimulus fluctuations; see, e.g., Srinivasan et al.,

1982) [28] to be instantiated in olfaction through a cognitive

process such as generalization. Thus, in a situation where

quantitative concentration fluctuations produce salient differences

in qualitative properties of an odor stimulus [18], generalization

could provide the means of adapting to such variation.

These arguments lead us to suggest that olfactory generalization is

not merely a means of classifying similar, though perceptually

distinct, stimuli (as is often concluded from studies in other sensory

modalities [1,23]); rather a mechanism used by animals to adjust

their sensitivity to differences in complex olfactory stimuli in a

context-dependent manner. We think it may be particularly

important for animals like pollinators to deal directly with context-

dependent stimulus variability because optimal odor-processing

strategies must surely take direct account of the nature of the odor-

outcome relationships. Honeybees, in particular, would be afforded

a substantial fitness advantage: both the floral odor signals and food

rewards’ quality and quantity are highly variable, so the ability to

modulate sensitivity to specific features in floral odors in accordance

with reward quality could improve a foraging worker’s efficiency for

obtaining floral rewards. In situations where variability in odors was

inconsequential, honeybees would be able to rapidly exploit all floral

sources available, yet bees would still be able to perform subtle

discriminations in situations when inter-odor differences signal

significant differences in the quality of food rewards.

This strategy itself may exert selective pressure on plant-

pollinator interactions, which in turn increases the complexity of

the signal-outcome space. While the development of ‘‘cognition’’

in invertebrate pollinators is likely to have resulted from the co-

evolution of complexity in and diversity of floral signals and the

quality of floral rewards [29–31], co-evolution has also produced

insect pollinators with the ability to use odor signals in a way that is

more plastic than one afforded by an instinctual response.

Cognitive generalization mechanisms for odor recognition afford

animals the ability to avoid dishonest odor emitters–a feat largely

unavailable to animals that have instinctual behavioural responses

to odors. For example, male solitarious bees that are susceptible to

certain sexually-deceptive orchids (e.g. Andrena negroaena and Ophrys

sphegodes) can learn to avoid a specific ratio of pheromone

compounds but do not appear to generalize this knowledge to

other ratios of the same compounds, and so are deceived even

when a flower that is located on the same inflorescence of a flower

they have already visited emits different ratios of the same

compounds [9]. It is likely that the fluctuation in the ratios of the

‘‘behaviourally active’’ pheromone compounds [32] is deliberately

maintained in populations of these orchids in order to render the

male bees incapable of avoiding other conspecific orchids [9].

Indeed, it is even possible that the evolution of deceptive odor

signals has taken advantage of situations where instinctive

responses to odor signals limit an animal’s ability to detect and

avoid deceivers. Animals that can maintain sensitivity to key odor-

outcome relationships by learning to tune odor generalization

according to outcome are at a distinct advantage at detecting

potential infiltrators of olfactory signals.

Figure 2. Generalization gradients for honeybees as predicted
from the logistic regression models fit to the data from
Figure 1. Generalization gradients for the honeybee and their relative
discrimination thresholds were generated by evaluating the models
fitted by the logistic regressions and extrapolating them over a wider
range of Dph values than could be used in the experiments. The dotted
lines show d9 thresholds (see Methods) calculated for the three
conditions using signal-detection theory; the horizontal bars visible at
the extrema show standard deviations on these thresholds.
doi:10.1371/journal.pone.0001704.g002
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