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Abstract

VILIP-1, a member of the neuronal Ca++ sensor protein family, acts as a tumor suppressor gene in an experimental animal
model by inhibiting cell proliferation, adhesion and invasiveness of squamous cell carcinoma cells. Western Blot analysis of
human tumor cells showed that VILIP-1 expression was undetectable in several types of human tumor cells, including 11 out
of 12 non-small cell lung carcinoma (NSCLC) cell lines. The down-regulation of VILIP-1 was due to loss of VILIP-1 mRNA
transcripts. Rearrangements, large gene deletions or mutations were not found. Hypermethylation of the VILIP-1 promoter
played an important role in gene silencing. In most VILIP-1-silent cells the VILIP-1 promoter was methylated. In vitro
methylation of the VILIP-1 promoter reduced its activity in a promoter-reporter assay. Transcriptional activity of endogenous
VILIP-1 promoter was recovered by treatment with 59-aza-29-deoxycytidine (59-Aza-dC). Trichostatin A (TSA), a histone
deacetylase inhibitor, potently induced VILIP-1 expression, indicating that histone deacetylation is an additional mechanism
of VILIP-1 silencing. TSA increased histone H3 and H4 acetylation in the region of the VILIP-1 promoter. Furthermore,
statistical analysis of expression and promoter methylation (n = 150 primary NSCLC samples) showed a significant
relationship between promoter methylation and protein expression downregulation as well as between survival and
decreased or absent VILIP-1 expression in lung cancer tissues (p,0.0001). VILIP-1 expression is silenced by promoter
hypermethylation and histone deacetylation in aggressive NSCLC cell lines and primary tumors and its clinical evaluation
could have a role as a predictor of short-term survival in lung cancer patients.
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Introduction

Visinin-like protein-1 (VILIP-1), a member of the visinin-

recoverin neuronal calcium-sensor protein family, has an impor-

tant role in regulating cAMP levels, cell signaling and differenti-

ation in central nervous system. VILIP-1 has been implicated in

pathological processes of the nervous system such as Alzheimer’s

disease and Schizophrenia [1,2]. Our group identified VILIP-1 to

be differentially expressed in chemically-induced murine skin

cancer cells of high and low invasive ability by differential display,

indicating a new function of VILIP-1 in cancer [3,4]. VILIP-1 was

expressed in normal basal epidermal keratinocytes, while its

expression was markedly decreased or undetectable in aggressive

and invasive squamous cell carcinoma (SCC). Conversely, less

aggressive SCCs showed expression of VILIP-1 protein. Ectopic

overexpression of VILIP-1 resulted in a cAMP-mediated decrease

of in vivo and in vitro growth and invasiveness of SCC cells [3].

Reduced invasiveness and elevated cAMP levels were accompa-

nied by decreased MMP-9 as well as lowered RhoA activity [4].

Furthermore, enforced expression of VILIP-1 led to inhibition of

cell adhesion and migration by down-regulating fibronectin

receptors, suggestive of a tumor suppressor function for VILIP-1

[4]. Interestingly, a similar tumor suppressor role for VILIP-1 has

been reported recently in two other tumor cell types. Wickborn et

al [5] found that VILIP-1 expression was completely lost or

significantly reduced in esophageal SCC compared with normal

squamous epithelium of the same site. Lower VILIP-1 protein

expression was correlated with clinical-pathological features

including deeper tumor invasion and increased local lymph node

metastases. In another study [6], xenotransplanted neuroblastoma

cells in which the expression of the pro-tumorigenic gene MIF was

suppressed by antisense oligonucleotides a significant reduction in

tumor growth together with VILIP-1 upregulation was observed,

suggesting that VILIP-1 loss is associated with tumor development.

Lung cancer, the leading cause of cancer-related death in the

world, is known to result from tobacco carcinogen-induced

abnormalities in several critical genes. Genetic approaches have

identified a number of oncogenes and tumor suppressor genes
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gained or lost in human lung cancers [7]. Recently, epigenetic

mechanisms, such as DNA methylation and histone modification,

have been identified as contributors to the disease phenotype [8].

Since VILIP-1 is involved in the progression of polycyclic aromatic

hydrocarbon-induced experimental skin SCCs, we decided to

determine whether genetic and epigenetic changes of this gene in

tobacco-associated human non-small cell lung carcinomas

(NSCLC) would lead to protein expression alterations and whether

these changes could affect clinical outcome.

Materials and Methods

Cell lines
Non-small cell lung cancer cell lines (NSCLC) A549, NCI-H522,

NCI-H460, NCI-H226, NCI-H520, NCI-H23, Calu1, Calu6 were

obtained from American Type Culture Collections (Manassas, VA).

HOP62, EKOX, NCI-H322 and HOP92 cells were provided by the

Fox Chase Cancer Center Cell Culture Facility and cell lysates of

NCI-60 panel of tumor cells were obtained from the Translational

Research Facility. A549, NCI-H522, NCI-H460, NCI-H226 were

cultured in RPMI 1640 supplemented with 10% fetal bovine serum,

2 mM L-glutamine, penicillin (100 IU/ml) and streptomycin

(100 mg/ml). NCI-H520 was cultured with RPMI 1640 medium

containing 1.5 g/L sodium bicarbonate, 4.5 g/L glucose, 10 mM

HEPES, 1.0 mM sodium pyruvate, 2 mM L-glutamine and 10%

fetal bovine serum. Calu1 and Calu6 were cultured with McCoy’s 5a

medium with 1.5 mM L-glutamine and 10% fetal bovine serum.

Primary cultures of normal human bronchial epithelial cell (NHBE)

derived from 2 different donor sources (NHBE1 and NHBE2) were

obtained from Cambrex (Baltimore, MD) and cultured with a

BEGM Bullet kit. All cells were cultured at 37uC in a humid

incubator with 5% CO2.

Western blot and Northern blot analyses
Cellular protein and RNA were extracted and analyzed as

before [3]. VILIP-1 Western analysis of NCI-60 panel of tumor

cells was performed with 25 mg of cell lysate. In all other VILIP-1

Western analyses, 40 mg of cell lysate were used. VILIP-1 protein

was detected by blotting with rabbit anti-VILIP1 antibody using a

1:3000 dilution of the original stock. VILIP-1 full-length cDNA

was used as probe in Northern blot analysis.

Mutation analysis by direct sequencing
Exon fragments of VILIP-1 containing exon and exon-intron

junctions were amplified with the primers listed in supplemental

Table S1 from cellular genomic DNA and sequenced with the

same sets of primers by the Automated DNA Sequencing Facility

at Fox Chase Cancer Center. VILIP-1 promoter was amplified

from the genomic DNA using VPFkpn and VPRbgl primers and

sequenced with VP2Kb primers (Supplemental Table S1).

In vitro methylation of VILIP-1 promoter and reporter
gene assay

The VILIP-1 promoter was amplified from the genomic DNA of

NHBE cells with VP2kb cloning primers as listed in Table S1 and

ligated to pGL4.10[luc2] vector (Promega, Madison, WI). In vitro

methylation of luciferase reporter plasmid was performed as

described [9]. The promoter fragment was excised out of 20 mg

pGL4.10VP2kb by digestion with the restriction enzymes BglII

and KpnI (New England Biolabs, Bevelry, MA) and gel purified by

QIAquick Gel Extraction kit (QIAGENGmbH, Hilden, Ger-

many). Half of the purified promoter fragment was methylated

with M. SssI DNA methylase (New England Biolabs, Bevelry, MA)

and the other half was incubated in the absence of enzyme as

mock methylation. Methylated and mock-methylated fragments

were relegated into the vector from which they had been excised.

Cells were transfected by Lipofectamine 2000 (Invitrogen,

Carlsbad, CA) using the manufacturer’s protocol. Briefly, DNA

mixture containing methylated or mock-methylated DNA and 8 ng

of pGL4.73, a transfection efficiency control, was diluted in 50 ml of

Opti-Mem I medium and mixed with 50 ml of diluted Lipofectamine

2000. 100 ml of DNA-Lipofectamine 2000 complexes were added to

each well after 20 min incubation at room temperature and cells

were left in the incubator for 24 hr before lysis. Reporter gene

activity was measured according to Dual-luciferase reporter 1000

assay system kit (Promega, Madison, WI) by using the luminometer

Sirius FB15 (Zylux Corporation, Oak Ridge, TN).

Bisulfite modification of DNA, methylation-specific PCR
(MSP) and bisulfite sequencing

Genomic DNA (1mg) was modified with sodium bisulfite as

previously described [10,11]. Bisulfite modification of DNA results

in the conversion of unmethylated cytosines to uracils, whereas

methylated cytosines are resistant to modification and remain as

cytosines [12].

MSP was performed as follows: PCR reactions comprised 2 ml of

sodium bisulfite treated DNA, 0.2 mM of dNTPs, 0.2 mM of forward

and reverse primers each, 16reaction buffer, 0.2 mM of MgCl2 and

5 units of Ampli Taq Gold DNA polymerase (Applied Biosystems,

Foster city, CA). Methylation and non-methylation specific primers

(Table S1) were used to uncover the methylation status of sodium

bisulfite modified DNA. PCR program for methylation-specific

primers: 95uC for 5 min for the first cycle, followed by 95uC for

35 sec, 57uC for 45 sec, and 72uC for 40 sec (40 cycles), and 72uC for

10 min. Except for the use of 60uC as the annealing temperature, the

PCR program for nonmethylation-specific primers was the same.

The PCR products were visualized on 2.5% agarose gels.

Bisulfite sequencing of 20 CpG sites on the second CpG island of

VILIP-1 promoter was done by PCR amplification of 2

overlapping fragments, the first of which (named 2ori) covered

the first 3 CpGs and the second (named 3ori) covered the other 17

CpGs. PCR reaction was performed with the same condition as

MSP (except for annealing that was performed at 55uC). The PCR

products were ligated into pCR4-TOPO using the TOPO TA

cloning system (Invitrogen, Carlsbad, CA) and transformed into

bacteria TOPO10. Plasmid DNA was isolated using the Miniprep

kit (QIAGENGmbH, Hilden, Germany). Six to 8 clones were

sequenced for each sample.

59-Aza-dC and TSA treatment of cells
59-aza-29-deoxycytidine (59-Aza-dC) and trichostatin A (TSA)

were purchased from Sigma-Aldrich (St. Louis, MO) and dissolved

in DMSO as stock solution. Cells were seeded at low density one

day before 59-Aza-dC treatment and treated for 5 days continu-

ously at concentrations ranging from 0.001 to 1 mM. Medium

containing 59-Aza-dC or DMSO vehicle control was changed

every 24 hours. For TSA treatment, cells were plated at 50–70%

confluence and incubated for one day followed by treatment with

TSA for 20 hours before harvesting cells.

Chromatin immunoprecipitation assay
Chromatin immunoprecipitation (CHIP) [13] was performed

using the Acetyl-Histone H3/H4 Immunoprecipitation assay kit

(Upstate Biotechnology, Lake Placid, NY) following the manufac-

turer’s protocol. Briefly, after 20-hour treatment with TSA, histones

were cross-linked to DNA by incubating cells with 1% formaldehyde

for 10 min. Cell pellets were resuspended in 200 ml of SDS lysis

VILIP-1 in Lung Cancer
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buffer followed by DNA sonication for a total of 16 times (each time

for 20s at 30% of maximal power) by using Sonic Dismembrator 550

(Fisher Scientific, Pittsburgh, PA). Approximately pproximately 1%

of the lysate was used as input and immunocomplexes were captured

from the rest of lysates with 10 ml anti-acetyl histone H3 or H4

antibody. After the cross-linking was reversed by heating the sample

at 65uC for 4 h, DNA was extracted with phenol/chloroform and

precipitated with ethanol. PCR reactions were performed by using

1% of immunoprecipitated material and the ChIP primers Table

S1). The following PCR program was used: 95uC for 5 min followed

by 35 cycles of 95uC for 35 s, 54uC for 45s and 72uC for 40s, and

finally 72uC for 10 min.

Tissues and tissue microarrays (TMA)
Frozen and paraffin embedded tissues from the Department of

Pahology at Fox Chase Cancer Center were used for MSP and

immunohistochemistry (IHC). Informed consent was obtained

from the patients for tissue procurement prior to accrual and their

medical records and databases were maintained according to

institutional guidelines and in conformance with HIPPA regula-

tions. The overall survival data on all patients were censored on

the date of the last follow-up visit or death from causes other than

lung cancer. All patient information was derived from a de-

identified database approved by the FCCC Institutional Review

Board. A total of 10 normal lungs, 10 lung adenocarcinomas and

69 SCCs were analyzed. In addition to these samples, TMAs

containing additional cases of NSCLC were used to evaluate

VILIP-1 expression by IHC. To construct the TMAs, small core

biopsies were taken from representative areas of the donor

paraffin-embedded lung cancer blocks and assembled onto a 3–

4 mm thick paraffin recipient block. This was done with a tissue

arrayer (Beecher Instruments, Silver Spring, MD, USA) Two

1mm diameter cores from the same tumor were arranged side by

side onto the recipient block to minimize any heterogeneity during

the acquisition of the samples with the arrayer. In addition, normal

tissue blocks from liver, kidney, colon, lung, etc were placed in all

peripheral columns and rows. This diminishes any eventual border

artifact during immunohistochemistry and also serves as topolog-

ical markings to help orient the user. The TMAs contained 64

cores from 43 different squamous cell carcinomas and 132 cores

from 65 different adenocarcinomas of the lung. Five micrometer

thick sections were obtained with a standard rotary microtome and

one section was stained with hematoxylin-eosin to corroborate the

histopathological characteristics of the core specimens.

Immunohistochemistry and MSP analysis
VILIP-1 immunohistochemistry of tumors and normal lung

tissues was performed using sections obtained from the TMAs and

from conventional paraffin blocks. VILIP-1 was detected using a

rabbit polyclonal antibody as described previously [3].

The immunostain was evaluated semiquantitatively using a

modified Allred scoring scale [14] that takes into consideration the

intensity of the immunostain on a scale of 0–3+, with 0

representing no detectable stain, 1+ minimal stain, 2+ moderate

stain, and 3+ representing intense stain. In addition the percent

area stained is also added to the intensity scale using indices from 0

to 5, 0 representing no area stained, 1 representing 0–1% stained

area, 2: 1–10%, 3: 10–33%, 4: 33–66% and 5: more than 66% of

the area stained. Both intensity and area indices are added

resulting in a total scale ranging from 0 to 8. As positive and

negative control tissues we used paraffin sections of xenografted

lung carcinoma cell lines (NCI-H520 and Calu 1) that were grown

in Scid mice for 6 weeks, fixed in buffered formaldehyde and

embedded in paraffin.

Genomic DNA was extracted from frozen tissues using

QIAamp DNA Mini Kit (QIAGENGmbH, Hilden, Germany)

and subjected to bisulfite modification and MSP analysis as

described above.

Statistical Analysis
For the evaluation of VILIP-1 immunostaining in tumors,

individual tumors were scored in two TMA cores. Eighty-one of

the 108 cases in the TMAs had complete clinical annotation and/

or follow-up and were used for statistical test involving clinical

staging and survival. Two-sample Wilcoxon tests were used to test

for differences in the distribution of VILIP1 values across

subgroups (i.e., histology (SCC vs. adeno), high-stage (stages 1

and 2) vs. lower stage (stages 3 and 4), and low grade (grades 1 and

2) vs. high grade (grades 3 and 4)). In order to evaluate disease-free

survival and overall survival we used Kaplan Meir curves [15]. A

plot of the Kaplan-Meier type estimates the survival function in a

series of horizontal steps of declining magnitude which, when the

sample is large enough, approaches the true survival function for

that population. Cox proportional hazards models were used to

assess the significance of the relationship between survival time

and VILIP1 alone, and VILIP1 after adjusting for stage, grade and

histology. Survival time was defined as the time from surgery to

death, or date of last follow-up. Individuals who were alive at last

contact were censored for these analyses. All tests were two-sided

with a 5% type I error.

The two-sample Wilcoxon procedure was used to test for

differences in VILIP1 in patients who lived less then 2 years as

compared to long term survivors ($5 years). A chi-square test was

used to assess the significance of the association between a

dichotomized measure of VILIP1 and presence of VILIP-1

promoter methylation in lung SCCs.

Results

VILIP-1 expression is lost in many human humor cell lines
In order to gain a broad view of VILIP-1 expression patterns in

human cancer, we analyzed the NCI-60 panel of cancer cell lysates

by Western blot analysis. Except for a few tumor cell lines from

central nervous system and colon, VILIP-1 protein was commonly

absent in human cancer cell lines, including those derived from

prostate, lung, ovarian and renal tumors as well as those from

melanoma and leukemia (Figure 1). We focused on lung-derived cells

to further examine VILIP-1 protein expression in normal human

bronchial epithelial cells (NHBE) and a total of 12 non-small cell

lung cancer (NCSLC) cell lines (Figure 2A). Most NSCLC cell lines

(11 out of 12) showed low or no VILIP-1 expression. Conversely,

VILIP-1 was significantly expressed in NHBE cells. Only one lung

cancer cell line, NCI-H520, expressed VILIP-1 protein. To

investigate whether VILIP-1 protein down-regulation was caused

by silencing of transcription, we performed Northern Blot analysis

using total RNA extracted from cells. A single band of 1.6 kb

representing the VILIP-1 mRNA was identified in NCI-H520 and

NHBE cells only, indicating that absence of VILIP-1 RNA transcript

led to loss of protein (Figure 2B). Four tumorigenic cell lines (NCI-

H520, Calu 1, Calu 6 and A549) were grown in vivo as subcutaneous

xenografts in Scid mice. Immunohistochemistry of xenografts

showed that only NCI-H520-derived tumors exhibited positive

VILIP-1 expression (Figure 2C), whereas the other cell line-derived

tumors showed no immunostain (Figure 2 D–F).

Absence of VILIP-1 gene mutations
Both abnormal genetic and epigenetic events are responsible for

development of cancer [7,8]. We first investigated whether genetic

VILIP-1 in Lung Cancer
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alterations caused VILIP-1 silencing by analyzing the VILIP-1

gene organization at the genomic DNA level. Southern blot

hybridization revealed no truncation, gross deletion or reorgani-

zation of the VILIP-1 gene at the genomic DNA level in VILIP-1

silent cell lines as compared to NCI-H520 and NHBE that

expressed VILIP-1 (data not shown). VILIP-1 is encoded by 4

exons, of which exons 2, 3, and the 59-terminus of exon 4 contain

the coding sequences. To exclude the possibility that nonsense

mutations lead to early transcription termination or frameshift

mutation resulting in shorter transcripts, we sequenced exons 1, 2,

3, the coding sequence of exon 4 and the exon-intron junctions

(Supplemental Table S2). Except for a polymorphism (G to A)

detected at the junction between the second exon and intron

of NHBE, A549 and Calu1 cell lines, mutations were not found

in the VILIP-1 expressing and non-expressing cell lines.

Neither deletions nor mutations were found in the 4 exon-intron

junctions.

We also explored the possibility that mutations in the VILIP-1

promoter could lead to aberrant promoter activity thus contrib-

uting to downregulation of the VILIP-1 gene in lung cancer cells. A

sequence of approximately 2 kb upstream of the first VILIP-1 exon

was identified as the potential promoter using the FirstEF (First

Exon Finder) [16], Promoter scan [17] and Promoter 2.0 [18]

programs. By aligning the human proximal 2-kb sequence with

those of mouse and rat using the phastCons program [19], we

found strong homology among these species, further indicating

that this 2 kb sequence is conserved in different species and most

likely corresponds to the human VILIP-1 promoter. Due to the

lack of a canonical TATA box, the VILIP-1 promoter is numbered

relative to the start of the first exon. Comparison of the 2 kb

promoter sequences obtained from cell lines with that from

database showed five polymorphisms at positions 21766, 21449,

21047, 2893 and 2324 (Table S2). However, these polymor-

phisms did not correlate with VILIP-1 expression levels. For

Figure 1. Western analysis of VILIP-1 expression patterns in the NCI-60 panel of tumor cell lines. Note that except for a few tumor cell
lines from colon and nervous system, the tumor cell lines did not express VILIP-1.
doi:10.1371/journal.pone.0001698.g001
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example, polymorphisms at 21766 and 2324 were observed in

VILIP-1 expressing NCI-H520 cells and they were also detected in

NCI-H522 and A549 cells in which VILIP-1 was silenced.

In vitro methylation represses VILIP-1 promoter activity
Hypermethylation in CpG-rich promoters is strongly associated

with transcriptional silencing [20]. In many types of cancer, a

number of tumor suppressor genes are inactivated by promoter

hypermethylation of CpG islands. Using the criteria formulated by

Gardiner-Garden et al. [21], two VILIP-1 promoter segments were

identified to fulfill the strict definition of a CpG island, i.e. a 200-bp

or greater stretch of DNA with a C/G content of .50% and an

observed CpG/expected CpG ratio in excess of 0.6. The first 262-bp

and second 434-bp regions (hereafter referred to as first and second

CpG islands.) showed a CpG percentage of 68.3% and 63.4%

respectively, and an observed/expected CpG ratio of 1.15 and 0.78

respectively. In order to determine whether the VILIP-1 promoter

activity is regulated by CpG methylation, we measured VILIP-1

promoter activity under methylation and non-methylation condi-

tions. To assay the effect of methylation on the promoter alone, we

separately methylated the promoter fragment with M. SssI

methylase, religated this fragment into the unmethylated plasmid,

and transfected NCI-H520 cells and NCI-H522 cells with this

construct. The methylation of VILIP-1 promoter almost completely

abrogated its activity (reduced from 100% to 10.4% for NCI-H520

and to 11.4% for NCI-H522), demonstrating that promoter

methylation is sufficient for VILIP-1 silencing (Figure 2G).

Hypermethylation of VILIP-1 promoter results in
abrogation of VILIP-1 expression

To define the methylation status of VILIP-1 promoter, we

designed a pair of methylation-specific primers and non-

methylation-specific primers targeting 6 of the 20 CpG sites on

the second CpG island for MSP (Figure 3A). The sequence of

forward and reverse methylation-specific primers covered the

CpGs 1 and 2 and CpGs 15-18, respectively. No methylation was

detected in the promoter of normal primary cultures expressing

VILIP-1 protein (NHBE1 and NHBE2). The promoter of the

VILIP-1 expressing lung cancer cell line NCI-H520, was found to

be minimally methylated by bisulfite sequencing (1 clone out of

eight was found to be methylated) (Figure 3B and 3C). Conversely,

the remaining NSCLC cells (A549, NCI-H460, NCI-H226,

HOP62 and HOP92) displayed hypermethylation of the VILIP-1

promoter. Very weak methylation was observed in NCI-H522 and

Figure 2. Silencing of the VILIP-1 gene in human lung cancer cell lines. A. Western blot result from normal human bronchial epithelial (NHBE)
cells and 12 NSCLC cell lines. VILIP-1 was identified as 22 kDa. Glyceraldehyde-3 phosphate dehydrogenase (GAPDH) was used as loading control. B.
Northern blot of total RNA extracted from NHBE and 12 NSCLC cell lines probed with VILIP-1 full-length cDNA. Immunohistochemistry of VILIP-1 in
subcutaneous tumors derived from the NSCLC cell lines, C: NCI-H520, D: Calu1, E: Calu6, and F: A549.6100. Effect of methylation on VILIP-1 promoter
activity (G). pGL4.10 vector containing in vitro methylated (filled circles) or nonmethylated (no circles) VILIP-1 promoter fragment was transfected into
NCI-H520 or NCI-H522 cells. Transfection efficiency was normalized to the cotransfected pGL4.73 vector. The data presented as mean6SD (bars) of
triplicate experiments.
doi:10.1371/journal.pone.0001698.g002
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Calu1. We further confirmed the MSP results by bisulfite

sequencing. Figure 3C shows the methylation pattern of 20 CpG

sites on the second CpG island. The methylation levels in all

VILIP-1 non-expressing SCLC were higher than those in NHBE

and NCI-H520 cells. Thus, these data reveal an inverse

correlation between the methylation status of VILIP-1 promoter

and the respective gene expression in NSCLC cells.

Activation of VILIP-1 expression in lung cancer cell lines
after treatment with 59-Aza-dC

To determine whether the absence of VILIP-1 expression in

NSCLC cells, which have high degree of DNA methylation in the

proximal 2 kb VILIP-1 promoter, could be changed, we treated

cells with 59-Aza-dC for 5 days and evaluated the expression of

VILIP-1 (Figure 3D). 59-Aza-dC, a DNA methyltransferase

inhibitor, at a concentration as low as 0.001 mM, restored

VILIP-1 expression. Although the optimal concentration for

activating VILIP-1 expression was not always the same for all cell

lines, a concentration of 0.1 mM 59-Aza-dC had maximal

induction effect on most cells, i.e., Hop62, NCI-H522, Calu-6

and Calu-1, whereas A549 cells only required 0.05 mM.

Histone acetylation affects VILIP-1 promoter activity
A growing body of data indicates that gene silencing is also

modulated by histone deacetylation, an epigenetic mechanism

different from methylation [22]. Therefore, we also investigated

the potential role of histone acetylation in the regulation of VILIP-

1 expression by treating cells with the histone deacetylase

inhibitor, TSA. TSA potently reactivated VILIP-1 expression in

Calu1, A549, NCI-H460, HOP92, NCI-H522 and HOP62, at an

optimal concentration of approximately 200 ng/ml (Figure 4A).

To assess the relationship between the degree of histone

acetylation and VILIP-1 expression, we performed ChIP assays

using antibodies against acetylated histone H3 (at lysines 9 and 14)

and H4 (at lysines 5, 8, 12 and 16). After amplification with

primers specific for the second CpG island, we observed TSA

increased the acetylation of both histones H3 and H4 (to lesser

extent) which interacted with the VILIP-1 promoter (Figure 4B) in

all six cell lines studied. Thus, the acetylation status of histones H3

and H4 correlated with the expression of VILIP-1.

Expression of VILIP-1 in primary lung tumors and survival
VILIP-1 immunohistochemistry was performed on TMA

sections to assess its expression in NSCLC. In addition, we used

21 conventional paraffin blocks to evaluate normal pulmonary

tissue and precursor bronchial lesions.

Normal bronchial mucociliary epithelium expressed VILIP-1 in

all cases. This expression was mostly limited to the basal layer,

where the intensity was moderate to intense and encompassed 50–

100% of basal cells (Figure 4C). In 10 hyperplastic and metaplastic

Figure 3. Methylation status of VILIP-1 promoter in NSCLC cell lines. A. Schematic map of VILIP-1 2kb promoter and CpG islands around
exon1. Filled boxes, CpG islands. Open boxes, exons. Vertical ticks, CpG sites on the expanded axis. Start of exon 1 is marked at +1. TSS, translation
start site (ATG start codon). B. MSP analysis of cell lines. Bands in lanes M are methylated, bands in lanes U are unmethylated. H2O: water was added
instead of DNA; Untreated DNA: genomic DNA without treatment with sodium bisulfite; NHBE 1 and NHBE 2: DNA from two different individuals. C.
Representative results of bisulfite sequencing of the second CpG island of VILIP-1 promoter in VILIP-1-expressing cell lines (+) and VILIP-1-
nonexpressing cell lines (2). Open and filled squares indicate unmethylated and methylated CpG sites, respectively. Six to eight clones of PCR
products amplified from bisulfite-treated genomic DNA were sequenced for each cell line. D. Reactivation of VILIP-1 expression by 59-Aza-dC
treatment in cell lines. VILIP-1 protein expression was determined by immunoblot analysis. GAPDH was included as a control for equal loading.
doi:10.1371/journal.pone.0001698.g003
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Figure 4. Modulation of VILIP-1 expression by histone acetylation. A. Induction of VILIP-1 expression by treatment with histone
deacetylation inhibitor TSA in 6 cancer cell lines. Cells were treated for 20 hr with TSA at concentrations of 0, 50, 100, 200 and 500 ng/ml before lysis.
VILIP-1 expression was detected by Western blot. GAPDH was used as loading control. B. Effect of TSA treatment on the acetylation status of histones
H3 and H4 at the second CpG island of VILIP-1 promoter in A549, Calu1, NCI-H460, HOP62, H522 and HOP92 cells. Cells were treated with TSA
(200 ng/ml) for 20 hr and histone acetylation status was analyzed using chromatin immunoprecipitation. Amplification of DNA before precipitation
(1% of the total sample) was used as input. VILIP-1 immunohistochemistry of bronchial epithelium showing positively stained cells (arrows): Normal
mucosa (C), regular metaplasia exhibiting positive immunostain in basal and parabasal layers (D), metaplasia with dysplasia has little to no VILIP-1
expression (E). Panel F shows a SCC without VILIP-1 expression, whereas in panel G the protein is expressed abundantly in approximately 50% of
tumor cells. Adenocarcinoma (H) shows no VILIP-1 immunostain, note that the covering bronchial epithelium in this panel shows a few positive basal
cells (arrow). 6100.
doi:10.1371/journal.pone.0001698.g004

VILIP-1 in Lung Cancer

PLoS ONE | www.plosone.org 7 February 2008 | Volume 3 | Issue 2 | e1698



epithelia, the immunostain appeared mostly in the basal and

parabasal cells (Figure 4D). Five out of nine moderate and severe

dysplasias expressed little or no VILIP-1 (Figure 4E). VILIP-1 was

not expressed in approximately 25% invasive SCCs (Figure 4F).

Nevertheless, 44% of SCCs had scores between five and eight

(moderate-high expression) (Figure 4G) and 31% exhibited scores

between one and four, representing marginal to mild expression.

Adenocarcinomas showed a different pattern, i.e., the majority

(86%) showed no immunostain at all (Figure 4H) and 14% of these

tumors expressed VILIP-1. Only 8% showed high levels of

expression. VILIP-1 expression in NSCLC patients (SCC plus

adenocarcinoma cases, n = 81) surviving for more than 5 years was

significantly higher than in those patients that survived for less

than 5 years (p,0.0001) Further, after adjusting for tumor stage

(p,0.006), grade (p,0.400) and histology (p,0.032), VILIP1

remained a significant predictor of time to death (p,0.006).

Figure 5 displays Kaplan-Meier plots for VILIP1 groupings (low

versus high expressors), separately for early stage (stages 1 or 2)

and late stage (stage 3 or 4) tumors. In early stage disease, median

survivals in the low and high VILIP1 groups were 26 and

97 months, respectively. In later stage disease, median survivals in

the low and high VILIP1 groups were 11 and 30.5 months,

respectively.

A statistically significant level was also seen when patients were

stratified in either SCC (n = 36) or adenocarcinoma subgroups

(n = 45), (p,0.025). Although there was a tendency to see low

levels of VILIP-1 expression in patients with high clinical stages,

no statistically significant difference could be demonstrated.

VILIP-1 expression and promoter methylation in primary
lung tumors

We further interrogated the correlation between promoter

methylation and expression of VILIP-1 in 21 primary human

NSCLC. We studied the VILIP-1 promoter methylation using

MSP. Four of 5 SCC tissues with reduced VILIP-1 expression

showed methylation in the VILIP-1 promoter and the other SCC

had no methylation (see supplemental Figure S1). No or very weak

methylation was detected in 3 of 6 SCC with high VILIP-1

expression. In adenocarcinomas, 8 of 10 tissues displayed

methylation. Since most adenocarcinoma did not express VILIP-

1, we focused our attention on SCCs. In order to examine the

clinical significance of VILIP-1 expression in SCC patients, we

selected 56 SCC samples and categorizing them into two groups

(short survival, less than 2 years and long survival, more than

5 years). These specimens were evaluated for VILIP-1 protein

expression using IHC, and promoter methylation using MSP. We

detected no or weak VILIP-1 signal in one third of SCCs. The

patients with longer-than-5-year overall survival had significantly

higher VILIP-1 expression than those with shorter-than-2-year

survival (P-value,0.007).

SCC samples with low level of VILIP-1 expression (IHC score of

0–4) were significantly (p,0.05) more likely to exhibiting VILIP-1

promoter methylation than samples with high VILIP-1 expression

(score.4). The methylation rates were 71% and 41% for low and

high VILIP-1 expression groups, respectively (Figure 6).

Discussion

Both genetic and epigenetic abnormalities contribute to lung

carcinogenesis. Activation of K-ras and inactivation of p53, Rb, and

p16, were identified as the predominant alterations in lung cancer

[7,23,24]. A number of genes regulating many cellular functions

such as cell cycle, DNA repair, Ras signaling, invasion, etc are

inactivated by promoter hypermethylation in lung cancer

[8,22,24,26,28,29]. In the present study, we found that expression

of VILIP-1 was frequently lost in human lung cancer cells and that

silencing of its expression was due to epigenetic changes.

VILIP-1 has been implicated in regulating cell signaling during

development and differentiation in the central nervous system

[1,2]. VILIP-1 is also widely expressed in sites outside the nervous

system such as human heart, lung, liver and testis and moderately

expressed in ovary, kidney, spleen and pancreas, suggesting that

VILIP-1 might be required for the maintenance of tissue

homeostasis in different organs [25]. Given the central role of

VILIP-1 as a calcium sensor in mediating cAMP response,

deregulation of VILIP-1 expression may cause malfunction in

multiple organ systems. Indeed, recent studies including VILIP-1

downregulation in murine skin and human esophageal squamous

cell carcinomas support this view [3,4,5]. Using the NCI-60 panel of

cancer cells, we found that VILIP-1 protein was expressed in cancer

cells from the central nervous system and colon, while it appeared to

be undetectable in melanoma and cancers of the lung, breast, ovary,

and kidney. Since VILIP-1 expression was detected in normal tissues

from lung, ovary and kidney [25], VILIP-1 is down-regulated in

cancer cells derived from these tissues. We confirmed that VILIP-1 is

silenced in most NSCLC cells by comparing a dozen tumor cell lines

with normal human bronchial epithelial cells and investigated the

mechanisms underlying VILIP-1 down-regulation. In this context,

we did not find significant mutations in any of the 4 exons of the

VILIP-1. In addition, neither the exon-intron junctions nor the

VILIP-1 proximal 2kb promoter showed any alterations. Since

genetic alterations were not responsible for VILIP-1 silencing in

NSCLC, we embarked in assessing possible epigenetic mechanisms

of VILIP-1 silencing and identified both promoter hypermethylation

and histone modifications.

In this study, we demonstrated that methylation of the CpG

island within the VILIP-1 promoter was a significant mechanism

mediating VILIP-1 silencing in NSCLC: Methylation-induced

suppression of gene transcription may occur by direct interference

with the binding of transcription factors such as Sp-1/Sp-3

[20,26]. To our knowledge, the promoter of VILIP-1 has not

previously been reported. Among the family of neuronal calcium

sensor proteins related to VILIP-1, only the promoter of human

KChIP4 was predicted to contain four Sp-1-binding elements

[27]. Analysis of the VILIP-1 promoter revealed multiple potential

Sp-1 binding sites within both CpG islands (data not shown).

Thus, it is possible that methylation of the VILIP-1 promoter

mediates gene silencing by blocking the binding of Sp-1 and other

transcription factors to the VILIP-1 promoter.

Another epigenetic regulatory mechanism in human cancer is

related to the inactivation of tumor suppressor genes through the

post-transcriptional modification of the N-terminal histone tails

that protrude from the nucleosome core [20,28,29]. The

promoters of silenced genes contain localized regions of transcrip-

tional-silencing marks that include the deacetylation of lysines 9

and 14 and the methylation of lysine 9 of histone H3.

Transcriptional-activation marks such as hyperacetylation of

histones H3 and H4 and methylation of lysine 4 at H3 allow

gene transcription. These marks form the histone code [28].

Acetylation and deacetylation of histones by histone acetyltrans-

ferases and histone deacetylases (HDACs) alter chromatin

structure in a way which dynamically affects transcriptional

regulation [30,31]. Inhibition of HDACs by HDAC inhibitor

causes accumulation of hyperacetylated histones and acetylation of

transcription factors, leading to transcriptional activation of genes

involved in cancer cell growth, apoptosis, differentiation, migra-

tion and invasion. Accumulating data show that one of these

HDAC inhibitors, TSA, can cause the reactivation of a number of
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tumor suppressor genes such as TGF-beta receptor type II [32],

death-associated protein kinase [33], CCAAT/enhancer-binding

protein a [34] and MYO18B [35] in lung cancer. Re-expression of

tumor suppressor genes via induced acetylation of histones H3 and

H4 by TSA could induce apoptotic cell death in human lung

cancer cells [36]. Interestingly, Zhong et al [37] recently used

expression profiling to analyze novel targets for epigenetic

modification in human lung cancer and revealed that silencing

by histone deacetylation was nearly as common as silencing by

DNA methylation in a panel of nine genes. Five tumor suppressors

or suppressor candidates including NRIP3, CYLD, CD9, ATF3

and OXTR were strongly induced by TSA alone. In the present

study we found that TSA treatment with concentrations ranging

from 50 to 500 ng/ml potently reactivated VILIP-1 expression in

all the lung cancer cell lines tested. Further analysis of the TSA

action mechanism indicated that TSA enhanced the binding of

Figure 5. Kaplan Meir curves for VILIP1 groupings. Dotted line: Low expression (IHC score 1–4), full line: High expression (IHC score 5–8). A:
Early clinical stages (stages 1 or 2) and B: Late stages (stage 3 or 4).
doi:10.1371/journal.pone.0001698.g005
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acetylated histones H3 and H4 at the VILIP-1 promoter, therefore

reaching the transcriptional-activation mark of the histone code.

Acetylated lysines could recruit the chromatin remodeling

complex SWI/SNF which in turn, via its ATPase activity,

displaces and twists nucleosome exposing VILIP-1 promoter for

interaction with the transcription machinery [22].

A percentage of early bronchial precursor lesions show

decreased levels of VILIP-1 expression, indicating that this protein

may be starting to decrease early during carcinogenesis. Additional

studies with larger numbers of in situ lesions will be required to

confirm this impression. The study of primary lung tumor

specimens showed clearly that a statistically significant difference

in survival was associated with VILIP-1 expression. High levels of

VILIP-1 expression were seen in NSCLC patients that had a

longer survival whereas, absent or low levels of expression were

seen in patients with poorer outcomes. This relationship was

assessed in the specimens studied by immunohistochemistry either

in TMAs or in regular paraffin block sections. Furthermore, this

significant difference was evident not only in the entire group of

NSCLC patients but also when the population was further

stratified into SCC and adenocarcinoma patient subgroups.

Irrespective of histological type, VILIP-1 expression was signifi-

cantly reduced in more advanced stages of NSCLC than in stages

1–2, another indication that VILIP-1 silencing is associated to

tumor progression. Overall, the statistical analysis of the data

showed that VILIP-1 is a promising prognostic outcome predictor

that could be used in the clinic.

In conclusion, we found that the VILIP-1 is down-regulated in

the most common human lung cancer histotypes. Decreased

expression of VILIP-1 was associated with poorer outcomes in the

NSCLC patients that showed a statistically significant reduction in

survival. Epigenetic regulations including promoter hypermethyla-

tion and histone modification rather than genetic alterations are

responsible for VILIP-1 silencing.

Supporting Information

Table S1

Found at: doi:10.1371/journal.pone.0001698.s001 (5.44 MB TIF)

Table S2

Found at: doi:10.1371/journal.pone.0001698.s002 (0.38 MB TIF)

Figure S1 MSP analysis of representative primary lung

adenocarcinomas and SCCs. Bands in lanes M are methylated,

bands in lanes U are unmethylated. NHBE and HOP92 cells were

used as controls.

Found at: doi:10.1371/journal.pone.0001698.s003 (1.84 MB TIF)
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Figure 6. MSP analysis of representative primary lung SCC. Bands in lanes M are methylated, bands in lanes U are unmethylated. NHBE and
HOP92 cells were used as controls. VILIP-1 expression is indicated under each case, using the IHC score.
doi:10.1371/journal.pone.0001698.g006
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