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Abstract

To establish latent infections in B-cells, gammaherpesviruses express proteins in the infected B-cells of the host that
spuriously activate signalling pathways located downstream of the B-cell receptor. One such protein is M2, a murine
gammaherpesvirus 68-encoded molecule that activates the Vav1/Rac1 pathway via the formation of trimolecular complexes
with Scr family members. Previous reports have shown that the formation of this heteromolecular complex involves
interactions between a proline rich region of M2 and the Vav1 and Fyn SH3 domains. Here, we show that the optimal
association of these proteins requires a second structural motif encompassing two tyrosine residues (Tyr120 and 129). These
residues are inducibly phosphorylated by Fyn in non-hematopoietic cells and constitutively phosphorylated in B-cells. We
also demonstrate that the phosphorylation of Tyr120 creates specific docking sites for the SH2 domains of both Vav1 and
Fyn, a condition sine qua non for the optimal association of these two signalling proteins in vivo. Interestingly, signaling
experiments indicate that the expression of M2 in B-cells promotes the tyrosine phosphorylation of Vav1 and additional
signaling proteins, a biological process that requires the integrity of both the M2 phosphotyrosine and proline rich region
motifs. By infecting mice with viruses mutated in the m2 locus, we show that the integrity of each of these two M2 docking
motifs is essential for the early steps of murine gammaherpesvirus-68 latency. Taken together, these results indicate that the
M2 phosphotyrosine motif and the previously described M2 proline rich region work in a concerted manner to manipulate
the signaling machinery of the host B-cell.
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Introduction

Gammaherpesviruses are amongst the most prevalent of human

pathogens owing to their ability to establish lifelong persistent

infections within their hosts [1]. Persistence is achieved through

the establishment of latent infection in conventional memory B

lymphocytes. To gain access to this cell type, gammaherpesviruses

have developed molecular mechanisms that promote B cell

activation in the absence of cognate antigen recognition [2].

Thus, host colonisation by gammaherpesvirus involves the

modulation of signalling pathways triggered upon B cell receptor

(BCR) activation. This strategy offers an obvious advantage to the

virus since infection is not dependent on rare encounters with

antigen specific naive B cells. In addition, virus driven proliferation

of germinal centre (GC) B cells facilitates the amplification of viral

episomes and the subsequent generation of a large pool of latent

genomes in long lived memory B cells [3]. Signalling from the

BCR complex is initiated when Src family kinases such as Fyn, Blk

and Lyn induce the phosphorylation of immunoreceptor tyrosine-

based activation motifs (ITAMs) located in the Iga and Igb
cytoplasmic tails. Tyrosine-phosphorylated ITAMs then recruit

the cytoplasmic Syk protein tyrosine kinase, leading to its

membrane translocation and the subsequent trans-phosphoryla-

tion of important B-cell signalling proteins such as Vav1, Vav2,

phospholipase C-c2 (PLC-c2) and phosphatidylinositol-3 kinase

(PI3K). In turn, these molecules promote the generation of a wide

spectrum of intracellular signals and biological responses that are

essential for the antigenic responses of B lymphocytes [4].

Several gammaherpesvirus proteins have been shown to

modulate signal transduction pathways paralleled to those

activated by BCR recognition of cognate antigen [2]. One such

protein is latent membrane protein (LMP) 2A encoded by Epstein-

Barr virus. This transmembrane protein contains two ITAM-like

sequences that, upon phosphorylation, can interact with Lyn [5].
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Functionally, LMP2A has been shown to drive B cell development

in vivo [6], thus mimicking the presence of a functional BCR [7].

Another example is provided by the Kaposi’s sarcoma-associated

herpesvirus (KSHV) K1 protein. This transmembrane protein also

contains a functional ITAM that mediates interactions with a large

cohort of signalling proteins, including Syk, Lyn, Vav1, PLC-c2

and PI3K [8–11]. Although many studies have addressed the

function of these proteins [12], due to the restricted host range

tropism of the human gammaherpesviruses, their role in vivo has

not been fully demonstrated. Therefore, we still lack studies that

can correlate the biochemical and biological properties of these

viral proteins with the different biological aspects involved in the

pathogenesis of those viruses in their host cells.

A suitable model to circumvent this problem is the use of

murine gammaherpesvirus 68 (MHV-68), because this pathogen

can infect laboratory mice [13,14]. Despite this difference in

tropism, MHV-68 can establish long term latent infection in

memory B cells upon amplification of viral episomes in GC B cells

[15–19]. During the establishment of latency by MHV-68 a

selective number of viral-encoded proteins are expressed that are

predicted to orchestrate biological programs in the host B cell [20].

One of these proteins is M2, a 192 amino acid-long polypeptide

that bears no sequence similarity to any other known protein [21].

One of the functions of M2 is to induce the phosphorylation and

activation of Vav1 and Vav2 in a BCR-independent, but Src

family-dependent manner [22]. Vav1 and Vav2 work as

phosphorylation-dependent guanosine nucleotide exchange factors

(GEFs) for members of the Rho/Rac family [23], a group of

GTPases involved in the regulation of cytoskeletal, mitogenic, and

antigenic responses [24]. The activation of Vav proteins by M2

requires the formation of a trimeric complex between these two

proteins and the tyrosine kinase Fyn [22], a process mediated by

the recognition of a M2 proline rich region (PRR) by the SH3

domains of both Vav and Fyn proteins [22]. Interestingly, we have

previously shown that the formation of this complex results also in

the phosphorylation of M2 on a region that contains two tyrosine

residues (Tyr 120 and Tyr 129) [22]. These results suggested that

in addition to protein interaction events, the function of M2 could

be modulated by phosphorylation-based signals. However, they

could not exclude the possibility that this phosphorylation was a

bystander defect derived from the close physical proximity of M2

and Fyn in the heteromolecular complex.

To investigate the possible implication of phosphorylation-

dependent effects in the functional cycle of M2, we performed in

this work experiments aimed at identifying the specific residues

that were phosphorylated by Fyn on M2. In addition, we

investigated the functional capabilities of M2 mutant proteins

lacking different combinations of these two putative phosphory-

lation sites at the biochemical and signalling level. To obtain

additional information about the regulatory properties of M2 in

vivo, we also compared the pathogenicity of M2 mutant viruses

with disrupted phosphorylation sites, with wild type MHV-68 and

with recombinant viruses bearing previously reported inactive M2

mutant proteins, such as an M2 frame shift mutant [17] and a

PRR-mutant version that cannot trigger the stimulation of the

Fyn/Vav1/Rac1 pathway [22]. Interestingly, these experiments

demonstrated that the phosphorylation of M2 on the tyrosine 120

is critical for the optimal assembly of the M2/Fyn/Vav1 complex

and, perhaps more importantly, for the activation of the latency

program of MHV-68 in infected mice. They also provided

evidence suggesting that the action of M2 in that pathogenic

program involves the manipulation of additional signalling

molecules within B-cells. Taken together, these results reveal

additional mechanistic aspects of the cross-talk established among

M2 and elements of the B-cell signaling machinery that are crucial

for the orchestration of specific biological programs linked to

gammaherpesvirus latency in the host B-cell.

Results
Phosphorylation of M2 on Tyr120 is required for Vav1
activation

We have previously shown that a M2 mutant protein (M2Y)

containing two missense mutations on tyrosine residues 120 and 129

(the amino acid residue positions used in this study for M2 refer to

the final spliced form of this protein, [25]) could not be

phosphorylated by Fyn in vivo or in vitro [22], indicating that these

residues were the actual Fyn targets in M2. To identify the exact

acceptor site of the phosphate group, we generated two M2 mutant

proteins in which either the Y120 (M2Y120F mutant) or the Y129

(M2Y129F mutant) residues were mutated to phenylalanine. To

monitor the phosphorylation of these mutants, these proteins were

expressed in COS1 cells in the presence of Myc-tagged Fyn,

immunoprecipitated, and subjected to immunoblot analysis with

anti-phosphotyrosine (PTyr) antibodies. As a control, we used COS1

expressing either the wild type or the previously described M2Y

mutant version of M2 [22]. These experiments revealed a graded

effect of the mutations in the total levels of M2 phosphorylation.

Thus, the M2Y129F mutant displayed only marginal defects on

tyrosine phosphorylation when compared to its wild type counter-

part (Fig. 1A, upper panel), indicating that this site is not the main

target of Fyn. In contrast, the phosphorylation of M2 was drastically

reduced and totally abolished in the case of the M2Y120F and the

M2Y mutant versions, respectively (Fig. 1A, upper panel). These

results indicate that the main phosphorylation site of M2 is Tyr120.

To investigate the effect of the Y to F mutations in the function

of M2, we used the above anti-M2 immunoprecipitates to monitor

the association of this protein with Fyn. Using anti-Myc

immunoblots, we observed that Fyn could co-immunoprecipitate

at similar levels with both wild type M2 and the M2Y129F mutant

protein. In contrast, its association with M2 was severely reduced

in the case of the M2Y120F mutant and totally abolished when co-

expressed with the M2Y mutant (Fig. 1A, second panel from top).

As previously described [22], Fyn was also tyrosine phosphorylated

in this complex as demonstrated by the detection of phospho-Fyn

in the anti-M2 immunoprecipitates derived from cells expressing

either the wild type or the M2Y129F versions (Fig. 1A, upper

panel). These results suggest that Y120 is involved in the physical

interaction of M2 with Fyn in vivo.

We examined next the role of these two M2 phosphorylation

sites in the coassembly of Fyn and Vav1 and the subsequent

phosphorylation of Vav1. To this end, we co-transfected COS1

cells with Vav1, Fyn and wild type M2 or M2 tyrosine mutants in

the indicated combinations, and examined Vav1 immunoprecip-

itates for the presence of Fyn and M2 proteins (Fig. 1B). While

wild type M2 and the M2Y129F mutant co-immunoprecipitated

equally well with Vav1, the interaction of both M2Y and

M2Y120F mutants with this GEF was significantly reduced

although, unlike the case of the interaction of Fyn with M2Y,

not completely abolished (Fig. 1B, top panel). Likewise, Vav1

associated optimally with Fyn when co-expressed with either wild

type M2 or the M2Y129F mutant. Instead, this complex was

partially or totally lost when M2 was replaced by the M2Y120F

and M2Y mutants in the transfections, respectively (Fig. 1B,

second panel from top). In agreement with these results, in vitro

kinase assays indicated that the optimal phosphorylation of Vav1

by Fyn could be only triggered by wild type M2 and M2Y129F

proteins but not by the rest of Y to F M2 mutants used in the study

(Fig. 1C). Taken together, our results indicate that Y120 is the

M2 Phosphorylation and Latency
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primary phosphorylation residue involved in the formation of the

M2/Vav1/Fyn complex and in Vav1 phosphorylation.

Constitutive phosphorylation of M2 in B cells
In order to address the role of M2 phosphorylation in a more

physiological context, we next monitored the coassembly with Fyn

and Vav1 and the phosphorylation of M2 in A20 cells, a mouse B

cell lymphoma line expressing surface IgGs. To this end, M2 and its

phosphotyrosine mutants were ectopically expressed in these cells.

For comparative purposes, we also analyzed in these experiments the

binding properties and phosphorylation of M2P2, a previously

described M2 mutant protein that lacks the PRR involved in the

recognition of both Vav1 and Fyn [22]. The formation of

heteromolecular complexes was assessed by immunoblot analysis

of Fyn immunoprecipitates for the presence of Vav1 and M2

proteins. These results indicated that Y120 is the primary

phosphorylation residue involved in the formation of the M2/

Vav1/Fyn complex in B cells (Fig. 2A). Next, we examined the

phosphorylation levels of M2 proteins by anti-PTyr immunobloting

of M2 immunoprecipitates. Under these conditions, we observed

that wild type M2 was constitutively phosphorylated on tyrosine

residues even in the absence of BCR stimulation (Fig. 2B, upper

panel; data not shown). This constitutive phosphorylation could be

due to the relatively high basal levels of activation of this cell line

[26]. This phosphorylation was maintained upon mutation of the

Y129 residue but abolished in the case of the replacement of the

Y120 M2 residue (Fig. 2B, upper panel). As expected [22], the

elimination of the proline rich region eliminated the phosphorylation

of M2, as assessed by the lack of detectable phosphorylation levels in

the M2P2 mutant protein (Fig. 2B, upper panel). These results

indicate that the main phosphorylation site of M2 is Y120

independently of the cell type used. To analyze the impact of these

mutations in the activation of Vav1 in B-cells, we monitored by

immunoblot analysis the levels of phosphorylation of endogenous

Vav1 on tyrosine 174 in the transfected A20 cells. Phosphorylation of

this Vav1 site is a good reflection of its activation status, since it has

been shown before that this posttranslational modification induces a

conformational change in the Vav1 molecule that stimulates its

GDP/GTP exchange activity towards Rho/Rac proteins [27–29].

Furthermore, it has been previously shown that M2 induces Vav1

phosphorylation on this site and the concomitant activation of the

downstream Rac1 GTPase [22]. As shown in Fig. 2B, the

phosphorylation of Vav1 induced by the overexpression of M2 in

B-cells did not occur in the case of M2Y120F-transfected cells. As

previously described, Vav1 phosphorylation was also impaired when

the M2P2 mutant protein was expressed in A20 cells. In contrast, the

Y129F mutation did not affect the phosphorylation of the

endogenous Vav1 protein at the Y174 position (Fig. 2B).

To verify whether M2 could affect other intracellular proteins in

addition to Vav1, we analyzed total cell extracts from A20 cells by

anti-PTyr immunoblot to monitor the possible phosphorylation of

other B-cell proteins on tyrosine residues upon overexpression of

M2 and the indicated mutants. We observed that M2 and the

M2Y129F mutant induced the phosphorylation of several proteins

of approximately 52, 54, 56, 75, 95 (likely Vav1 itself) and

150 kDa (Fig. 2B, fifth panel from top). Interestingly, the

phosphorylation of these proteins was not observed in A20 cells

expressing either M2Y and/or M2P2 and significantly reduced in

the case of cells expressing the M2Y120F mutations (Fig. 2, fifth

panel from top). Taken together, these results show that Y120 is

the predominant phosphorylated tyrosine of M2 both in lymphoid

and non-hematopoietic cells. Moreover, they indicate that M2 is

also able to promote the BCR-independent phosphorylation of

Vav1 and an additional subset of cellular proteins. This effect is

totally dependent on the presence of both the Y120 residue and

the PRR of M2.

Figure 1. Y120 is the predominant tyrosine required for the formation of the M2/Vav1/Fyn complex and for M2-dependent
phosphorylation of Vav1. COS1 cells were transiently transfected with plasmids encoding the indicated proteins. (A,B) Cells were lysed and
clarified extracts incubated with either anti-M2 (A) or anti-Vav1 antibodies (B). Immunoprecipitates were analysed by western blot with the indicated
antibodies (right side of panels). Western blot analysis of a representative aliquot of total cell lysates (TCL) confirmed expression of proteins (bottom
panels). (C) Cell lysates were incubated with an anti-Vav1 antibody and the resulting immunoprecipitates subjected to an immunocomplex kinase
assay exactly as described previously [22]. Lower panel is an overexposure showing phosphorylation of M2 and its mutant forms. The position of
molecular weight markers is indicated on the right. 2, without; +, with; a, anti; IP, immunoprecipitation; p, phosphorylated; WB, western blot.
doi:10.1371/journal.pone.0001654.g001
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Phosphorylated M2 binds directly to Vav1 and Fyn SH2
domains

The observation that tyrosine phosphorylation regulates the

binding of Fyn and Vav1 to M2 was quite unexpected, since we had

shown before that the interaction of these proteins was mediated by

the M2 PRR [22]. We surmised that the involvement of the

phosphotyrosine M2 motif in this heteromolecular interaction could

be due to two different causes. On the one hand, it was possible that

tyrosine phosphorylation could induce a conformational change in

M2 that resulted in the exposure of the hidden PRR, thereby

facilitating the interaction of this second motif with the M2 target

proteins. On the other hand, it was also feasible that the

phosphorylation sites of M2 could serve as additional docking sites

for Vav1 and Fyn via interactions with the SH2 domains of these two

signalling proteins. To verify the former possibility, we assessed the

binding of several M2 mutants containing Y to D mutations at

positions 120 and 129 to Fyn and Vav1. These mutations mimic the

negative charge created by the incorporation of the phosphate group

on the tyrosine residue so, if the hypothesis of the conformational

change were correct, we expected that some of these mutants could

enhance the binding of Fyn and Vav1 to M2. However, we found

that the Y to D mutations induced effects identical to those elicited

by the Y to F missense mutations, indicating that the role of this

phosphorylation site was not due through conformation-dependent

effects (Fig. 3A,B, top panels).

To assess the second possibility, we first tested the hypothesis that

the SH2 domains of Fyn and Vav1 could bind M2 sequences

containing the phosphorylated Y120 residue. To this end, COS1 cell

lysates containing either the wild type or the SH2 mutant versions of

Fyn and Vav1 were subjected to pull-down experiments with

phosphopeptides (pY) containing either the phosphorylated Y120 or

Y129 residues. After binding, the association of Vav1 and Fyn to

these peptides was determined by immunoblot analysis. As a control

for the specificity of the possible interactions, we included parallel

pull-downs in which peptides were dephosphorylated by the YOP

phosphatase prior to the incubation with cell extracts. As shown in

Figure 4A (two top panels), the pY120 peptide, but not the pY129

peptide, could bind to both Fyn and Vav1. However, this interaction

was lost in the case of the SH2 mutants of Fyn and Vav1 (Fig. 4A,

two top panels) or when the dephosphorylated peptide was used in

the experiments (Fig. 4A, two top panels). These results indicate that

pY120 residue can act as an effective docking site for Vav1 and Fyn.

In order to assess if this interaction required other chaperone

proteins, we repeated these experiments using the isolated SH2

domains of Vav1 and Fyn purified from Escherichia coli as glutathione

S-transferase (GST) fusion proteins. As a negative control, we

performed similar pull-down experiments with the non-chimeric

GST protein. We found that the pY120 peptide could bind directly

both SH2 domains, but that the SH2 domain of Fyn bound more

efficiently than that of Vav1 (Fig. 4B). The phosphorylated peptide

failed to bind to GST (Fig. 4B), confirming the specificity of the

interactions. These differences could not be attributed to loading

artefacts, given that equivalent amounts of peptide and input GST

proteins were used in each pull down experiment.

Figure 2. Role of the phosphotyrosine M2 motif in B-lymphocytes. (A) TCLs from A20 cells expressing the indicated proteins were incubated
with anti-Fyn antibodies and subjected to western blot analysis using the indicated antibodies. As control, aliquots of the same TCLs were analyzed
with anti-Vav1 and anti-Myc antibodies to reveal the levels of endogenous Vav1 and ectopic M2 proteins present in these lysates. (B) M2-transfected
A20 cells were lysed and TCLs analyzed either by immunoprecipitation with anti-M2 antibodies followed by immunoblot with the indicated
antibodies (two upper panels) or by direct immunoblot with the indicated antibodies (rest of panels). The mobility of M2, Fyn and Vav1 proteins is
indicated by arrowheads. The mobility of M2-dependent phosphorylated cellular proteins is indicated by arrows (fifth panel from top). a, anti; IP,
immunoprecipitation; p, phosphorylated; WB, western blot.
doi:10.1371/journal.pone.0001654.g002
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Figure 3. Increased association of Fyn and Vav1 to phosphorylated M2 does not involve phosphorylation-dependent
conformational changes. (A,B) COS1 cells were transiently transfected with plasmids encoding the indicated proteins. After 48 h, cell extracts
were obtained and subjected to immunoprecipitation with either anti-M2 (A) or anti-Vav1 (B) antibodies. Immunoprecipitates were analyzed by
western blot with the indicated antibodies (right side of panels). Aliquots of the TCL used in the immunoprecipitations were analysed in parallel to
confirm expression of the appropriate proteins (bottom panel). 2, without; +, with; a, anti; IP, immunoprecipitation; WB, western blot.
doi:10.1371/journal.pone.0001654.g003

Figure 4. Phosphorylated M2 binds directly to SH2 domains of Fyn and Vav1. (A) COS1 cells were transiently transfected with plasmids
encoding the indicated proteins (top). Cell extracts were incubated with biotinylated peptides containing M2 sequences encompassing
phosphorylated (2) and YOP-mediated (+) dephosphorylated versions of residues 120 and 129. Complexes were recovered with streptavidin-coupled
agarose beads and analyzed by western blot using the indicated antibodies (right side of panels) to reveal the possible association of the indicated
versions of Fyn (top panel) and Vav1 (second panel from top). Western blot analysis of aliquots of TCL confirmed expression of proteins (three bottom
panels). (B) The phosphorylated Y120 peptide described in (A) was incubated with increasing amounts of the indicated GST fusions proteins purified
from bacteria. After binding, the peptide was recovered as indicated above and bound proteins identified by immunoblot analysis using anti-GST
antibodies (upper panel on the left). Aliquots of GST proteins were analyzed by western blotting (upper panel on the right). (C,D) COS1 cells were
transiently transfected with plasmids encoding the indicated proteins. Clarified lysates were incubated with anti-Vav1 (C) or anti-M2 (D) antibodies.
Immunoprecipitates were analyzed by western blotting using the indicated antibodies (left). Aliquots of TCL used in the immunoprecipitations were
analysed in parallel to confirm the expression of proteins used in this experiment (bottom panels). *, point mutation in the indicated domain of Fyn or
Vav1; 2, without; +, with; IP, immunoprecipitation; WB, western blotting.
doi:10.1371/journal.pone.0001654.g004
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To confirm that Vav1 binds to both phosphorylation sites and

the PRR of M2, we next compared the association of M2 with

wild type and mutant Vav1 proteins with inactivated SH2 and the

C-terminal SH3 domains either in the absence or presence of Fyn.

For these experiments, Vav1 N-terminal SH3 mutants were not

analyzed since we have previously shown that M2 only binds to

the C-terminal SH3 domain of Vav1 or Vav2 [22]. In the absence

of Fyn, the inactivation of the C-terminal Vav1 SH3 domain

markedly reduced the M2/Vav1 interaction (Fig. 4C, upper panel,

interaction observed only after longer exposure times, data not

shown), confirming our previous observations [22]. In contrast, the

inactivation of the Vav1 SH2 domain affected only marginally the

association of Vav1 with M2 under these conditions (Fig. 4C,

upper panel). This is consistent with the low phosphorylation levels

of M2 in the absence of Fyn (see above, Fig. 1C, lower panel). As

expected [22], co-expression of Fyn enhanced the interaction

between M2 and Vav1 (Fig. 4C, upper panel). Under these

conditions, a significant level of coimmunoprecipitation was

observed between M2 and SH2 and C-terminal SH3 mutants of

Vav1 (Fig. 4C, upper panel). Therefore, under conditions of

optimal M2 tyrosine phosphorylation, these two domains of Vav1

could efficiently establish physical contacts with the viral protein.

Consistent with previous results [22], we found that Fyn formed

part of the M2/Vav1 complexes (Fig. 4C, second panel from top).

This association could be detected regardless of the Vav1 protein

used (Fig. 4C, second panel from top), indicating that the

association between Vav1 and Fyn is made indirectly via the

scaffolding action of M2. As expected, Fyn also associated with the

phosphorylation sites and the PRR of M2, however, in this case

binding through the SH2 domain had a stronger influence

(Fig.4D, upper panel). Control immunoblots showed equivalent

expression levels of M2, Fyn and Vav1 proteins in the appropriate

samples (Fig. 4C,D). Taken together, these results indicate that

Fyn and Vav1 use two independent docking sites to associate

stably with M2.

The phosphosites and PRR of M2 contribute to the
establishment of latency in GC B cells but they are not
responsible for the full complement of M2 functions

In order to determine the functions of the identified phospho-

sites and the PRR of M2 in physiological context of latency in

vivo, we generated MHV-68 recombinant viruses in which the m2

gene was modified to contain the mutations in either the

phosphorylation motif or the PRR (designated vM2P2, with

proline residues at positions 158, 160, 163 and 167 mutated to

alanine). Given that the Y120F M2 mutant still displayed some

basal phosphorylation in some cell contexts (i.e., COS1 cells), we

decided to use in these experiments a virus encoding the M2Y

mutant (designated vM2Y, with tyrosine residues at positions 120

and 129 mutated to phenylalanine), a version of M2 that shows no

detectable phosphorylation even under conditions of Fyn overex-

pression (see above, Fig. 1A). Moreover, this mutant totally

disrupts the interaction with Fyn and the phosphorylation of B-cell

proteins (see above, Figs. 1A and 2), thus ensuring the total

blockage of the signals emanating from this M2 region. The DNA

structures of mutant viruses were verified by PCR, DNA

sequencing and examination of restriction enzyme digestion

profiles of Escherichia coli-derived BAC DNA and PCR of

reconstituted virus DNA. The stability of the introduced mutations

was further checked in viruses recovered from latently infected

spleens confirming the retention of the engineered point

mutations. Spliced M2 transcripts could be readily detected in

RNA extracted from fibroblasts infected with each of the viruses,

confirming that the mutations did not affect transcription of M2

(data not shown). These viruses were used to infect mice and

analysed for the previously shown functions of M2 in latency. In

addition, we used in this study a previously described M2 frame

shift mutant (vM2FS) that does not express this protein [17]. By

using this additional virus, we wanted to distinguish whether the

phosphosites and the PRR mutants were responsible for either the

totality or just a subset of the functions previously ascribed to M2

during B-cell infection [17,30–32]. To analyse the behaviour of

these viral mutants during latency, we infected Balb/c mice with

each of these viruses and monitored both the establishment and

the long-term latency of MHV-68 in B cells. To this end, we

subjected these animals to three independent, although comple-

mentary biological assays: ex vivo reactivation assays to measure

latent infection in total splenocytes, flow cytometry coupled to

limiting dilution and real time PCR to quantify the frequency of

viral DNA positive GC B cells in spleen, and in situ hybridization

analysis to identify virally infected cells within the spleen. Using

the former assay, we observed in the case of the wild type virus the

expected peak of infection at day 14 post-inoculation, with latent

infection subsiding thereafter to become undetectable at day 50

post-inoculation (Fig. 5) [33]. In contrast, the vM2Y and vM2P2

viruses showed a vM2FS-like pattern of infection during the

establishment of latency. This was characterised by an approxi-

mately 100-fold deficit of latent infection at day 14 post-

inoculation and a subsequent increase in infectious centres by

day 21 post-inoculation when compared with infections made with

wild type viruses (Fig. 5). No preformed infectious virus could be

detected by suspension assay of freeze-thawed spleen homogenates

at any time point and for any virus analyzed, indicating that

splenic infection was only latent. However, unlike the case of the

vM2FS mutant virus, the vM2Y and vM2P2 viruses became

undetectable during long-term latency (Fig. 5). A revertant virus

(vM2Y-R) in which the M2Y locus was restored to wild type status

did not show any defects in the course of infection, indicating that

phenotypic changes observed with the M2Y mutation were

intrinsic to this locus and not the consequence of mutations

elsewhere in the viral genome (Fig. 5). These results indicate that

the PRR and the phosphosites of M2 are responsible for engaging

the cellular responses important for the establishment, but not

maintenance, of latency.

To assess whether the deficit in the establishment of latency

exhibited by the M2 mutant viruses reflected a phenotype in GC B

cells, we determined the frequency of GC B-cells harbouring viral

genomes. In mice infected with vM2Y or vM2P2, the frequency of

viral genome-positive GC B cells only peaked at day 21 post-

infection (Table 1). This was in contrast with the frequencies of

viral genome-positive GC B cells in mice infected with wild type

virus and vM2Y-R, which reached maximal levels at day 14 post-

infection (Table 1). After longer post-infection periods (day 50),

only mice infected with vM2FS exhibited high frequencies of viral

genome-positive B cells (Table 1).

To verify that this infection profile was linked to the residency of

the virus in GC B cells, we monitored the presence of each of those

viruses by detecting transcripts corresponding to the MHV-68-

derived microRNAs using in situ hybridization, an assay that allows

the analysis of the expansion and cessation kinetics of latent

infection within GCs [13,18,34]. Mice infected with either wild

type or vM2Y-R viruses showed the expected pattern of infection

(Fig. 6A,B) [18]. This pattern was characterized by the detection of

large clusters of infected cells within GCs at day 14 post-infection

that reflect cellular proliferation and, thereby, expansion of the

latently infected cell pool (Fig. 6A, panels a,e). At day 21 post-

infection, we observed sharp declines in the total number of

infected GCs and in the number of GCs that were associated with
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the presence of large clusters of latently infected cells. This pattern

reflects the cessation of the virus driven GC B cell proliferation

(Fig. 6A, panels f,j; and Fig. 5B). At later periods (day 50), infection

became confined to a reduced number of cells scattered within

secondary follicles, a phenotype that correlates with the mainte-

nance phase of latent infection (Fig. 6A, panels k,o). The kinetics

and pattern of infection in the spleens of mice inoculated with

vM2FS was as previously reported [17]. Thus, after infection with

this virus, maximal numbers of large clusters of infected GC B cells

were reached only at day 21 post-infection (Fig. 6A, panel g). High

levels of latent infection were still observed at day 50 post-infection

(Fig. 6A, panel l), where almost 100% of the miRNA-positive

follicles presented with large clusters of infected cells (Fig. 6B). In

the case of infections by vM2Y and vM2P2, there was a reduced

number of miRNA positive follicles at day 14 post-infection

(Fig. 6A, panels c,d). This deficit reflected both a decreased

number of infected follicles as well as a low number of positive

follicles with large clusters of latently infected cells when compared

Table 1. Frequency of genome-positive GC B cellsa

Days
p.i. Virus

Reciprocal frequencyb of viral
DNA+ GC B cells (95% CI) %Cellsc

Total no. of
cellsd

No. of viral DNA-
positive cellse

14 WT 3 (2–6) 5.7 1.16107 3,666,667

M2FS 61 (39–142) 5.7 1.16107 180,328

M2Y 23 (15–53) 7.8 1.66107 608,696

M2P2 26 (17–60) 8.9 1.86107 692,308

M2Y-R 6 (4–13) 6.8 1.46107 2,333,333

21 WT 79 (51–175) 6.0 1.26107 151,899

M2FS 6 (4–12) 6.0 1.26107 2,000,000

M2Y 23 (14–58) 4.3 8.66106 373,914

M2P2 10 (7–21) 4.1 8.26106 820,000

M2Y-R 51 (32–119) 4.9 9.86106 192,157

50 WT 148 (92–380) 2.1 4.26106 28,378

M2FS 8 (6–17) 4.9 9.86106 1,225,000

M2Y 128 (77–381) 1.5 3.06106 23,437

M2P2 256 (169–527) 2.6 5.26106 20,233

M2Y-R 78 (52–162) 1.7 3.46106 43,897

aData were obtained from pools of at least five spleens.
bFrequencies were calculated by limiting-dilution analysis with 95% confidence intervals (CI).
cThe percentage of GC B cells from total spleen was estimated by FACS analysis.
dThe total number of cells was estimated from the percentage of the total spleen, based on an estimate of 26108 cells/spleen.
eThe number of latently infected cells was based on the frequency of latency within GB B cells and the estimated total number of cells.
doi:10.1371/journal.pone.0001654.t001

Figure 5. Activation of Vav proteins is necessary to the establishment of normal levels of latency in spleen. Balb/c mice were intranasally
infected with viruses of the indicated viral genotypes and latent load quantified by ex-vivo reactivation. Each point represents the infectious center titre
from an individual mouse. Horizontal bars indicate arithmetic means. The dashed line indicates the limit of detection of the assay.
doi:10.1371/journal.pone.0001654.g005
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to wild type virus (Fig. 6B). In this case, maximal levels of GC

infection were only observed at day 21 post-infection (Fig. 6A,

panels h,i). These levels declined thereafter and reached values

equivalent to those observed in the case of wild type and the

vM2Y-R viruses (Fig. 6A, panels m,n). Taken together, these

results indicate that the PRR and the phosphotyrosine sites of M2

work coordinately during infection in vivo, where they play

essential roles in the M2 functions linked to the establishment of

latency within GC B-cells. Furthermore, they suggest that the

functions of M2 related to latency maintenance are probably due

to other motifs of this molecule, raising the possibility that separate

regions of the M2 molecule regulate different branches of the

pathogenicity program of MHV-68.

Discussion

M2 is a MHV-68 encoded protein that modulates signalling

pathways linked to the establishment of viral latency in B cells. M2

contributes to the latency program through the manipulation of

key signal transduction pathways [22,35]. In order to do so, M2

Figure 6. Modulation of Vav activity is required for normal kinetics of latency in GC B cells. Balb/c mice were intranasally infected with
viruses of the indicated viral genotypes. Spleen sections were processed for in situ hybridization with miRNA riboprobes. (A) Representative spleen
sections from each group of animals. Dark staining indicates cells positive for viral encoded miRNAs. All sections are magnified at 6200 and counter
stained with haematoxylin. (B) Mean percentage 6 SEM of miRNA+ follicles (filled bars) and positive follicles with large clusters of miRNA-positive
cells (open bars). Six sections per mouse and at least four mice per group were counted at each time point. Follicles were scored positive if they
contained at least one positive miRNA cell and positive for expansion if they contained more than ten miRNA positive cells.
doi:10.1371/journal.pone.0001654.g006
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utilises different structural motifs present in its primary structure.

For example, it has been shown that the activation of the Vav

pathway requires the interaction of the M2 PRR with the C-

terminal SH3 domains of Vav1 and Vav2 proteins [22]. Likewise,

the M2-dependent down-modulation of the STAT pathway

requires a scattered motif distributed between the central basic

region and N-terminal amino acids of M2 [35,36]. Whether other

regions of M2 contribute to these or other functions remained to

be determined up to now. Here, we show that a tyrosine-

phosphorylated region of M2 constitutes a third M2 regulatory

motif that contributes to the establishment of MHV-68 latency in

B cells. This region contains two tyrosine residues (Tyr120 and

129) that are inducibly phosphorylated in ectopic systems by Fyn

and constitutively phosphorylated in the A20 B-cell line. By using

mutant proteins targeted in these two residues, we have

demonstrated that Tyr120 is the primary phosphorylation site of

M2 while Tyr129 contributes much less to the overall phosphor-

ylation of the protein. Interestingly, we have observed that this

new region and the M2 PRR need to work together in order to

activate optimally the Fyn/Vav1 pathway.

The structural dissection of these two motifs indicates that the

cooperative action of the phosphotyrosine residues and the PRR is

not mediated by major structural changes that expose putative

cryptic binding sites of the M2 molecule. Instead, we have

demonstrated that these two motifs work as independent docking

sites for the SH3 and SH2 domains of both Vav1 and Fyn. In

agreement with this view, we have observed that the optimal

binding of Fyn to M2 requires the presence of both the

phosphotyrosine and PRR motifs. Furthermore, we have also

shown that Vav1 proteins with non-functional C-terminal SH3 or

SH2 domains can still bind to M2, although at much lower levels

than those observed with the wild type protein. Supporting this

dual docking site model, we have also shown that the defective

interaction of the Vav1 SH3 mutant with M2 is rescued by the

overexpression of Fyn and the subsequent phosphorylation of M2.

The requirement of two independent motifs for the optimal

binding of Vav proteins to other partners is not unprecedented.

Thus, previous studies have shown that binding of Vav1 to Cbl-b

requires the SH2 and SH3 regions [37] and, of particular

relevance to the current study, it has been reported that the

binding of Vav2 (and presumably the rest of Vav family proteins)

to mDia/interacting protein requires the simultaneous engage-

ment of a tyrosine phosphorylation motif and a PRR [38].

The study of the signalling properties of M2 and its mutants in

B-cells has revealed that this protein may also use other B-cell

targets. Thus, we have shown that the enforced expression of M2

in A20 cells results in the tyrosine phosphorylation of five

additional proteins whose molecular weights range between 50

and 150 kDa. Consistent with our observations with Vav1 and

Fyn, we have observed that the mutation of M2 in either the

phosphotyrosine motif or the PRR disrupt these phosphorylation

events. Likewise, we have shown that the Y120 phosphorylation

residue has a much relevant biological role than the Y129 site in

this cellular response. These results underscore the concept that

the phosphotyrosine motif and the PRR of M2 exert intertwined

actions for the optimal manipulation of the B-cell signalling

machinery. At this moment, we do not know whether these

additional M2-dependent phosphoproteins are direct M2 binding

partners or, alternatively, downstream elements activated by either

Fyn or Vav1. Preliminary experiments favour the former

possibility, since we have observed by pull-down experiments that

M2 phosphopeptides can bring down some of those phosphopro-

teins. Thus, it is likely that, as in the case of the KSHV K1 protein

[9,11], M2 could mediate the formation of a complex signalosome

with a subset of B-cell signalling proteins. We are conducting

currently proteomic experiments to identify these new putative M2

targets.

The presence of two interacting motifs in the M2 structure

raises interesting regulatory possibilities. According to the previous

model of interactions of Vav1 and Fyn with the M2 PRR, it was

difficult to understand how the M2/Fyn/Vav1 complex could be

assembled, since Fyn and Vav1 will be binding to the same M2

PRR. The presence of two docking sites involved in this

interaction solves this problem, since it is possible that the trimeric

complex will be formed through the independent binding of Vav1

and Fyn to either the phosphotyrosine motif or the PRR. Given

that both proteins can bind to these two regions of M2, this

trimeric complex may form in different ways. For example, Vav1

could associate with the PRR or the phosphotyrosine motif when

Fyn is bound to the phosphotyrosine or PRR, respectively. In

favour of this hypothesis, we have observed that Fyn can be

detected in an M2-dependent manner in the anti-Vav1 immuno-

precipitates regardless of whether this GEF has inactivating

mutations in either the SH2 (that disrupts its association with

the M2 phosphotyrosine motif) or the C-terminal SH3 domain

(which blocks its association to the M2 PRR). However, we cannot

exclude the possibility that the trimeric complex could be also

formed with those two proteins binding simultaneously to the two

M2 docking sites. This alternative mechanism of assembly is only

feasible if M2 forms homodimers within the host cell. Preliminary

experiments conducted in our lab indicate that this is not the case

(data not shown). An issue that is still problematic according to this

model of interaction is the understanding of how Fyn becomes

associated with M2 in the first place. According to our present

results, Fyn only binds to M2 when both the PRR and the

phosphotyrosine domains are functional. If so, how is this complex

formed when M2 is non-phosphorylated? To solve this signalling

conundrum, we favour a model in which the association of Fyn

and M2 will entail two independent, and mechanistically separable

steps. In the first step, the initial binding of Fyn to M2 would be

triggered by the prior trans-phosphorylation of M2 by Fyn in the

absence of complex formation or, alternatively, by the binding of

Fyn to M2 molecules previously phosphorylated by other protein

tyrosine kinases. This trans-phosphorylation could occur in the

absence of direct physical interactions since the constitutive

localization of M2 in the plasma membrane makes it possible

the presence of other membrane-bound kinases in the neighbour-

hood [22]. This model is mechanistically similar to the binding of

Syk to the tyrosine-phosphorylated sequences of the Iga and Igb
ITAM regions. This initial phosphorylation step would lead to the

subsequent physical interaction of Fyn to either uncomplexed M2

proteins or to the M2/Vav1 complex, a result that would trigger

the subsequent phosphorylation of Vav1 by the associated kinase.

In any case, it is worth mentioning that M2 can be detected in

binary complexes with Vav1 and Fyn alone, indicating that M2

will display different forms of engagement during the establish-

ment of viral latency such as free forms, binary complexes with

either Vav1 or Fyn, and the trimeric M2/Vav1/Fyn complex.

This spectrum of states may be even larger if the additional

phosphoproteins triggered by M2 in B-cells also associate with M2

following Vav1- or Fyn-like mechanisms.

Our results with the Y to F M2 mutants also suggest that the

phosphorylation levels of the wild type M2 protein could be used

to induce different signalling outputs within the host cells. For

instance, we have observed that the phosphorylation pattern

induced by M2 in B-cells follows a gradient response, with a total

absence of signal in the case of the M2Y mutant, a low but

detectable signal elicited by the M2Y120F mutant, and the robust
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phosphorylation of B-cell proteins upon expression of the wild type

M2 protein. These results suggest that if M2 undergoes different

levels of phosphorylation in these two residues during the MHV-

68 infection, this information could be computed by the B-cell to

trigger intracellular signals of different intensity and/or to

stimulate distinct, signal-dependent biological programs. This

possibility would add further plasticity for the regulation of the

MHV-68 pathogenic program in the host cell. In this regard, it will

be interesting to generate phosphospecific antibodies to M2 in the

future to monitor the phosphorylation kinetics of M2 during the

different phases of MHV-68 latency in vivo.

The importance of these two M2 docking motifs for MHV-68

latency is further strengthened by the data derived from the

infection of mice with MHV-68 mutant viruses harbouring

different M2 mutants. This genetic strategy has confirmed in vivo

the important functional role of both the phosphotyrosine and the

PRR motifs for the establishment of MHV-68 latency in B cells.

Moreover, the observation that the phenotypes obtained by the

M2Y and M2P2 proteins are identical, further strengthens the idea

regarding the coordinated action of these two docking motifs

during the function of M2 in the host cell. Interestingly, the use of

this genetic strategy also revealed that the infection of mice with

vM2Y and vM2P2 viruses does not recapitulate the overall

biological program of the M2 protein during MHV-68 latency.

Thus, in contrast to what is observed with a M2 frame shift mutant

virus, we have observed that the infection of animals with those

viruses does not result in the induction of persistent uncontrolled

proliferation of infected GC B cells. These results indicate that

other regions of M2 mediate this latter stage of the MHV-68

pathogenic program. Whether this is due to additional, intrinsic

functions of M2 or to indirect causes, i.e. clearance of the virus by

the immune system, remains to be determined.

Collectively, our present data indicates that M2 functions as a

multidocking protein that promotes the spurious, BCR-indepen-

dent activation of the Vav1/Rac1 pathway and other intracellular

routes. Furthermore, we have demonstrated genetically that the

intracellular effects triggered by the concerted action of the

phosphotyrosine and PRR M2 motifs are essential for the

establishment of MHV-68 latency in GC B-cells but not for the

subsequent maintenance of long term latency, suggesting the

possibility that M2 could trigger distinct signalling branches that

contribute independently to different stages of the MHV-68

pathogenic program. Finally, the observation that M2Y and M2P2

disrupt MHV-68 latency raise the prospect of using phosphopep-

tides and/or PRR-containing peptides to block latency in vivo or,

alternatively, to use in pharmacological approaches to block the

activity of specific signalling pathways in B lymphocyte-based

diseases. Further studies linking the biochemical properties of M2

with the pathogenesis of MHV-68 should provide valuable insights

into the physiological role of this pathway for gammaherpesvirus

host colonization.

Materials and Methods
Plasmids

pCMV-Myc constructs, encoding wild type M2, M2Y and

M2P2 mutants, and pcDNA3-Vav1 expression plasmid encoding

wild type mouse Vav1, have been described previously [22,39].

pCMV-Myc-Fyn, encoding wild type mouse Fyn was generated by

subcloning the Fyn cDNA sequences from the corresponding

pCMV-HA expression construct [22]. pCMV-Myc constructs

encoding Y120F, Y129F, Y120D, Y129D and Y120,129D (2YD)

M2 mutants, and pCDNA3 encoding Vav1 with an inactivating

amino acid substitution (R696A) in the SH2 domain [40] or

encoding Fyn with an inactivating amino acid substitution

(R176K) in the SH2 [41,42] or (W119L) in the SH3 domains

[43], were generated by site directed mutagenesis using a

Stratagene Quickchange kit according to the manufacturer’s

instructions. A pCDNA3 encoding Vav1 with an inactivating

amino acid substitution (P833L) in the most C-terminal SH3

domain has been described [44]. A pGEX-2T construct encoding

the SH2 domain of Vav1 has been described [45]. The sequence

encoding the SH2 domain of mouse Fyn (residues 145–247) was

amplified by PCR and cloned into pGEX-6P-1 expression vector

(GE Healthcare). All constructs were verified by DNA sequencing.

Antibodies and fusion proteins
A rabbit polyclonal antibody to M2 has been described before

[22]. Other antibodies used in this work included phosphospecific

antibodies to Vav1 phospho-Y174 [46], a monoclonal antibody

against the c-Myc epitope (Invitrogen/Clontech), rabbit polyclonal

antibodies to Vav1 and Fyn (Santa Cruz), an anti-phosphotyrosine

monoclonal antibody (PY99, Santa Cruz) and a goat polyclonal

antibody to glutathione S-transferase (GE Healthcare). GST and

GST-SH2 fusion proteins were produced in Escherichia coli by

IPTG (isopropyl-B-D-thiogalactopyranoside) induction and puri-

fied with glutathione-sepharose beads using standard procedures.

Cells and transfections
COS1 and NIH3T3 cells were grown in Dulbecco’s modified

Eagle’s medium (DMEM) supplemented with 10% heat inactivat-

ed foetal bovine serum, 2 mM glutamine and 100 U/ml penicillin

and streptamicin. Baby hamster kidney cells (BHK-21) were

cultured in Glasgow’s modified Eagle’s medium supplemented as

described above plus 10% tryptose phosphate broth. For

immunoprecipitation and pull down assays, COS1 cells were

transfected with 2–4 mg of the indicated plasmids using the DEAE-

dextran method. A20 B cells were propagated in RPMI 1640

medium supplemented with 10% heat inactivated foetal bovine

serum, 2 mM glutamine and 100 U/ml penicillin and streptami-

cin. For transfection, 26107 A20 cells were electroporated (270 V,

500 mF) with 15 mg of plasmid DNA using a Bio-Rad gene pulser

and incubated for 24 h in supplemented RPMI.

Immunoprecipitation and in vitro kinase assays
Transfected COS1 or A20 B cells were rinsed twice in ice-cold

PBS and disrupted with ice-cold lysis buffer containing 10 mM

Tris-HCl pH7.4, 100 mM NaCl, 1mM NaF, 1 mM orthovana-

date, 0.5% NP-40 and Cwmplete protease inhibitors. Lysates were

clarified by centrifugation and incubated with 1 mg of antibodies

to either M2 or Vav1 or Fyn for 2 h at 4uC. A20 B cell lysates

were precleared with protein-G conjugated Sepharose beads (GE

Healthcare), prior to incubation with anti-M2 serum. Immune-

complexes were recovered by incubation with protein G-

conjugated Sepharose beads for 45 min at 4uC. After 3 washes

with ice-cold lysis buffer, proteins were eluted in reducing

Laemmli’s buffer, resolved by SDS-PAGE, transferred to nitro-

cellulose and immunoblotted with the indicated antibodies. For in

vitro kinase assays, Vav1 immunoprecipitates were obtained as

described above, washed twice in lysis buffer, and then subjected

to an in vitro kinase assay as previously described [22]. Proteins

were eluted in reduced Laemmli’s buffer and resolved by SDS-

PAGE. Gels were fixed, dried and subjected to autoradiography.

Pull-down experiments
N-terminal biotinylated, tyrosine phosphorylated (pY) peptides

corresponding to a region of M2 incorporating Y120 (SPEENI-

pYETANSE) and Y129 (ANSEPVpYIQPIST) were purchased
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from Sigma. A non-phosphorylated version of the Y120 peptide

was obtained by incubation with 50 U of YOP tyrosine phosphatase

(New England Biolabs), for 30 min at 30uC. The enzyme was

inactivated by the addition of 1 mM orthovanadate. For pull-down

experiments, 10 mg of each peptide were incubated with clarified cell

lysates or purified GST proteins overnight at 4uC. Peptide complexes

were recovered with 20 ml of streptavidin-conjugated Sepharose

beads (GE Healthcare) for 1 h at 4uC. After 3 washes in lysis buffer,

proteins were eluted from the beads in reducing Laemmli’s buffer,

resolved by SDS-PAGE, transferred to nitrocellulose and analysed

by western blot with the indicated antibodies.

Generation of recombinant viruses
MHV-68 vM2Y (with tyrosine residues at positions 120 and 129

mutated to phenylalanines) and vM2P2 (with proline residues at

positions 158, 160, 163 and 167 mutated to alanines) viruses were

generated by mutagenesis of the viral genome cloned as a bacterial

artificial chromosome (BAC) [47,48]. The following point

mutations were introduced on the M2 gene by overlapping PCR

using MHV-68 genomic DNA as a template: T4221, 4228A in

vM2Y and G4108, 4120, 4129, 4135C in vM2P2. PCR products were

inserted into the HindIII E MHV-68 fragment cloned in the

pST76K-SR shuttle plasmid [17], using BlnI (nt 3908) and XhoI (nt

5361) restriction sites. The PCR-derived regions were sequenced

to confirm the integrity of the mutations. Recombinant HindIII E

shuttle plasmids were transformed into an Escherichia coli strain

(DH10B) containing the wild type MHV-68 BAC (pHA3).

Following a multi-step selection procedure, recombinant BAC

clones were identified by DNA sequencing. To generate a vM2Y

revertant virus (vM2Y-R), the wild type HindIII E pST76K-SR

shuttle plasmid was transformed into DH10B cells containing the

mutant BAC genome. All viruses were reconstituted by transfec-

tion of BAC DNA into BHK-21 cells using FuGENE 6 (Roche

Molecular Biochemicals). The loxP-flanked BAC cassette was

removed by viral passage through NIH Cre 3T3 cells and limiting

dilution to obtain GFP-negative viruses.

Analysis of recombinant viruses
Groups of 6- to 8-week old female BALB/c mice (Instituto

Gulbenkian de Ciência, Portugal) were inoculated intranasally

with 104 p.f.u. in 20 ml of PBS under halothane anaesthesia. At 14,

21 or 50 days post-infection, spleens were removed and processed

for subsequent analysis. Titres of infectious virus were determined

by suspension assays of freeze-thawed spleen homogenates using

BHK-21 cells. Latent virus load was quantified by using explant

cocultures of single-cell suspension splenocytes with BHK-21 cells.

Plates were incubated for four (suspension assays) or five (coculture

assays) days, then fixed with 10% formal saline and counterstained

with toluidine blue. Viral plaques were counted with a microscope.

The frequency of MHV-68 genome-positive GC B cells was

determined by limiting dilution combined with real-time PCR,

essentially as previously described [20]. GC B cells (B220+; PNAhi)

were obtained from pools of five spleens using a BD FACSAria

Flow Cytometer (BD Biosciences). The purity of sorted cells was

always .98%. Real-time PCR was performed on a ABI Prism

7000 Sequence Detection System (Applied Biosystems) according

to the manufacturer’s instructions, using the fluorescent Taqman

methodology. It is important pointing out that the change in the

value range in these experiments when compared with previous

published work using the Light Cycler apparatus from Roche

Molecular Biochemicals, is due to the higher sensitivity of the real-

time PCR methodology performed here. Noteworthy, that this

change in sensitivity affects the total values but not the fold

difference in the frequencies of viral DNA positive cells for wild

type MHV-68 when compared to vM2FS. In fact, if we compare

the fold changes in the present and previous manuscripts, they are

actually very similar (compare current manuscript and [20]).

Primer/probe sets used were specific for the MHV-68 M9 gene (59

primer: GCCACGGTGGCCCTCTA; 39 primer: CAGGCCTC-

CCTCCCTTTG; probe: 6-FAM-CTTCTGTTGATCTTCC–

MGB). Samples were subjected to a melting step of 95uC for

10 min followed by 40 cycles of 15 s at 95uC and 1 min at 60uC.

In situ hybridization with a digoxigenin-labelled riboprobe

encompassing both MHV-68 vtRNAs and microRNAs 1 to 4

was performed on formalin-fixed, paraffin-embedded spleen

sections, as previously described [49]. Probes were generated

by T7 transcription of a pEH1.4 using a commercial kit from

Roche Molecular Biochemicals, according to the manufacturer’s

instructions.
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