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We report the production and availability of over 7000 fully sequence verified plasmid ORF clones representing over 3400
unique human genes. These ORF clones were derived using the human MGC collection as template and were produced in two
formats: with and without stop codons. Thus, this collection supports the production of either native protein or proteins with
fusion tags added to either or both ends. The template clones used to generate this collection were enriched in three ways.
First, gene redundancy was removed. Second, clones were selected to represent the best available GenBank reference
sequence. Finally, a literature-based software tool was used to evaluate the list of target genes to ensure that it broadly
reflected biomedical research interests. The target gene list was compared with 4000 human diseases and over 8500 biological
and chemical MeSH classes in ,15 Million publications recorded in PubMed at the time of analysis. The outcome of this
analysis revealed that relative to the genome and the MGC collection, this collection is enriched for the presence of genes with
published associations with a wide range of diseases and biomedical terms without displaying a particular bias towards any
single disease or concept. Thus, this collection is likely to be a powerful resource for researchers who wish to study protein
function in a set of genes with documented biomedical significance.
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INTRODUCTION
The study of protein function often demands high quality plasmid

clones that contain the relevant open reading frames (ORFs) in a

format compatible with protein expression. Increasingly, high

throughput methods have created the demand for clones that

encode a class of proteins of interest or the entire proteome of a

species. Functional studies rely on in vivo expression for phenotypic

studies or expression and purification by various means for

biochemical analysis. Utilizing recombinational cloning vectors

and including only the coding sequences, with all untranslated

sequences removed, ensures maximum flexibility, including protein

expression in a broad experimental range with various tagging

options for either end of the protein. In addition, to avoid erroneous

or ambiguous results regarding the expressed proteins, it is important

that the plasmids are clonal isolates that are fully sequence verified.

For many eukaryotic species, including humans, the number of

protein coding sequences exceeds 15,000 genes, making the

production of comprehensive sequence-verified ORF clone

collections daunting and expensive. In fact, a complete set of

source material for expressed genes in humans does not yet exist

[1–3]. One strategy is for researchers to focus on (a) meaningful

subset(s) of genes for functional studies relevant to the biological

questions they wish to address. For a human ORF collection the

criteria for selecting genes are mostly driven by researchers’

interest and clone availability, resulting often in either collections

of special interest [4] [5], or more ‘random’ lists of genes in

collections (RZPD, Invitrogen).

In recent years, a publicly funded project, the Mammalian

Gene Collection (MGC), aimed to create for multiple species, but

especially for man and mouse, collections of well annotated, fully

sequence validated cDNA clones [6]. However, the MGC clones

cannot easily be employed directly in functional proteomics

experiments because they are in many different vector backbones

and contain 59 and 39 untranslated sequences. On the other hand,

because they are fully sequenced and well annotated, these clones

provide an excellent starting point for creating ORF clones. At least

one such ORF set has been made so far, although that set comprises

pools of clones that are not sequence verified [7] [8] and thus has

potential ambiguity. Currently, there are also four human ORF

collections available from commercial distributors that were clonally

isolated and at least partially sequence validated. The recently

created ORFeome Collaboration (http://www.orfeomecollabora-

tion.org/) [9] is a project planned to bring to all researchers an ORF

clone collection that provides at least one representative ORF clone

for all human genes, similar in quality and scope to the MGC clones,

with all clones being fully sequence validated.

A limitation of the recombinational cloning vectors used for

these ORF clones is that each clone must be committed to one of

two non-interchangeable formats: closed (with stop codon; can

express native protein) or fusion (no stop codon; enables the
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addition of carboxyl-terminal fusion peptides). As each format has

unique advantages not available for the other, the ideal collection

would include both.

Previously we reported the production of two smaller human

clone sets in the CreatorTM system. One set focused on kinase

genes, both well-studied as well as novel or hypothetical ones [5];

the other clone set covered over 1000 genes associated with breast

cancer [10], identified in publications using software developed in

our group [11]. Here we report the production and complete

sequence validation of 7000 clones, HLFEX7000 (.3400 unique

human genes in two formats), and the distribution of these genes

with respect to their relationship to disease and biological terms in

publications in PubMed.

RESULTS

Gene Selection
To make the most useful ORF clone set of the MGC clones, we

wished to select an enriched set of genes that is of particular interest

to both medicine and biology. In addition, we wished to exclude

clones that corresponded to partial gene products and to eliminate

redundancy. We first excluded the subset of all MGC clones where

the CDS length was less than 90% of the length of the longest

corresponding NCBI RefSeq sequence [12–14]. We then removed

redundancy within the MGC clone set, and picked the clone closest

to the longest reference sequence by CDS length as a best MGC

representative for each gene. This reduced the number of candidate

template clones from 13493 to 7992, representing 7992 genes.

Our discussions with researchers indicated that a focused set of

genes in both formats (closed and fusion) would be of more value

that a large set in only one format. To ensure that our final gene

set (Supplementary Table S1) was enriched for genes related to

human diseases without any specific bias, the candidate list was

used to query MedGene [11] for genes associated with about 4000

human diseases. As described, MedGene is an automated

literature-mining tool, which comprehensively summarizes and

estimates the relative strengths of all human gene-disease

relationships reported in Medline/PubMed. The result of this

query was compared with queries using either all unique genes

represented in MGC or all ,33,000 human genes listed at the

time in LocusLink (2004, now: EntrezGene [15]). As shown for a

subset of diseases in Figure 1; Table 1 (complete list: Supplemen-

tary Table S2), the resulting target list: (a) was highly enriched for

the presence of genes with published associations with a wide

range of human diseases; (b) had a similar relative ratio among the

various diseases to that of both the genome and the MGC; and (c)

displayed a broad overlap among different diseases allowing

multiple diseases to be addressed with this set of ORF clones.

In addition to disease relationships, we expanded our evaluation

to include other search terms relevant for biological research by

employing a new database, BioGene, which is based on a similar

concept to MedGene. Instead of disease terms, BioGene has a co-

citation index for all human genes with all biological and chemical

Medical Subject Heading (MeSH) classes (http://www.nlm.nih.

gov/mesh), such as ‘‘lipids’’, ‘‘pain’’ and ‘‘tetrahydrofolates’’, and

Figure 1. Genes associated with Disease Classes (MeSH) in Publications. The clone target list (HFLEX7000) was compared with all human genes
(EntrezGene, 2004) and all genes represented by MGC (2004) with respect to published relationships of the genes to human diseases. The targeted
genes reveal similar proportionality to the other gene lists but a general enrichment of genes related to diseases (Table 1; Supplementary Table S2).
doi:10.1371/journal.pone.0001528.g001
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is available at http://biogene.med.harvard.edu/BIOGENE/. As

shown in Figure 2; Table 2 for 34 biological MeSH classes

(complete listing for all analyzed MeSH terms in Supplementary

Table S3), the candidate list is enriched for genes linked to all

biological MeSH terms in the literature, but proportional to that of

the entire MGC clones and to the entire genome.

Thus, the target set of 3557 genes had a similar overall

distribution of genes as the MGC and the human genome, but in

general has a higher representation of genes that have been linked

to both diseases and biological terms in the literature.

Clone Production and Sequence Validation
Production of Clone Collection We generated the ORF

clones via a processing pipeline that relies heavily on the use of

robotics and is supported by the FLEXGene LIMS to produce

clones in a highly automated, efficient, and accurate manner as

published previously [5,10,16,17].

The process of converting MGC cDNA clones into ORF clones

(Figure 3) was initiated by populating our production tracking

database (FLEXGene) with the relevant MGC information, e.g.

IMAGE ID, GI number, clone sequence, start/stop of CDS, CDS

length, gene information, plate and position in IMAGE/MGC

collection. All ORFs were normalized to start with ATG, and

natural stop codons either to TAG, or, for the format without C-

terminal stop, to TTG (Leu). PCR amplicons were gel purified and

captured using the In-FusionTM enzyme into a modified

recombinational cloning vector, pGWNcoXho, which increased

the efficiency of capturing DNA fragments larger than 1.5 kb [16].

After transformation into E. coli, constructs were clonally selected

and isolated. In total, we successfully produced clonal glycerol

stocks for 3,528 of 3,557 targeted genes, an overall success rate of

,98% (Table 3).

DNA sequence analysis and clone acceptance Based on a

pilot study of 96 genes in which we sequenced all available isolates

(4 closed and 4 fusion), we expected that 90% of the clones would

yield a valid clone. Thus, it was most efficient to sequence a single

isolate for each attempted clone format and return to evaluate

additional isolates for any that failed. Clones were accepted if they

had no truncation mutations, no frameshift mutations and no

more than one single amino acid difference with the reference

sequence. Clones with any nucleotide changes in the att-

sequences were rejected, as changes in these regions could make

it impossible to transfer the ORF into expression vectors (Table 3).

All rejected clones were manually inspected including a

BLAST-based comparison to GenBank/EMBL to assess whether

the clone matched any other entry for this gene. This step helped

to rescue some rejected clones which were found to be ultimately

acceptable due to updated MGC sequence entries.

Consistent with the pilot study, 6963 (90%) of the sequenced

clones were acceptable based on the above criteria, with the vast

Table 1. MeSH Term Analysis for Gene and Diseases Association in Publications; Examples
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Disease MeSH Term Genome MGC HFLEX7000
MGC/
Genome

HFLEX7000/
Genome

HFLEX7000/
MGC

# (%) # (%) # (%)

Neoplasms 7614 23.0 3904 40.0 1884 56.4 1.74 2.45 1.41

Pathological Conditions, Signs and Symptoms 7464 22.5 3631 37.2 1775 53.2 1.65 2.36 1.43

Nervous System Diseases 5600 16.9 2753 28.2 1366 40.9 1.67 2.42 1.45

Congenital, Hereditary, and Neonatal Diseases and Abnormalities 5269 15.9 2599 26.6 1287 38.5 1.67 2.42 1.4

Digestive System Diseases 4710 14.2 2465 25.2 1253 37.5 1.77 2.64 1.49

Immune System Diseases 4583 13.8 2302 23.6 1170 35.0 1.70 2.53 1.49

Skin and Connective Tissue Diseases 4386 13.2 2256 23.1 1192 35.7 1.74 2.70 1.55

Urologic and Male Genital Diseases 4025 12.2 2103 21.5 1087 32.6 1.77 2.68 1.51

Endocrine System Diseases 4016 12.1 2060 21.1 1047 31.4 1.74 2.59 1.49

Cardiovascular Diseases 3969 12.0 2034 20.8 1031 30.9 1.74 2.58 1.48

Hemic and Lymphatic Diseases 3956 11.9 2049 21.0 1026 30.7 1.76 2.57 1.47

Female Genital Diseases and Pregnancy Complications 3826 11.6 2011 20.6 1028 30.8 1.78 2.66 1.50

Nutritional and Metabolic Diseases 3670 11.1 1897 19.4 955 28.6 1.75 2.58 1.47

Respiratory Tract Diseases 3524 10.6 1808 18.5 944 28.3 1.74 2.66 1.53

Musculoskeletal Diseases 3518 10.6 1751 17.9 913 27.3 1.69 2.57 1.53

Disorders of Environmental Origin 3466 10.5 1809 18.5 935 28.0 1.77 2.68 1.51

Virus Diseases 2963 8.9 1527 15.6 804 24.1 1.75 2.69 1.54

Mental Disorders 2903 8.8 1451 14.8 785 23.5 1.69 2.68 1.58

Bacterial Infections and Mycoses 2817 8.5 1441 14.7 754 22.6 1.73 2.65 1.53

Eye Diseases 2700 8.2 1318 13.5 709 21.2 1.65 2.60 1.57

Stomatognathic Diseases 2101 6.3 1069 10.9 583 17.5 1.72 2.75 1.60

Otorhinolaryngologic Diseases 1882 5.7 941 9.6 503 15.1 1.69 2.65 1.56

Parasitic Diseases 1739 5.3 918 9.4 493 14.8 1.79 2.81 1.57

Examples of MedGene analysis of disease term association with genes in PubMed, using either all human genes (2004), unique genes in MGC (2004), or HFLEX7000
(targets). Numerical values and percentiles of each class associated with genes are shown. Relative MeSH term associations in either MGC or HFLEX7000 to the genome,
and in HFLEX7000 to MGC examine a potential bias in MGC or HFLEX7000 towards specific MeSH terms.
doi:10.1371/journal.pone.0001528.t001..
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majority (6669, or 95.8%) matching exactly to the reference

sequence (Table 3, for complete listing of clones see Supplemen-

tary Table S4). There were 25 clones that had identical

discrepancies in both formats (with and without stop codon). As

the two formats were independently produced from the same

source clone, this suggests that there may be mistakes in as many

as 0.3% of MGC reference sequences.

DISCUSSION
Starting from the MGC resource, we created protein expression

ORF clones in two different formats for over 3400 human genes,

HFLEX7000, making them the largest contribution of fully

sequence verified ORF clones to the ORFeome Collaboration

(www.Orfeomecollaboration.org ). The selection criteria for this

subset were based on a combination of publication records for the

individual gene and their association with biological as well as

human disease MeSH terms, as defined by two programs,

MedGene and BioGene. We aimed to reflect within this subset

a similar distribution as it was present in MGC or the genome, and

not to create a functionally or disease specific subset.

To assure the quality of this cDNA clone collection, we fully

sequence verified all clones. By employing the appropriate formatted

clone, users can add peptide tags to either end of the expressed

protein or express protein without any additional amino acids at all.

This is important for application reasons, e.g., for some proteins, the

C-terminal amino acids may be important functionally (PDZ

domain [18]) requiring a translation stop at the natural position,

whereas for other proteins the natural N-terminus is relevant (e.g.,

signal peptides for membrane protein trafficking [19,20]). Some

applications exploit the use of fusion tags at the C-terminus as an

experimental readout (e.g., yeast two hybrid [7]), or for capturing

expressed proteins and confirming full length expression [21].

We targeted over 3500 unique genes and obtained a fully

sequence validated ORF clone for 97% (.3400) of the genes. The

strategy of selecting only one clonal isolate per gene for sequencing

successfully yielded 90% acceptable clones. This success rate

dropped to 80% when second isolates of the failed clones were

sequenced, raising questions about the likelihood of success of

sequencing additional isolates for clones that failed after two

attempts. Also, capture efficiency, as measured by the number of

colonies after transformation, was not a predictor of eventual clone

success; clones with either high or low colony count numbers were

equally likely to be rejected at subsequent steps.

One set of troublesome ORFs identified during PCR and

confirmed during sequencing revealed duplication of either the 59

(near the ATG) or 39 (near the stop codon) sequences used to

design the PCR primer elsewhere in the clone. This led to

inappropriate PCR priming and ultimately an inability to clone

the gene. Any project using a similar strategy to convert MGC

clones into ORF clones might find the same problems, and

alternatives, e.g. restriction enzyme/ligation based or fragmented

PCR cloning, should be considered for any such ORFs.

In summary, the clones from MGC provide an excellent resource

for ORF clone production. The 97% success rate to produce fully

Figure 2. Genes associated with Biological MeSH Terms in Publications. The clone target list (HFLEX7000) was compared with all human genes
(EntrezGene, 2004) and all genes represented by MGC (2004) with respect to published relationships of the genes to all biological MeSH terms and
MeSH nodes (34). The targeted genes reveal similar proportionality to the other gene lists but a general enrichment of genes related to MeSH terms
(Table 2; Supplementary Table S3).
doi:10.1371/journal.pone.0001528.g002
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sequence validated clones, of which 96% match perfectly to the

template clone, underlines that this strategy is feasible in a cost

effective manner. Together with our other human ORF sets, notably

several hundred DNA binding proteins, over 500 kinases, 1000

breast cancer associated genes, this much broader collection of 3500

genes will be of great benefit to the research community.

As with all our sequence validated clone collections, human, yeast,

or microorganism, the HFLEX7000 clones are available at http://

plasmid.hms.harvard.edu. Furthermore, this collection as part of the

global ORFeome Collaboration will be available from the

ORFeome distributors (http://www.orfeomecollaboration.org/).

MATERIALS AND METHODS

ORF-specific primer design and strategic 96-well

plate organization
ORF sequences were parsed out in the FLEXGene LIMS from

the information provided with each MGC clone, and primer

sequences were designed using a nearest neighbor algorithm as

described earlier [5,10,16,17]. Natural stop codons were either

normalized to TAG or replaced with TTG (Leu) in the final

primer designs. In addition to ORF-specific, start and stop regions,

the 59 and 39 primers included fixed sequences that correspond to

partial att sequence-specific recombination recognition sites that

flank the ORF in the resultant plasmid clones.

Details regarding amplification, purification and capture into a

linear version of pDONR221 by In-fusionTM reaction were

previously published [16]; PCR success as measured as signal in

agarose gels, and capture success as determined as colonies after

transformation were stored in FLEXGene LIMS as reported

elsewhere [10,16,17].

Clone isolation and production of glycerol stocks
Transformations into E. coli (DH5alpha, T1 resistant) were

handled in 96-well plates, and robotically plated to 48-sector

LB/agar dishes with the appropriate antibiotic selection and

Table 2. Biological and Chemical MeSH Class Analysis for Genes Associated in Publications with MeSH Class; Examples
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Biological/Chemical MeSH
Class Genome Genome MGC MGC HFLEX7000 HFLEX7000

MGC/
Genome

HFLEX 7000/
MGC

HFLEX7000/
Genome

# % # % # %

Transcription, Genetic 6625 20.01 3457 35.38 1707 51.12 1.77 1.45 2.56

Recombinant Proteins 6454 19.49 3431 35.11 1697 50.82 1.80 1.45 2.61

Cell Survival 2912 8.79 1567 16.04 824 24.68 1.82 1.54 2.81

Subcellular Fractions 2753 8.31 1590 16.27 785 23.51 1.96 1.44 2.83

Cyclic AMP 2429 7.34 1271 13.01 670 20.07 1.77 1.54 2.74

Protein Kinases 2391 7.22 1307 13.37 668 20.01 1.85 1.50 2.77

Insulin 2212 6.68 1157 11.84 613 18.36 1.77 1.55 2.75

Mitosis 1917 5.79 1073 10.98 554 16.59 1.90 1.51 2.87

RNA Splicing 1950 5.89 1075 11.00 553 16.56 1.87 1.51 2.81

DNA Replication 1988 6.00 1071 10.96 540 16.17 1.83 1.48 2.69

Antigens, Neoplasm 1786 5.39 930 9.52 509 15.24 1.76 1.60 2.83

Drug Resistance 1645 4.97 910 9.31 486 14.56 1.87 1.56 2.93

Drug Interactions 1642 4.96 863 8.83 457 13.69 1.78 1.55 2.76

Cell Membrane Permeability 1195 3.61 669 6.85 365 10.93 1.90 1.60 3.03

Staurosporine 1012 3.06 570 5.83 331 9.91 1.91 1.70 3.24

Synapses 1128 3.41 581 5.95 312 9.34 1.75 1.57 2.74

Lipoproteins 1024 3.09 554 5.67 305 9.13 1.83 1.61 2.95

Genes, Lethal 1083 3.27 589 6.03 300 8.98 1.84 1.49 2.75

Cell Extracts 943 2.85 563 5.76 295 8.83 2.02 1.53 3.10

Adenosine 957 2.89 527 5.39 281 8.42 1.87 1.56 2.91

Hormones 976 2.95 499 5.11 271 8.12 1.73 1.59 2.75

Anti-Inflammatory Agents 891 2.69 473 4.84 270 8.09 1.80 1.67 3.01

Peptide Library 718 2.17 419 4.29 245 7.34 1.98 1.71 3.38

Microglia 700 2.11 406 4.15 241 7.22 1.97 1.74 3.41

Tamoxifen 776 2.34 445 4.55 237 7.10 1.94 1.56 3.03

Pain 812 2.45 391 4.00 229 6.86 1.63 1.71 2.80

Liver Regeneration 694 2.10 419 4.29 227 6.80 2.05 1.59 3.24

Aspirin 643 1.94 351 3.59 194 5.81 1.85 1.62 2.99

Nucleosomes 612 1.85 359 3.67 194 5.81 1.99 1.58 3.14

Examples of BioGene analysis of biological and chemical MeSH class associations with genes in PubMed, using either all human genes (2004), unique genes in MGC
(2004), or HFLEX7000 (targets). Numerical values and percentiles of each class associated with genes are shown (#, %). Relative MeSH Class associations in either MGC or
HFLEX7000 to the genome, and in HFLEX7000 to MGC examine a potential bias in MGC or HFLEX7000 towards specific MeSH terms.
doi:10.1371/journal.pone.0001528.t002..
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grown overnight at 37uC. Colonies were robotically visualized

and counted, and single isolates from each sector were picked

for inoculation into 1mL growth media (LB/antibiotic) using

a customized Megapix robot (Genetix), and 96-well culture

blocks were grown overnight at 37uC in the presence of

appropriate antibiotic. Inoculated cultures were assayed for

growth via OD600 measurement as a measure of transformation

efficiency, and aliquots were stored as 15% glycerol stocks in 96-

well plate format.

Sequence reactions
High-throughput sequencing was carried out on an Applied

Biosystems (ABI) capillary sequencer using dye-terminator and

fluorescent cycle sequencing with don3 (TCTTGTGCAATGTA-

ACATCAG) and don5 (CGTTAACGCTAGCATGGA) primers.

Raw sequence data were automatically analyzed for quality, vector

and repeat content using the pregap4 tool of the Staden Software

Package [22]. Reads passing this initial quality control were

automatically assembled (gap4 tool of the Staden Software

Figure 3. Workflow diagram of clone production. The entire production process from the design of primers to production of glycerol stocks is
shown. The process started by identifying MGC clones in the available plates and then creating array files along with matching PCR primer order files
that included two primers anchored at the 39 end, one for each format. The primers were used to amplify the ORFs from the matching MGC clones.
PCR products were monitored in agarose gels, and products were purified prior to capture via In-Fusion reaction. Competent bacterial strains were
transformed with the reaction followed by the robotic isolation of 4 resulting colonies per format, which were used to prepare 15% glycerol stocks.
Prior to sequencing a single isolate plate of 96 targets were created. As indicated, step specific results were stored in our LIMS.
doi:10.1371/journal.pone.0001528.g003
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Package). The primer walking method was used to finish insert

sequencing, with primers automatically designed by PRIDE [23].

Sequencing was finished when an overall sequence quality of

phred40 for the insert sequence and the vector-insert transition

was achieved.

Sequence Analysis Software
After the clone sequence was assembled in the Staten package, the

assembled sequences were verified using in house developed

software [24]. Clones with acceptable linker as well as CDS

sequences were collected for distribution. Clones were not

accepted if they had discrepancies leading to protein truncations,

frame shifts, discrepancies in the linker regions, or more than two

amino acid differences with the reference polypeptide. Sequences

of all clones started and ended at the BsrGI restriction site

(TGTACA) of the vector, allowing QC of in-frame analysis as well

as intactness of att recombination sites. Only clones that failed the

CDS region evaluation underwent BLAST search against all

available GenBank records, and were re-evaluated using matching

BLAST hits in pairwise alignments, allowing us to rescue ,5% of

the clones.

SUPPORTING INFORMATION

Table S1 Target Gene List for HFLEX7000. MGC clones

targeted for conversion into ORF clones are listed with Gene

Symbol, Entrez GeneID, gene name, GenBank Acc. No., and

CDS Length

Found at: doi:10.1371/journal.pone.0001528.s001 (0.62 MB XLS)

Table S2 Disease MeSH Term Analysis. Complete Analysis for

Gene and Diseases Association in Publications

Found at: doi:10.1371/journal.pone.0001528.s002 (0.57 MB XLS)

Table S3 Biological and Chemical MeSH Class Analysis.

Complete BioGene analysis of biological and chemical MeSH

class associations with genes in PubMed, using either all human

genes (2004), unique genes in MGC (2004), or HFLEX7000

(targets). Numerical values and percentiles of each class associated

with genes are shown (#, %). Relative MeSH Class associations in

either MGC or HFLEX7000 to the genome, and in HFLEX7000

to MGC examine a potential bias in MGC or HFLEX7000

towards specific MeSH terms.

Found at: doi:10.1371/journal.pone.0001528.s003 (1.87 MB XLS)

Table S4 HFLEX7000 Clone List. Complete listing of all

accepted, fully sequence validated ORF clones with Gene Symbol,

Entrez GeneID, PlasmID CloneID, Clone GenBank Acc. No.,

Clone IMAGE ID, and Reference GenBank Acc. No.

Found at: doi:10.1371/journal.pone.0001528.s004 (1.20 MB XLS)
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