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Understanding complex diseases will benefit the recognition of the properties of the gene networks that control biological
functions. Here, we set out to model the gene network that controls T-cell activation in humans, which is critical for the
development of autoimmune diseases such as Multiple Sclerosis (MS). The network was established on the basis of the
quantitative expression from 104 individuals of 20 genes of the immune system, as well as on biological information from the
Ingenuity database and Bayesian inference. Of the 31 links (gene interactions) identified in the network, 18 were identified in
the Ingenuity database and 13 were new and we validated 7 of 8 interactions experimentally. In the MS patients network, we
found an increase in the weight of gene interactions related to Th1 function and a decrease in those related to Treg and Th2
function. Indeed, we found that IFN-ß therapy induces changes in gene interactions related to T cell proliferation and
adhesion, although these gene interactions were not restored to levels similar to controls. Finally, we identify JAG1 as a new
therapeutic target whose differential behaviour in the MS network was not modified by immunomodulatory therapy. In vitro
treatment with a Jagged1 agonist peptide modulated the T-cell activation network in PBMCs from patients with MS. Moreover,
treatment of mice with experimental autoimmune encephalomyelitis with the Jagged1 agonist ameliorated the disease course,
and modulated Th2, Th1 and Treg function. This study illustrates how network analysis can predict therapeutic targets for
immune intervention and identified the immunomodulatory properties of Jagged1 making it a new therapeutic target for MS
and other autoimmune diseases.
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INTRODUCTION
Understanding the structure and dynamics of biological networks

may prove critical to unravel complex traits and diseases, such as

autoimmune diseases [1]. In the immune response, T cells interact

with antigen-presenting cells in a complex process that generates

changes in gene expression. These changes underlie cell differenti-

ation, and effector and regulatory events, as well as promoting the

acquisition of a panel of adhesion molecules that guide cells to the

appropriate tissues [2, 3]. Several evidences indicates gene de-

regulation within the immune system in autoimmune diseases [4, 5],

such as in Multiple Sclerosis (MS) [6]. Several studies suggest that T-

cell activation and the ensuing differentiation to effector cells or is one

of the most critical process in controlling autoimmunity, as well as

maintaining the balance between effector and regulatory mechanisms

[7–11]. However, despite the many molecular and cellular studies, we

still lack a comprehensive understanding of how the immune system

is controlled and how autoimmune diseases arise. Given the complex

interactions between the cells and molecules that regulate this process,

a systems approach to analyse these processes might identify critical

functional interactions that are disturbed in autoimmune diseases.

Moreover, the identification of such pathological interactions might

facilitate the development of new therapeutic targets [12, 13].

MS is a chronic inflammatory and neurodegenerative disease of

the central nervous system [14]. MS is characterized by the

presence of plaques composed by chronic inflammatory infiltrates,

including T and B cells as well as monocytes into the brain,

accompanied by the presence of large areas of demyelination and

axonal loss [6]. MS is the second cause of permanent disability in

young adults after spinal cord injury and due to its chronic nature

imposes a significant health and social cost in western countries.

Although current immunotherapies are able to modify disease

course, we still need to develop more effective and safe therapies

for improving the quality of life of patients.

The development of network theory is providing important

insights into gene and protein networks [15] . However, the

translation of such advances to humans complex diseases such as

autoimmune diseases is confronted with many challenges, such as

incomplete knowledge of the molecules involved, lack of

quantitative data, the higher degree of complexity and the limited

availability of analytical methods. Among several methods of

network analysis for reconstructing network topology from

experimental datasets [16], Bayesian networks are those that offer

the best results [17, 18]. In human complex diseases, the use of

different clinical phenotypes such as quantitative traits, disease

subtypes or therapies, can introduce meaningful perturbations into

a network to help infer its topology [19].
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The aim of our study was to assess the functional properties of

the gene network that controls the T-cell activation processes in

healthy circumstances and in an autoimmune disease such as MS.

Furthermore, we assessed the effect of immunotherapy in such

a gene network. In addition we were interested in identifying new

therapeutic targets at the systems level. In order to achieve this

objective, we performed a network analysis using quantitative

measurements of gene expression obtained by real time PCR from

a small number of well-known genes involved in T-cell activation,

as well as using prior biological information. We limited our study

to a set of 20 genes for two reasons: 1) we were interested in

obtaining a balanced matrix considering number of genes, subjects

and perturbations; and 2) the limited amount of RNA from every

individual in which assess the gene expression levels by real time

PCR in the same sample. We employed a Bayesian approach to

obtain an accurate reconstruction of the network and indeed, we

assessed the qualitative and quantitative network properties using

several new methods from systems biology. This systems approach

to autoimmunity revealed functional differences in the gene

network that controls T-cell activation that cannot be captured

with previous methods. Moreover, we show how this approach can

be useful in translational clinical research by evaluating the effect

of current therapies, and by identifying new therapeutic targets for

immunotherapy, such as the Jagged1-Notch pathway.

RESULTS

Network analysis of the T-cell activation gene

network
In order to obtain a more accurate network, we decided to focus

on a small set of genes for which the biological information was

more complete, they were previously implicated in MS and having

them distributed among five basic functions associated with T-cell

activation. In this way, we were able to obtain quantitative data

and a good balance between the size of the network and the

number of possible perturbations related to the different disease

phenotypes and therapies [17]. Thus, the experimental dataset was

obtained by assessing the gene expression levels of the 20 genes by

real time PCR in a cohort of 104 subjects, composed by healthy

controls and patients with MS (see Table 1 for details of the

clinical characteristics and Table S1 for statistically summary of

gene expression levels). Our approach profits the presence of

different phenotypes (healthy, patient condition or different

immunotherapies) as perturbations to the system in order to

improve the ability of Bayesian inference to identify the right

interactions. In the other hand, since Bayesian algorithms might

lead to several different results using the same experimental

dataset, we also feed the algorithm with a structural network

template to decrease the number of different outputs and to

Table 1. Demographic and clinical data of patients and
controls

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

HC MS

N = 52 52

Male/Female 26/26 26/26

Age (years) 45.6617.7 39.3610.4

EDSS score – 3.0061.82

MSFC score – 20.0260.66

Disease duration (years) – 6.7066.45

Immunomodulatory therapy (yes/no) – 25/27

doi:10.1371/journal.pone.0001222.t001..
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Figure 1. Network analysis of the human T-cell activation network: The structural network was obtained from co-expression analysis using the
Ingenuity database. The structural network has 20 genes and we identified 50 links. Using the structural network as a template and the experimental
dataset (gene expression levels of the 20 genes from 104 subjects quantified by real time-PCR), we reconstructed the T-cell activation network. The
network contains the 20 genes and we identified 31 links (see Table 1 for information about the weight, direction and previous biological knowledge
of the links).
doi:10.1371/journal.pone.0001222.g001
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increase its accuracy. We obtained the template (structural network)

by applying biological knowledge from co-expression studies

available at the Ingenuity database (http://www.ingenuity.com/

). The resulting structural network identified 50 links (Fig 1). Using

this structural network as a template, we inferred the topology of the

human T-cell activation network by using the experimental

dataset performing a Bayesian network approach (see methods).

The inferred network model (Fig 1 and Table 2) has 31 links

between the 20 genes, of which 26 were arcs and 4 were edges. We

found that hubs in the T-cell activation network differ from those

in the structural network, indicating that the experimental dataset

was informative to overcome the literature bias by which genes

studied for many years (e.g. IFNc) are cited more often than new

genes (e.g. transcription factors). Moreover, because cycles are not

permitted in Bayesian networks, the links identified represent

a selection of the most relevant interactions in the network,

including the removal of the redundant ones such as autocrine

loops. Of the 31 links identified, 18 were identified in the gene co-

expression searches in the Ingenuity database, or were described in

the biological literature (supplementary Table S2 and S3) and as

such, they were already present in the structural network. The

remaining 32 links present in the structural network and absent in

the final network were discarded by the algorithm for the following

reasons: 1) the gene interaction is not functional in the tissue

studied (PBMC); 2) the magnitude of the interaction was not

enough for being detected based in the gene co-expression levels;

3) removal of cycles imposed by the Bayesian inference. For 15 of

the 18 predicted links, the direction of the interaction was correctly

inferred, while for the other three interactions there was

insufficient information for the Bayesian algorithm to define this

parameter. The Bayesian algorithm found 13 new links that have

not been previously reported or identified by bioinformatics

analyses of the gene co-expression database. Due to the small size

of our network, we did not calculate common network parameters

such as degree, mean path-length or clustering coefficient.

Validation of the new inferred links
In order to assess the accuracy of our network analysis method and

the validity of our T-cell activation network, we validated the

newly inferred links as well some of the predicted ones in a new

dataset of 16 healthy individuals. In addition, the validation of new

links would probe that differences in the topology of the gene

network have biological implications, at least at the gene

expression level. In vitro assays were performed by stimulating

PBMCs with the recombinant proteins involved in such links (the

parent node), to assess their influence on the target gene (the child

node) in terms of expression. We were able to experimentally

validate the interaction between 7 of the 8 links assessed (87%

validation), defining a statistical association between the levels of

the parent and the child node (Table 3). We found a significant

increase in CD28, IL12A and ITGA4 gene expression after 12 or

24 hours in cells stimulated with IL-10 (p,0.05, Table 3),

validating the predicted arcs IL10–CD28 and IL10–ITGA4, and

the new arc IL10–IL12A. Furthermore, JAG1 gene expression

augmented after 24 hours in IL-4 stimulated cells (p = 0.017),

validating the predicted edge JAG1–IL4. Finally, in CTLA-4 IgG

stimulated cells JAG1, MX1 and PTPRC gene expression all

increased significantly (p,0.05), validating the newly identified

arcs CTLA4–JAG1, and CTLA4–MX1 and the predicted edge

PTPRC–CTLA4. Thus, these results confirm the accuracy of the

reconstructed T-cell activation network.

The topology of the network reveals pleiotropy of

genes in biological functions
We performed a qualitative analysis of the functional properties of

the topology of the network [20, 21] using network analysis [22].

First we obtained the dependence matrix that assesses the role of

every gene in a given function based on the definition of such

function and the constraints imposed by the topology of our

network (Figure 2). We found that the topology of the

reconstructed network identified some of the biological function

of the participating genes, such as the opposing roles of Th1-Th2

activity, as described by the stimulatory effect of IFNG and

TBX21 in Th1 function, and of GATA3 and STAT6 in Th2

Table 2. Gene interactions identified in the T-cell activation
network.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Parent Child Type Relative weight Category Orientation

TGFB1 IL12A Arc 1.00 New –

ITGA4 TGFB1 Arc 0.99 Predicted Reverse

JAG1 IL4 Edge 0.96 Predicted Right

ITGA4 ITGB1 Arc 0.86 Predicted Right

IL4 HLA-DRA Arc 0.78 New –

PTPRC CD28 Arc 0.76 Predicted Reverse

TNF IFNG Arc 0.73 New –

JAG1 TNF Arc 0.68 New –

CTLA4 JAG1 Arc 0.65 New –

STAT1 STAT6 Arc 0.64 Predicted Right

TGFB1 GATA3 Arc 0.61 Predicted Right

IL10 IL12A Arc 0.56 New –

IL12A STAT6 Arc 0.54 New –

ITGA4 STAT1 Arc 0.51 New –

IL4 IL10 Edge 0.49 Predicted Right

STAT1 GATA3 Arc 0.48 Predicted Right

IL12A MX1 Arc 0.46 New –

IL10 CD28 Arc 0.45 Predicted Reverse

TNF ITGA4 Arc 0.43 Predicted Right

GATA3 HLA-DQB1 Arc 0.40 New –

STAT1 TBX21 Arc 0.38 Predicted Right

PTPRC JAG1 Arc 0.37 New –

TGFB1 ITGB7 Edge 0.37 Predicted Right

IFNG HLA-DRA Arc 0.36 Predicted Right

PTPRC CTLA4 Edge 0.35 Predicted Right

ITGA4 ITGB7 Arc 0.33 Predicted Right

TNF STAT1 Arc 0.33 New –

CTLA4 MX1 Arc 0.31 New –

CD28 TNF Arc 0.30 Predicted Right

IL10 ITGA4 Arc 0.30 Predicted Right

JAG1 TBX21 Arc 0.26 Predicted Right

Links whose direction cannot be changed without changing the probabilistic
relations encoded are named arcs, otherwise they are edges. If there is an arc
from gene A to another gene B, then we say that A is a parent of B and B is
a child of A. The relative weight was measured with the Kullback-Leibler (KL)
divergence indicating the contribution of each link with respect to the
complete network structure (see methods). The category indicates whether the
interactions were previously reported in the literature or identified in the co-
expression Ingenuity database (predicted) or not (new). The orientation
indicates if the direction of the causal influence for the predicted interactions
was the same as that in the structural network (right) or the opposite (reverse).
doi:10.1371/journal.pone.0001222.t002..
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function, as well as by the inhibitory effect of IFNG and TBX21 in

Th2 function, and of GATA3 and STAT6 in Th1 function

(Figure 2). Indeed, the topological analysis identified HLA

molecules as activators in the antigen presentation process and

the role of CTLA4, IL-10, TGFß and JAG1 in Treg function.

Moreover, the dependence matrix also highlighted the pleiotropic

activity of many genes in T-cell activation, as represented by the

dual role (in yellow) of several genes in the majority of the

functions analyzed. In fact, the majority of the genes were

activators of migration, indicating that the expression of adhesion

molecules by T cells must be regulated after activation so that they

may migrate and act in the target tissue. Furthermore, MX1 was

included to assess the effect of IFN-ß therapy, although it does not

influence T-cell activation, and we found that it did not affect the

dependency matrix of the T-cell activation network, reinforcing

the specificity of the analysis. However, the small size of the

network and limitation of the network analysis process might

prevent the right identification of the implication of every single

gene in the functions studied, exemplified by the fact that in some

cases the Cell Net Analyzer (CNA, see methods) was not able to

discriminate a stimulatory or inhibitory effect and release a dual

influence (yellow) or no influence (white) for a given gene. We

identified the minimal cut sets (MCS, see methods) for each

function in order to assess the structural robustness and fragility of

the given function (Table 4). We found that the process of T-cell

activation was very robust (robustness = 1, Table 4), mainly due to

the selection of the genes critical for this process. Migration

displayed an intermediate robustness (robustness = 0.58, Table 4)

because most of the genes contribute to generate a specific pattern

of adhesion molecule expression after T-cell activation. In

contrast, Th1-Th2 and Tr function were not very robust

(robustness = 0.27 and 0.21 respectively, Table 4), indicating that

T-cell fate after activation is less fixed and that it is more sensitive

to stochastic events or environmental signals [2].

Differences in the T-cell activation network between

healthy individuals and patients with Multiple

Sclerosis
To quantify the importance of each interaction of the network in

healthy controls, MS patients and MS patients treated with INF b,

we calculated the Kullback-Leibler divergence (KL-divergence) of

each interaction of the network for each diagnosis. To do that, we

used the inferred topology of the network of T-cell activation and

the gene expression levels of each of the groups (see methods).

Thus, we obtained quantitative values that describe the behaviour

of each interaction of the T-cell activation network under the

different diagnosis. These values are indicative of the importance

of the interaction, or to put it another way, they are indicative of

the activation of that interaction. We found that the weight of

some gene interactions differed in the two networks (Figure 3A

represented by the colour of the arrow; Table 5). Accordingly, we

found a significant decrease in the weight of the interaction

between JAG1–IL4, IL10–IL12A, and IL12A–STAT6 in patients

with MS (p,0.05), and a significant increase in the weight of the

interaction between TGFB1–IL12A and PTPRC–JAG1 when

compared to HC (p,0.05).

Effect of immunotherapy in the T cell activation

network
Because immunomodulatory treatments might exert their activity

in a pleiotropic manner, we were interested in evaluating the effect

of one of the therapies for MS in the network, such as INF-ß

therapy. Our aim was to identify the functions targeted by IFN-ß

in order to validate our approach to study immunotherapies at the

systems level. Following the same procedure, we reconstructed the

T-cell activation network using the gene expression levels from

IFN-ß treated and untreated patients, and we compared the

differences in interaction weight between pairs of genes (Figure 3B).

When the IFN-ß treated and untreated patients were compared,

we found a significant increase in the weight of the interaction

between ITGA4–TGFB1 and IL4–HLA-DRA (p,0.001) and

a significant decrease in the weight of the interaction between

JAG1–TNF, TGFB1–GATA3, IL10–IL12A, IL10–CD28,

TGFB1–ITGB7, ITGA4–ITGB7 and IL10–ITGA4 (p,0.005,

Table 5). Thus, our results indicate that IFN-ß modifies different

regions of the T-cell activation network, affecting different

functions and thereby confirming its pleiotropic activity. While

we identified the immunomodulatory effect of IFN-ß therapy in

the T-cell activation network, we found that it did not restore their

interaction weight to the baseline levels represented by the HC

network (Figure 3C). Hence, IFN-ß therapy fails to completely

restore the T-cell activation network indicating that this therapy is

unable to completely normalize T cell function. This is in

agreement with the clinical experience that IFN-ß therapy is only

partially effective in MS [23].

We were also interested in identifying new therapeutic targets

not addressed by IFN-ß therapy. Thus, we analyzed the

differences between the HC and the IFN-ß treated patient

networks. Ideally, a therapy will restore the functional state close

to that of the healthy gene network and any deviation from such

state can be considered as a therapeutic target [12]. The

comparison between IFN-ß treated patients and HC networks

Table 3. Validation of the gene interactions in the T-cell
activation network.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Stimulus
Target
Gene

Gene Expression levels (mean (SD) ct
value) p value

0 hours 12 hours 24 hours

IL10 CD28 1.49E+01 1.14E+02 1.65E+02 ,0.001a

(1.25E+01) (1.18E+02) (1.43E+02) ,0.001b

IL12A 3.15E+00 2.32E+01 3.54E+00 0.017a

3.99E+00 (3.30E+01) (3.27E+00)

ITGA4 6.72E+02 2.69E+03 2.60E+03 0.006a

(8.22E+02) (5.45E+03) (2.59E+03) ,0.001b

IL4 HLA-DRA 3.20E+02 ND 9.46E+02 ns

(2.92E+02) (2.06E+03)

JAG1 1.64E-01 ND 5.55E-01 0.017b

(9.38E-02) (5.90E-01)

CTLA4 JAG1 1.64E-01 ND 1.11E+00 ,0.001b

(9.38E-02) (2.15E+00)

MX1 2.27E+01 ND 1.03E+02 0.045b

(1.98E+01) (1.76E+02)

PTPRC 2.67E-01 ND 7.50E-01 0.020b

(1.58E-01) (1.37E+00)

Gene expression levels of target genes were assessed by real time PCR in PBMCs
from 16 new healthy controls after stimulation with IL10, IL4 or CTLA4
(stimulus) for 12 to 24h. Results are described as the mean (SD) of the normalize
ct value from real time PCR assays. Differences were assessed with the Mann-
Whitney U test.
ND: not done; ns: not significant; ap value comparing results at 0 to 12 hours; bp
value comparing results at 0 to 24 hours
doi:10.1371/journal.pone.0001222.t003..
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(Figure 3C, Table 5) showed a significant increase in the weight of

the gene interaction between the ITGA4–TGFB1, and the

PTPRC–JAG1 genes (p,0.05) and a decrease in the weight of

the interactions between JAG1–IL4, JAG1–TNF, TGFB1–

GATA3, IL10–IL12A, IL12A–STAT6, IL10–CD28, TGFB1–

ITGB7, ITGA4–ITGB7 and IL10–ITGA4 (p,0.05). Overall, we

found that IFN-ß therapy failed to restore the balance between

pro-inflammatory cytokines and Treg function. Pro-inflammatory

cytokines, such as TNF or IL12A, the T-cell activation molecule

CD28, the regulatory molecules IL10, TGFB1 or the adhesion

molecules ITGA4 and ITGB1 have all been evaluated previously

as therapeutic targets for autoimmune diseases, including MS [24–

29]. Hence, we focused on the JAG1 gene as a potential target for

new therapies to treat autoimmune diseases. JAG1 plays a critical

role in our network since it was consistently modified in the disease

state and its interactions were almost unmodified by IFN-ß

therapy, making it an excellent therapeutic target in our model,

even if JAG1 mRNA levels were not significantly different between

patients and controls (Table S1). Moreover, JAG1 has recently

being identified as a candidate gene for MS [30].

Figure 2. Network Analysis: Dependence matrix. The role of each gene in every T-cell activation function (antigen (Ag) presentation; Th1
differentiation; Th2 differentiation; Treg function; migration) based on the topology of the network is displayed using the following colour code:
yellow: dual role (activator or inhibitor); green: full activator; red: full inhibitor; white: no influence.
doi:10.1371/journal.pone.0001222.g002
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Validation of JAG1 as a therapeutic target in

Multiple Sclerosis
Notch signalling in the adult immune system has several functions

depending on the ligand involved [31, 32]. Jagged1 signalling

promotes Treg function whereas Delta1 promotes pro-inflamma-

tory responses. In order to validate the JAG1 gene and its protein

jagged1 as a therapeutic target, first we assessed the effect of

stimulating human PBMCs from MS patients in vitro with

a Jagged1 peptide agonist [33]. We used the HES5 and MX1

genes as reporters of the Jagged1-Notch pathway and of the IFN-

ß-IFNR1 pathway, respectively. Accordingly, PBMCs cultures

stimulated with either the Jagged1 peptide agonist or IFN-ß

displayed a significant increase in HES5 or MX1 gene expression

(Supplementary Table S4). Moreover, the Jagged1 stimulated

network differed from the untreated and the IFN-ß treated

network (Table 6, Fig 4A). Compared to the network from

untreated patients, Jagged1 therapy induced an increase in the

interaction weight between JAG1-TNF and the downstream

interaction TNF-IFNG, as well as a decrease in the interaction

weight between CD28-TNF (Figure 4A). Thus, our network

analysis was able to capture the biological effect of Jagged1-Notch

signalling in T-cell activation. Our results suggested that the

Jagged1-Notch pathway modulates Th1 function. Exposure of

PBMCs from untreated patients to IFN-ß in vitro yielded a network

similar to that obtained ex-vivo from IFN-ß treated patients

(Figure 3B and 4B), although some quantitative differences in

the interaction weight between the pairs of genes involved in the

effect of IFN-ß were detected. Indeed, IFN-ß therapy impaired the

effect of JAG1 on TNF that is required for Jagged1 to suppress

Th1 function in our model. Finally, the combination of Jagged1

and IFN-ß treatment indicates a synergistic effect of both therapies

(Table 6, Fig 4C), and the effect of each therapy could be

identified in the different network interactions, which might

produce different functional effects. Moreover, Jagged1 therapy

was able to recover the effect of JAG1 on TNF that was lost with

Table 4. Network Analysis: Minimal cut-set analysis (MCS).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Cellular process Fragility Robustness MCS

Ag presentation
and co-
stimulation

0 1 none

Th1 and Th2
differentiation

0.73 0.27 (JAG1, TNF) (CD28,JAG1)

(IL4 TBX21 TNF)

(ITGA4, IFNG, JAG1,STAT1)

(IFNG, JAG1, STAT1, TGFB1)

(ITGA4, IFNG, IL4, STAT1, TBX21)

(IFNG, IL4, STAT1, TBX21, TGFB1)

(GATA3, IFNG, IL12A, JAG1, STAT1)

(GATA3, IFNG, IL12A, IL4, STAT1,
TBX21)

Treg function 0.79 0.21 (CTLA4, JAG1, TNF)

(CTLA4, CD28, JAG1)

(CTLA4, IL4, TBX21, TNF)

(CTLA4, ITGA4, IFNG, JAG1, STAT1)

(CTLA4, IFNG, JAG1, STAT1, TGFB1)

(CTLA4, ITGA4, IFNG, IL4, STAT1,
TBX21)

(CTLA4, IFNG, IL4, STAT1, TBX21,
TGFB1)

Migration to
tissues

0.42 0.58 (ITGA4)

(IL10, TNF)

(JAG1, TNF)

(CD28, JAG1)

(IL4, TNF)

doi:10.1371/journal.pone.0001222.t004..
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Figure 3. Comparison of the T-cell activation network between patients and controls. A) HC versus untreated MS patients; B) untreated MS
patients versus MS patients treated with IFN-ß; C) HC versus patients treated with IFN-ß. Comparisons between gene interaction weights are
described using the following colour code: black: no change; green: decreased; red: increased. See Table 4 for statistical analysis.
doi:10.1371/journal.pone.0001222.g003
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Table 5. Comparison in the weight of the interaction in the T-cell activation network between controls, MS patients and MS
patients treated with IFN-ß.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Gene interaction KL value

Parent Child HC MS MS IFN-ß p

TGFB1 IL12A 0.28 (0.11–0.48) 0.62 (0.35–0.90) 0.45 (0.03–0.60) 0.003a

ITGA4 TGFB1 0.30 (0.03–0.49) 0.19 (0.04–0.55) 0.99 (0.58–1.00) ,0.001b

,0.001c

JAG1 IL4 0.58 (0.41–1.00) 0.28 (0.10–0.52) 0.27 (0.02–0.56) 0.012a

0.008c

ITGA4 ITGB1 0.21 (0.07–0.48) 0.31 (0.13–0.35) 0.55 (0.07–0.99) ns

IL4 HLA-DRA 0.34 (0.03–0.63) 0.22 (0.11–0.30) 0.47 (0.18–0.68) 0.001b

PTPRC CD28 0.32 (0.16–0.47) 0.33 (0.16–0.69) 0.12 (0.03–0.85) ns

TNF IFNG 0.26 (0.16–0.46) 0.36 (0.12–0.62) 0.23 (0.06–0.61) ns

JAG1 TNF 0.36 (0.24–0.60) 0.52 (0.19–0.68) 0.10 (0.00–0.37) 0.006b 0.012c

CTLA4 JAG1 0.25 (0.12–0.52) 0.53 (0.23–0.61) 0.40 (0.08–0.59) ns

STAT1 STAT6 0.22 (0.00–0.61) 0.32 (0.12–0.94) 0.43 (0.02–0.67) ns

TGFB1 GATA3 0.39 (0.09–0.47) 0.18 (0.04–0.29) 0.00 (0.00–0.04) ,0.001b

,0.001c

IL10 IL12A 0.36 (0.19–0.59) 0.07 (0.00–0.15) 0.00 (0.00–0.03) ,0.001a

0.031b

,0.001c

IL12A STAT6 0.39 (0.12–0.79) 0.06 (0.00–0.23) 0.12 (0.00–0.25) 0.001a

0.008c

ITGA4 STAT1 0.25 (0.05–0.64) 0.20 (0.01–0.37) 0.54 (0.00–0.62) ns

IL4 IL10 0.22 (0.07–0.51) 0.10 (0.00–0.28) 0.05 (0.00–0.14) ns

STAT1 GATA3 0.31 (0.09–0.53) 0.29 (0.12–0.49) 0.35 (0.00–0.41) ns

IL12A MX1 0.22 (0.03–0.69) 0.22 (0.04–0.32) 0.10 (0.00–0.36) ns

IL10 CD28 0.23 (0.06–0.41) 0.12 (0.10–0.53) 0.03 (0.00–0.07) 0.043b

,0.001c

TNF ITGA4 0.23 (0.14–0.31) 0.36 (0.01–0.67) 0.14 (0.07–0.53) ns

GATA3 HLA-DQB1 0.24 (0.06–0.46) 0.05 (0.01–0.33) 0.16 (0.00–0.37) ns

STAT1 TBX21 0.30 (0.08–0.55) 0.23 (0.17–0.53) 0.20 (0.00–0.66) ns

PTPRC JAG1 0.13 (0.01–0.22) 0.24 (0.15–0.33) 0.39 (0.14–0.69) 0.048a

0.011c

TGFB1 ITGB7 0.27 (0.02–0.36) 0.44 (0.21–0.60) 0.00 (0.00–0.00) ,0.001b

,0.001c

IFNG HLA-DRA 0.23 (0.00–0.53) 0.21 (0.03–0.29) 0.20 (0.15–0.39) ns

PTPRC CTLA4 0.19 (0.05–0.36) 0.04 (0.00–0.31) 0.06 (0.01–0.46) ns

ITGA4 ITGB7 0.15 (0.00–0.38) 0.30 (0.03–0.41) 0.00 (0.00–0.00) ,0.001b

0.007c

TNF STAT1 0.37 (0.07–0.59) 0.19 (0.00–0.29) 0.35 (0.00–0.41) ns

CTLA4 MX1 0.28 (0.01–0.43) 0.11 (0.01–0.40) 0.07 (0.00–0.22) ns

CD28 TNF 0.12 (0.02–0.35) 0.14 (0.03–0.24) 0.21 (0.00–0.44) ns

IL10 ITGA4 0.32 (0.16–0.39) 0.34 (0.20–0.72) 0.00 (0.00–0.09) ,0.001b

,0.001c

JAG1 TBX21 0.22 (0.11–0.43) 0.06 (0.01–0.24) 0.15 (0.01–0.44) ns

ns: not significant
ap value between HC and MS patients
bp value between MS patients and MS patients treated with IFN-ß
cp value between HC and MS patients treated with IFN-ß
Using the Kullback-Leibler (KL) divergence of links, we compared the differences between the control (HC), untreated MS patients (MS) and MS patients treated with
IFN-ß (MS IFN-ß) networks. The results are described by the median (range) of the KL value. p values were adjusted using the Bonferroni method.
doi:10.1371/journal.pone.0001222.t005..
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Table 6. Comparison in the weight of the interaction in the T-cell activation network between jagged1, IFN-ß and jagged1 plus
IFN-ß treatments in vitro.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Gene interaction
KL value

Parent Child Basal Jagged1 IFN-ß Jagged1+IFN-ß p value

TGFB1 IL12A 0.02 (0.00–0.04) 0.02 (0.01–0.04) 0.09 (0.02–0.15) 0.08 (0.06–0.11) ,0.001b

,0.001c

ITGA4 TGFB1 0.03 (0.01–0.05) 0.03 (0.01–0.04) 0.09 (0.02–0.15) 0.08 (0.02–0.13) ,0.001b

,0.001c

JAG1 IL4 0.04 (0.01–0.07) 0.02 (0.00–0.04) 0.03 (0.00–0.05) 0.03 (0.00–0.05) ns

ITGA4 ITGB1 0.01 (0.00–0.01) 0.00 (0.00–0.01) 0.12 (0.04–0.21) 0.14 (0.09–0.18) ,0.001b

,0.001c

IL4 HLA-DRA 0.11 (0.06–0.16) 0.10 (0.07–0.13) 0.13 (0.05–0.22) 0.13 (0.02–0.24) ns

PTPRC CD28 0.00 (0.00–0.00) 0.00 (0.00–0.00) 0.00 (0.00–0.00) 0.00 (0.00–0.00) ns

TNF IFNG 0.00 (0.00–0.00) 0.02 (0.00–0.05) 0.00 (0.00–0.00) 0.05 (0.00–0.11) ,0.001a

,0.001c

JAG1 TNF 0.03 (0.01–0.05) 0.09 (0.01–0.18) 0.02 (0.01–0.03) 0.20 (0.02–0.41) 0.014a

0.047b

0.004c

CTLA4 JAG1 0.00 (0.00–0.00) 0.00 (0.00–0.00) 0.00 (0.00–0.00) 0.00 (0.00–0.00) ns

STAT1 STAT6 0.00 (0.00–0.00) 0.00 (0.00–0.00) 0.01 (0.00–0.02) 0.01 (0.00–0.02) 0.031b

0.045c

TGFB1 GATA3 0.15 (0.08–0.22) 0.12 (0.08–0.16) 0.13 (0.10–0.17) 0.16 (0.06–0.26) ns

IL10 IL12A 0.00 (0.00–0.00) 0.00 (0.00–0.00) 0.00 (0.00–0.00) 0.00 (0.00–0.00) ns

IL12A STAT6 0.01 (0.00–0.02) 0.01 (0.00–0.03) 0.04 (0.01–0.07) 0.13 (0.12–0.14) ,0.001b

,0.001c

ITGA4 STAT1 0.02 (0.01–0.04) 0.02 (0.01–0.03) 0.05 (0.01–0.09) 0.06 (0.04–0.08) ,0.001b

,0.001c

IL4 IL10 0.00 (0.00–0.00) 0.00 (0.00–0.00) 0.00 (0.00–0.00) 0.00 (0.00–0.00) ns

STAT1 GATA3 0.06 (0.01–0.11) 0.02 (0.07–0.12) 0.02 (0.01–0.04) 0.02 (0.07–0.1) ns

IL12A MX1 0.01 (0.00–0.01) 0.00 (0.00–0.01) 0.01 (0.00–0.03) 0.03 (0.02–0.04) ,0.001b

,0.001c

IL10 CD28 0.00 (0.00–0.00) 0.00 (0.00–0.00) 0.00 (0.00–0.00) 0.00 (0.00–0.00) ns

TNF ITGA4 0.00 (0.00–0.00) 0.00 (0.00–0.01) 0.01 (0.00–0.01) 0.00 (0.00–0.01) ns

GATA3 HLA-DQB1 0.07 (0.03–0.1) 0.05 (0.01–0.11) 0.08 (0.02–0.14) 0.13 (0.08–0.18) ns

STAT1 TBX21 0.24 (0.15–0.33) 0.20 (0.14–0.26) 0.20 (0.15–0.24) 0.22 (0.09–0.35) ns

PTPRC JAG1 0.00 (0.00–0.00) 0.00 (0.00–0.00) 0.00 (0.00–0.00) 0.00 (0.00–0.00) ns

TGFB1 ITGB7 0.06 (0.02–0.09) 0.07 (0.03–0.10) 0.12 (0.07–0.18) 0.17 (0.07–0.27) ,0.001b

,0.001c

IFNG HLA-DRA 0.12 (0.09–0.15) 0.16 (0.09–0.24) 0.18 (0.08–0.27) 0.10 (0.03–0.16) ns

PTPRC CTLA4 0.00 (0.00–0.00) 0.00 (0.00–0.00) 0.00 (0.00–0.00) 0.00 (0.00–0.00) ns

ITGA4 ITGB7 0.00 (0.00–0.00) 0.00 (0.00–0.00) 0.00 (0.00–0.00) 0.00 (0.00–0.00) ns

TNF STAT1 0.01 (0.01–0.02) 0.01 (0.00–0.01) 0.01 (0.00–0.01) 0.03 (0.00–0.05) ns

CTLA4 MX1 0.00 (0.00–0.00) 0.00 (0.00–0.00) 0.00 (0.00–0.00) 0.00 (0.00–0.00) ns

CD28 TNF 0.02 (0.01–0.03) 0.00 (0.00–0.01) 0.02 (0.00–0.03) 0.00 (0.00–0.01) ,0.001a

,0.001c

IL10 ITGA4 0.00 (0.00–0.00) 0.00 (0.00–0.00) 0.00 (0.00–0.00) 0.00 (0.00–0.00) ns

JAG1 TBX21 0.06 (0.03–0.09) 0.06 (0.02–0.11) 0.09 (0.04–0.14) 0.04 (0.02–0.07) ns

ns: not significant
ap value between basal and Jagged 1
bp value between basal and IFN-ß
cp value between basal and Jagged1+IFN-ß
Using the Kullback-Leibler (KL) divergence of links, we compared the differences from in vitro assays in the interaction weight between pairs of genes using PBMCs from
untreated patients that were stimulated with either the jagged1 agonist peptide, IFN-ß or Jagged1 plus IFN-ß. Results are described as the median (range) of the K-L
value. p values were adjusted using the Bonferroni correction for multiple testing.
doi:10.1371/journal.pone.0001222.t006..
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IFN-ß therapy, suggesting that this combined therapy will

maintain the Th1 function suppression induced by Jagged1.

In order to confirm the results from our network analysis, we

evaluated the effect of the Jagged1 agonist peptide in the animal

model of MS. C57B6 mice immunized with MOG35–55 peptide

were treated with the Jagged1 peptide i.p. from day 0 to day 30

and this produced a milder progression of the disease (Figure 5A)

and lower histological scores (Figure 5B and 5C) than in placebo

animals. Hence, Jagged1-Notch signalling appears to exert an

immunomodulatory effect in brain autoimmunity. We studied the

possible mode of action of Jagged1 therapy by assessing several

immune responses involved in autoimmunity. In addition, we

tested the in vivo effect of Jagged1 therapy in the genes of the T-cell

activation network. Previous studies suggested a role for Jagged1-

Notch signalling in promoting Treg and Th2 function [31]. We

found that by day 9 after immunization, animals treated with

Jagged1 peptide have increased percentage of CD25+Foxp3+ cells

that placebo animals (21.6% compared to 13.6%, p = 0.032;

Fig. 5D) and such differences were lost by day 30 (Fig. 5D). In

addition, we also found that by day 9 after immunization, Jagged1

treated animals have significant higher numbers of Th2 cells (IL-4

secreting cells; p = 0.032) and a trend for decreased numbers of

Th1 cells (IFNc secreting cells; p = 0.056) than placebo animals,

and not changes in numbers of IL-17 secreting cells (Fig. 5E). By

day 30, differences were lost and frequency of such populations

were similar between Jagged1 and placebo treated animals (data

not shown). We also analyzed the effect of Jagged1 peptide therapy

in gene expression levels in splenocytes by day 9 and 30 after

immunization. We found that by day 9 p.i. Jagged1 treated

animals have increased gene expression levels of IL-10 (p = 0.029)

and decreased levels of TNFa and IL-17a (p,0.05 in both cases,

Fig. 5F and Table S5). By day 30, we found a decrease in TGFß1,

TNFa, and ITGB7 gene expression levels in animals treated with

Jagged1 when compared with untreated animals (p,0.05 in all

cases; Table S5). These results might suggest that Jagged1-Notch

signalling promotes Treg and Th2 responses and suppress Th1

function. Thus, our findings indicate that the Jagged1-Notch

pathway may be a therapeutic target to treat MS and other

autoimmune diseases. Moreover, our network approach allowed

us to predict a mechanism of action that was not expected from

previous biological knowledge.

DISCUSSION
In the present study we have provided proof of concept that a gene

network analysis approach is feasible to study human systems and

diseases, providing valuable information about the complex

interactions involved in biological process and in complex diseases.

This is important since most systems biology studies have been

applied to lower organisms and its application to higher animals

and humans has been restricted by the lack of biological

knowledge, technological and analytical tools, as well as by the

higher degree of complexity of such organisms. Biological

functions, as well as complex traits and diseases, can only rarely

be attributed to an individual molecule. On the contrary, complex

interactions between dozens of molecules lead to a specific

biological function [34], and altering the relationships between

these elements may disrupt the activity in such systems. Network

analysis has emerged as a powerful tool to understand complex

intercellular interactions that contribute to the structure and

function of living systems [1] and it can be used to study complex

traits and diseases in order to discover new therapies [35, 36].

Indeed, the application of a Bayesian approach to define cell

networks has been successfully used and as well as to infer classic,

well understood signalling networks [37]. Such an approach has

also provided new insights into specific systems that have not been

previously identified through hypothesis-directed research [17].

In our network analysis, we identified 31 interactions between

20 genes acting in the immune system of which, 18 were predicted

either from the literature or by bioinformatics analysis of co-

expression databases. However, the other 13 interactions were

new and had not been predicted using bioinformatics strategies.

These latter interactions could be more specific for autoimmunity

Figure 4. Comparison of the T-cell activation network after in vitro stimulation with jagged1, IFN-ß or Jagged1+IFN-ß: A) untreated patients
versus stimulation with the Jagged1 agonistic peptide for 24 h; B) untreated patients versus stimulation with IFN-B for 24 h; C) untreated patients
versus stimulation with JGA1+IFN- ß for 24 h. Comparisons between gene interaction weights are described using the following colour code: black:
no change; green: decreased; red: increased. See Table 5 for statistical analysis.
doi:10.1371/journal.pone.0001222.g004
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such that our experimental dataset from patients suffering an

autoimmune disease was informative to highlight the importance

of these interactions when compared to the healthy state. It must

to be remembered that the gene interactions identified in our

network does not mean that they are direct molecular interactions

and intermediary molecules might account for such effect. Indeed,

among the many interactions between the genes in our network,

we were able to identify either the most robust or the ones that in

the specific condition we are studying (MS) are most relevant,

implying that some others could be missed for our analysis, even if

they have been biologically demonstrated. The validation of the

majority of these interactions, both the predicted and new

Figure 5. Validation of Jagged1 as a therapeutic target in the animal model of MS: C57B6 mice (n = 60) were immunized with MOG35–55 and
treated with Jagged1 agonist peptide i.p. (n = 30) or placebo (n = 30) from day 0 to day 30 in two different experiments. Twelve animals (6 from each
treatment group) were sacrificed by day 9 in order to perform immunological studies. Animals treated with the Jagged1 agonist peptide have
a clinical (A) and histological (B) score lower than placebo animals. C) Representative spinal cord sections from placebo (a) and jagged1 (b) treated
animals stained with Luxol-fast blue showing a decrease in the presence of inflammatory infiltrates and the extend of demyelination in the Jagged1
treated animals. FACS analysis assessing the percentage of CD25+Foxp3+ Treg cells (D) ELISPOT studies assessing the in vitro secretion of Th1 (INFc),
Th2 (IL-4) and Th17 (IL-17) cytokines (E) and real-time PCR (F) studies in splenocytes from Jagged1 treated and untreated mice. D) Mice treated with
Jagged1 peptide have higher percentage of Treg cells than placebo animals by day 9 p.i. (p = 0.032), and such difference disappeared by day 30. E)
Splenocytes from Jagged1 treated mice expressed higher levels of IL-4, lower levels of IFNc and similar levels of Il-17 than placebo animals at day 9
p.i. F) Jagged1 treated animals expressed higher levels of IL-10 and lower levels of TNFa and IL-17 than placebo animals at day 9 p.i. Results are
expressed as the mean6SEM
doi:10.1371/journal.pone.0001222.g005
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interactions, indicates that our approach was sufficiently powerful

and accurate to identify true gene interactions in human cells. In

addition, the validation of new gene interactions indicates that

differences in gene interaction weight have biological implications,

at least at the gene expression level. The high validation rate was

due to the balanced design between the number of genes studied,

the use of accurate quantitative methods and the biological

knowledge available in the literature, as well as benefiting from the

use of system biology methods such as Bayesian inference,

previously validated in other settings. In addition, in the majority

of the cases we were also able to correctly identify the direction of

the interactions. Identifying the direction of an interaction is an

important step in reverse network engineering and requires larger

datasets for network inference [17]. Although we use a mixed cell

population such as PBMCs, our results indicates that the network

analysis was able to identify the contribution of every gene to the T

cell activation process, which is a multicellular process by

definition implying antigen presenting cells and T cells. Finally,

the qualitative analysis of the network using CNA shows that our

method was able to identify a network topology, which is related

with the biological functions involved. This analysis was more an

attempt to confirm the influence of network topology in biological

functions even if such analysis was limited by the size of our

network and was not able to predict all functions studied (e.g. the

role of IL-4 in Th2). Thus, our results suggest that the

reconstruction of biological networks from experimental data is

a feasible strategy to study human system and diseases.

Biological networks are robust [1], and we predicted that the

differences between the healthy and disease state for complex and

polygenic disease would not be based on the deletion of nodes

(genes or proteins) or even links (gene or protein interactions), but

rather in more subtle changes in the weight of the interactions. For

this reason we were more interested in performing a quantitative

analysis of the network than in the topological differences between

such networks. Our quantitative analysis of the network that

controls T-cell activation revealed several significant differences

between the healthy state and MS. MS is an inflammatory disease

in which T-cell activation is dysfunctional [6] and regulatory T cell

function is impaired [38]. The comparison between the T-cell

activation networks from HC and MS patients showed an overall

decrease in the activity (defined here by the change in the weight

of the interaction between pair of genes) of Treg and Th2 function,

and an increase in Th1 activity. For example, JAG1 constitutes an

instructive signal for Th2 differentiation by inducing GATA3 and

by directly regulating IL4 gene transcription [39]. Thus, the

reduction in the weight of the JAG1–IL4 gene interaction in the

MS patient network indicates a decrease in Th2 differentiation.

Furthermore, the reduced weight of the IL12A–STAT6 in-

teraction also suggests diminished Th2 differentiation due to the

fact that STAT6 plays a central role in exerting IL4 mediated

biological responses [40] and IL12 is important in the regulation of

the Th2 response [41]. Indeed, a reduction in the weight of the

IL10–IL12A interaction indicates a decrease in the suppression

mediated by IL-10 over Th1 function [42]. On the other hand, an

increase in the weight of the TGFB1–IL12A and PTPRC–JAG1

interactions suggests more pronounced Th1 activity in patients

with MS. IL12 is required for the induction of IFNc and PTPRC

induces the expression of TNFa [43], which can stimulate cell

proliferation via Jagged1 [44]. Thus, our results identify JAG1 and

IL12A as critical genes in the pathogenesis of MS. IL12 plays

a central role in brain autoimmunity [45] and recent genetic

studies have associated JAG1 to MS susceptibility [30]. Of course,

several other genes not included in our study may play a role in the

pathogenesis of MS, but our results indicate that even using a small

set of genes, a quantitative network analysis is able to identify

functional differences between healthy and disease states.

Moreover, we show that a quantitative network analysis

provides valuable information about how therapies work at

a system level, showing that in most cases they exert a pleiotropic

activity that is difficult to capture in single molecule assays. But

more importantly, our approach allowed us to identify new

therapeutic targets that are not modified by current therapies,

based on the quantitative changes in the network produced by the

disease. Current immunotherapies for autoimmune diseases such

as interferon beta, glatiramer acetate or natalizumab exert their

action through pleiotropic activities that are poorly understood

[46]. In our study, the increase in the weight of the ITGA4–

TGFB1 interaction and the decrease in weight of the JAG1–TNF,

TGFB1–GATA3, IL10–CD28, TGFB1–ITGB7, ITGA4–ITGB7

and IL10–ITGA4 interactions in patients treated with IFN-beta

when compared with untreated MS patients and HC, suggest

a direct influence of IFN-ß on these pathways. The decrease in the

weight of the JAG1–TNF, TGFB1–GATA3 and IL10–CD28

interactions support the idea that IFN-ß activity involves the

suppression of T cell proliferation, the induction of Th2 cytokine

production, inhibition of Th1 cytokine production and inhibition

of monocyte activation [47]. Also, the changes in the links

involving the adhesion molecules ITGA4, ITGB1 and ITGB7

confirm the role of IFN-ß treatment in decreasing the surface

expression of adhesion molecules, which reduces the migratory

potential of T cells [48]. The in vitro validation of the IL10–IL12A

interaction deserves special mention, as it suggests that IFN-ß

affects this pathway. However, based on our analysis, IFN-ß

therapy failed to restore such an interaction to the normal levels in

the healthy state. Indeed, differences in the weight of the JAG1–

IL4, IL12A–STAT6 and PTPRC–JAG1 interactions in treated or

untreated MS patients compared with HC would suggest that

IFN-ß treatment has no effect on these pathways and as such, they

may be considered as novel therapeutic targets. Taking into

account that JAG1 seems to be involved in the genetic

susceptibility of MS, its role in the immune system, and the

failure of IFN-ß treatment to modulate its function, we propose

JAG1 as a new therapeutic target in the treatment of the MS.

As a proof of concept that network analysis might identify

valuable therapeutic targets, we validated the Jagged1-Notch

pathway as a therapeutic target for MS. The Notch pathway exerts

several activities in the developing, as well as in the mature

peripheral immune system [31]. The outcome of Notch signalling

depends on the ligand involved and accordingly, it has been shown

that Jagged1 activates Treg and Th2 function whereas Delta1

promotes the Th1 response. We were able to demonstrate that

treating immune cells from patients with MS with an agonistic

peptide of Jagged1 in vitro modulates the T-cell activation network,

mainly suppressing Th1 function (represented by the strong effect

of JAG1 over TNF and the downstream effect of TNF on IFNG).

Interfering with Jagged1 has been shown to suppress IFNc
production by dendritic cells [49]. Moreover, we found that IFN-ß

and Jagged1 therapy exerted a synergy in vitro. In our network

analysis we were able to identify the individual and non-

overlapping effects of both therapies and the predominant role

of Jagged1 in suppressing Th1 activation, overcoming the

suppressor effect of IFN-ß therapy on the JAG1-TNF interaction.

Finally, we were able to identify the therapeutic potential of the

Jagged1-Notch pathway in the animal model of MS, confirming its

immunomodulatory effect. We found that Jagged1-Notch signal-

ling enhances Treg and Th2 function and suppressed Th1

function in mice suffering an autoimmune disease. Although we

found no effect of Jagged1 therapy in Th-17 subset (no changes in
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levels of secreted IL-17 in the ELISpot assays), indirect evidence

might suggest that Jagged1 might influence also this function, since

critical molecules for Th-17 induction were modified by Jagged1

therapy at the RNA level such as IL17a, TNFa and TGFß.

Finally, it has been described that Notch signalling in MS brains

might contribute to failure of regenerative process [50]. We found

no evidences that treating animals with an agonistic peptide of

Jagged1 might impair recovery for EAE. However, further studies

will be required to fully validate the therapeutic opportunities

associated with the Jagged1-Notch pathway in autoimmune

diseases, mainly considering the critical and pleiotropic functions

that this pathway plays in many cell types that might lead to

undesired side effects.

In summary, our results suggest that a quantitative network

approach is a useful tool in medicine to understand complex

diseases and discover new therapeutic targets. In particular, the

Jagged1-Notch pathway seems to be a good candidate to

participate in the susceptibility and therapy of MS. Hence, a more

profound study of its regulation may help to understand its

implication in MS and its potential for therapy.

METHODS

Human subjects and biological assays
1. Human subjects We studied 52 patients with MS [51] and

52 sex and age matched healthy controls (HC) from the same

population with no history of autoimmune diseases. For validation

assays of the identified links in the network we used a second set of

16 healthy individuals. For the in vitro assays with PBMCs for

testing the role of Jagged1 peptide and IFNB, we used a new set of

24 patients with MS that were not receiving immunomodulatory

therapy. The demographic and clinical data from the subjects are

shown in Supplementary Table S1. Patients were recruited by

their neurologist after obtaining written informed consent. This

study was approved by the Institutional Review Board at the

University of Navarra.

2. RNA extraction, probes and rtPCR Peripheral blood

mononuclear cells (PBMCs) were isolated using Ficoll-Paque

(Pharmacia Biotech) and they were immediately submerged in

RNAlater RNA Stabilization Reagent (Qiagen) to preserve the

gene expression patterns. Total RNA was isolated using the

RNeasy Mini Kit (Qiagen), removing DNA with the RNase-Free

DNase Set (Qiagen), and the High-Capacity cDNA Archive Kit

(Applied Biosystems) was used to synthesise cDNA from the total

RNA. Primer sequences and target-specific fluorescence-labelled

TaqMan probes were purchased from Applied Biosystems

(TaqMan Gene Expression Assays, Supplementary Table S2).

Quantitative real-time PCR (rt-PCR) was performed with the

DNA Engine Opticon2 (MJ Research). Each sample was run in

triplicate and the target and endogenous control gene were

amplified in different wells on each plate. We used GAPDH and

B2M as controls because both genes were described as a good

choice to normalize leukocyte expression levels [52]. Cycle

threshold (c(t)) values were acquired with the Opticon Monitor

2.01 software (MJ Research) and using this information, we

subtracted the baseline signal as the average of the fluorescence

measured from cycle 1 to 40 and we set the c(t) line to a standard

deviation of 1.00. The normalized gene expression was calculated

using the Q-Gene software application [53], which does not

assume that the PCR amplification efficiencies of target and

reference genes are equivalent. Real-time PCR efficiencies (E)

were calculated by amplifying a series of 2-fold dilutions of each

factor. The mean c(t) values were plotted against the log of the

amount of cDNA added. The linear graphs obtained (correlation

coefficients.0.99) were used to calculate the corresponding E.

The mean normalized expression was given by calculating the

average c(t) values of the target and reference triplicates. Single

gene expression values and the comparison between groups are

shown in supplementary Table S1.

3. Validation of the new inferred links Freshly isolated

PBMCs, from a new set of 16 HC not previously used in the

network construction, were stimulated with 20 ng/ml recombi-

nant human IL10 (R&D Systems), 4 ng/ml recombinant human

IL4 (R&D Systems) or 40 ng/ml recombinant human CTLA4/Fc

chimera (R&D Systems) for 12 and 24 hours, or left unstimulated

as controls. At the end of the assay, RNA was isolated from the

cells and gene expression was measured by rtPCR as described

above.

4. In vitro Jagged1 validation assays Jagged1 validation

assays were performed using PBMC from patients with MS

untreated and stimulated in vitro with 20 mg/ml of human jagged1

peptide 188–204 (CDDYYYGFGCNKFCRPR; Sigma-Aldrich)

[33], or with 1.000 u/ml of recombinant human INF-b (PBL

Biomedical Laboratories) or both. Cells were incubated for 24 h

and RNA was extracted and quantified by real time PCR as

described before. KL-divergence values were calculated for each

group in the T-cell activation network as described above.

5. Experimental Autoimmune encephalomyelitis Female

C57B6 mice obtained from Charles River (6–8 weeks old; 20 gr.

body weight) were immunized in the lateral flank with a 100 ml

emulsion of saline and incomplete Freunds adjuvant containing

100 mg Myelin Olygrodendrocyte Glycoprotein (MOG35–55)

peptide from Sigma (Germany) supplemented with 4 mg/ml

Mycobacterium tuberculosis (H37Ra strain from Difco, Detroit, MI).

The animals were weighed on a daily basis and inspected for

clinical signs of experimental autoimmune encephalomyelitis

(EAE) by a blind observer as described previously [54]. Animals

were treated with 1 mg/day of human jagged1 peptide 188–204

(CDDYYYGFGCNKFCRPR; Sigma-Aldrich) [33] beginning at

the day of immunization until day 30 post-immunization. Disease

severity was assessed according to the following scale: 0 = normal;

1 = limp tail; 2 = mild paraparesis of the hind limbs, unsteady gait;

3 = moderate paraparesis, voluntary movements still possible;

4 = paraplegia or tetraparesis; 5 = moribund state. Data shown

for the EAE studies are representative of two independent

experiments performed with the number of animals indicated.

The University of Navarra Committee for Animal Care approved

the entire animal studies carried out.

Histological evaluation was performed on paraformaldehyde-

fixed, paraffin embedded sections of the brain and spinal cord, as

described previously [54]. Sections (10 mm thick) were stained with

haematoxylin and eosin (H&E) and with Luxol fast-blue to assess

inflammation and demyelination. We examined 20 consecutive

sagittal sections from each region examined (brain, cervical,

thoracic and lumbar spinal cord) of every animal in the study.

Semi-quantitative histological evaluation for inflammation and

demyelination was carried out and scored blindly using the

following scale: 0, normal; 1, 1-3/section perivascular cuffs with

minimal demyelination; 2, 3-10 perivascular cuffs/section accom-

panied by moderate demyelination; 3, widespread perivascular

cuffing, extensive demyelination with large confluent lesions.

6. Flow Cytometry analysis Cells were phenotyped by

three-colour flow cytometry (FACSaria) according to the

expression of CD25 and Foxp3 using the mouse regulatory T

cell staining kit from Ebiosciences, UK. We analyzed the

splenocytes from naı̈ve or treated C57B6 mice suffering EAE at

day 9 (n = 6 placebo and 6 Jagged1 treated mice) and day 30

(n = 24 placebo and 24 Jagged1 treated mice) postinjection (p.i.).
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7. ELISpot We assessed the secretion of IFN-c, IL-4 and IL-

17 in splenocytes from naı̈ve or treated C57B6 mice suffering EAE

at day 9 using the mouse-IFNc and mouse-IL4 ELISpot plus kit

from Mabtech (Mabtech, US), and the mouse-IL17 ELISpot from

Ebioscience (Ebioscience,UK) according to the manufacturer’s

instructions. Antigen stimulation was carried out with the

immunizing antigen (MOG35–55 100 mg/ml) for 48 h and we

used either PHA or ConA (5 mg/ml) as a positive control for Th1

and Th2, or for Th17, respectively. ELISpot quantification was

performed with the Immunospot S4 Pro Analyzer (Cellular

Technology Ltd, US).

Network Analysis
1. Ingenuity Pathways Knowledge Base analysis Because

Bayesian algorithms might provide several different results with

the same experimental dataset, feeding the algorithm with

a template of the network will diminish the number of different

outputs and increase their accuracy. Thus, in order to obtain

a template (structural network) of the gene network that controls the

T-cell activation, we used biological knowledge from co-expression

data available at the Ingenuity database, using the Ingenuity

Pathways Knowledge Base (Ingenuity Systems Inc. Redwood City,

USA). We were interested in evaluating five critical processes in T-

cell activation, namely: 1) antigen presentation and co-stimulation,

2) Th1 differentiation; 3) Th2 differentiation; 4) T regulatory

(Treg) function; and 5) migration to tissues. Genes were distributed

in five biological functions based in biological knowledge (Table

S2) as follows: 1) antigen presentation, signalling threshold

modulation and co-stimulation-HLA-DRA, HLA-DQB1,

PTPRC (CD45) and CD28; 2) Th1 differentiation-TBX21 (T-

bet), STAT1, IFNG, TNFA and IL12A; 3) Th2 differentiation-

GATA3, STAT6, IL4, JAG1; 4) Treg function-CTLA4, IL10,

TGFB1 and JAG1; and 5) Migration-ITGA4, ITGB1, ITGB7.

There is significant biological knowledge regarding each of these

genes and they have all been implicated in autoimmune diseases,

including MS (see supplementary Table S2 and S3).

2. Bayesian network algorithm Gene expression data from

MS patients and HC were made discrete in two intervals with the

same number of associated cases. To model the T-cell activation

network, we performed structural learning using a Tabu Search

[55], based on the experimental data and retaining the structure of

the network obtained in the Ingenuity database search described

above. Because the inference of the Bayesian network does not

accept network cycles, the structural network template was

introduced after manually curated the presence of such cycles by

changing the orientation of links in order to maintain the link and

avoid cycles. During this procedure, no links were removed. The

overall approach of the Tabu Search is to avoid entrainment in

cycles by forbidding or penalizing moves that, in the next iteration,

take the solution to points in the solution space previously visited

[55]. The Tabu Search algorithm constructs a graphic in which

the nodes represent the measured gene levels and the arcs

represent statistically meaningful relationships and the dependency

between these genes. A Tabu Search was performed using a tabu

list size of 10 and a structural complexity influence of 1. Bayesian

analysis was processed using the BayesiaLab 3.3 software (Bayesia

SA. Laval Cedex, France). The algorithm considered links as arcs

(links in which the orientation of the connection cannot be

changed without changing the probabilistic relations encoded) if

the available information allow the algorithm to define the

direction of the interaction, or as edges (links in which the

orientation can be inverted) if the algorithm was not able to

definitively confirm a unique direction for the interaction.

3. Qualitative analysis of the network We took advantage

of tools developed for metabolomics studies to assess the functional

consequences of the network topology [20, 21]. The Cell Net

Analysis (CNA) approach and CNA 6.0 software (Steffen Klamt,

Max-Planck Institute, Magdeburg, Germany) was used to measure

the overall network function since gene expression patterns could

be considered stable states. We first evaluated the dependence

matrix in order to assess the functional consistency of the

reconstructed network. We then identified the minimal cut sets

(MCS) [22] required for the loss of a defined cell function. The

concept of minimal cut sets has been introduced to study structural

fragility and to identify knock-out strategies in biochemical

reaction networks [22]. In this study, a MCS was defined as

a minimal set of interactions whose removal blocks cell function

(e.g. Th1 differentiation). We defined the maintenance of a given

function based on biological knowledge using logical rules as

follow: 1) Antigen presentation and co-stimulation: CD28 AND

PTPRC AND (HLA-DQB1 OR HLA-DRA) NOT (CTLA4 OR

JAG1OR (CTLA4 AND JAG1) OR IL10 OR TGFB1 OR (IL10

AND TGFB1) OR (CTLA4 OR JAG1 OR (CTLA4 AND JAG1)

AND (IL10 OR TGFB1 OR (IL10 AND TGFB1)))); 2) Th1

differentiation: INFG AND IL12A AND STAT1 AND TBX21

AND TNF NOT (IL4 AND STAT6 AND GATA3 AND JAG1);

3) Th2 differentiation: IL4 AND STAT6 AND GATA3 AND

JAG1 NOT (INFG AND IL12A AND STAT1 AND TBX21

AND TNF); 4) Treg function: CTLA4 OR JAG1OR (CTLA4

AND JAG1) OR IL10 OR TGFB1 OR (IL10 AND TGFB1) OR

(CTLA4 OR JAG1 OR (CTLA4 AND JAG1) AND (IL10 OR

TGFB1 OR (IL10 AND TGFB1))); 5) migration: ITGA4 AND

(ITGB1 OR ITGB7) (which builds the VLA4 or LPAM adhesion

molecule respectively). We then calculated the fragility of the

network by using the F coefficient [22], which is defined as the

inverse of the average value of the number of interactions

participating in a minimal cut set. Robustness is defined as 1–

fragility. The five T-cell activation functions described were

considered as outputs of the network.

4. Quantitative analysis of the network In order to

measure the weight of each link in the different conditions we

calculated the Kullback-Leibler divergence (KL-divergence) for

each link of the network using ten groups of samples for each

diagnosis, randomly constructed with half of the total samples for

each condition. The KL-divergence is a measure that can be used

to evaluate the differences between the probability distributions

represented by the network, both with the arc corresponding to

the relation and without this arc [56].

DKL PEQð Þ~
X

i

P ið Þlog
P ið Þ
Q ið Þ

In this case, it is a measure of the mutual information between

the parent and the child node in the network. The KL-divergence

is a natural distance measure from a ‘‘true’’ probability

distribution P to an arbitrary probability distribution Q. Typically

P represents data, observations, or a precise calculated probability

distribution. The measure Q typically represents a theory, a model,

a description or an approximation of P.

Statistical analysis
The Shapiro-Wilk Test was carried out on each group to assess the

normal distribution. Those data groups that were not normal were

transformed to base-e-logarithm. We used the student-t test to

compare individual gene expression levels between MS patients

and HC, the influence of IFN-ß treatment in patients with MS,

KL-divergence values and gene expression in animal studies.
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Differences in the clinical course of EAE, histological scores,

ELISpot and flow cytometry studies were assessed with the Mann-

Whitney U test. The Bonferroni correction for multiple testing was

applied as required. For all tests p values of ,0.05 were considered

as significant. Data was analyzed and processed using the SPSS

13.0 statistical package (SPSS Inc. Chicago, USA).

SUPPORTING INFORMATION

Table S1

Found at: doi:10.1371/journal.pone.0001222.s001 (0.11 MB

DOC)

Table S2

Found at: doi:10.1371/journal.pone.0001222.s002 (0.20 MB

DOC)

Table S3

Found at: doi:10.1371/journal.pone.0001222.s003 (0.07 MB

DOC)

Table S4

Found at: doi:10.1371/journal.pone.0001222.s004 (0.08 MB

DOC)

Table S5

Found at: doi:10.1371/journal.pone.0001222.s005 (0.11 MB

DOC)

ACKNOWLEDGMENTS
We wish to thank Begoña Fernández-Dı́ez for her technical support.

Author Contributions

Conceived and designed the experiments: PV RP IM. Performed the

experiments: RP. Analyzed the data: PV RP JG JI JS IM. Contributed

reagents/materials/analysis tools: JG JI JS IM. Wrote the paper: PV RP

IM.

REFERENCES
1. Barabasi AL, Oltvai ZN (2004) Network biology: understanding the cell’s

functional organization. Nat Rev Genet 5(2): 101–113.

2. Lanzavecchia A, Sallusto F (2005) Understanding the generation and function of
memory T cell subsets. Curr Opin Immunol 17(3): 326–332.

3. Crabtree GR (1989) Contingent genetic regulatory events in T lymphocyte

activation. Science 243(4889): 355–361.

4. Hill N, Sarvetnick N (2002) Cytokines: promoters and dampeners of
autoimmunity. Curr Opin Immunol 14(6): 791–797.

5. Steinman L, Zamvil S (2003) Transcriptional analysis of targets in multiple

sclerosis. Nat Rev Immunol 3(6): 483–492.

6. Sospedra M, Martin R (2005) Immunology of multiple sclerosis. Annu Rev
Immunol 23: 683–747.

7. Germain RN (2001) The art of the probable: system control in the adaptive

immune system. Science 293(5528): 240–245.

8. Leon K, Faro J, Lage A, Carneiro J (2004) Inverse correlation between the

incidences of autoimmune disease and infection predicted by a model of T cell
mediated tolerance. J Autoimmun 22(1): 31–42.

9. Goodnow CC, Sprent J, Fazekas de St Groth B, Vinuesa CG (2005) Cellular and

genetic mechanisms of self tolerance and autoimmunity. Nature 435(7042):
590–597.

10. Segel LA, Bar-Or RL (1999) On the role of feedback in promoting conflicting

goals of the adaptive immune system. J Immunol 163(3): 1342–1349.

11. Melero I, Arina A, Chen L (2005) The many sounds of T lymphocyte silence.
Immunol Res 33(2): 135–147.

12. Kitano H, K O, T K, Y M, Csete M, et al. (2004) Metabolic Syndrome and

Robustness Tradeoffs. Diabetes 53(S3): S6–S15.

13. Kitano H (2007) A robustness-based approach to systems-oriented drug design.
Nat Rev Drug Discov 6(3): 202–210.

14. Hauser SL, Oksenberg JR (2006) The neurobiology of multiple sclerosis: genes,

inflammation, and neurodegeneration. Neuron 52(1): 61–76.

15. Jeong H, Mason SP, Barabasi AL, Oltvai ZN (2001) Lethality and centrality in
protein networks. Nature 411(6833): 41–42.

16. Styczynski MP SG (2005) Overview of computational methods for the inference

of gene regulatory networks. Computers & Chemical Engineering 29: 519–534.

17. Sachs K, Perez O, Pe’er D, Lauffenburger DA, Nolan GP (2005) Causal protein-
signaling networks derived from multiparameter single-cell data. Science

308(5721): 523–529.

18. Bansal M, Belcastro V, Ambesi-Impiombato A, di Bernardo D (2007) How to

infer gene networks from expression profiles. Mol Syst Biol 3: 78, Epub 2007 Feb
2013.

19. Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, et al. (2006) The

Connectivity Map: using gene-expression signatures to connect small molecules,
genes, and disease. Science 313(5795): 1929–1935.

20. de la Fuente A, Brazhnik P, Mendes P (2002) Linking the genes: inferring

quantitative gene networks from microarray data. Trends Genet 18(8): 395–398.

21. Sontag E, Kiyatkin A, Kholodenko BN (2004) Inferring dynamic architecture of
cellular networks using time series of gene expression, protein and metabolite

data. Bioinformatics 20(12): 1877–1886.

22. Klamt S (2006) Generalized concept of minimal cut sets in biochemical
networks. Biosystems 83(2–3): 233–247.

23. Montalban X (2007) MS treatment: Postmarketing studies. J Neurol Sci.

24. Feldmann M, Brennan FM, Maini R (1998) Cytokines in autoimmune disorders.

Int Rev Immunol 17(1–4): 217–228.

25. Kang BY, Kim TS (2006) Targeting cytokines of the interleukin-12 family in
autoimmunity. Curr Med Chem 13(10): 1149–1156.

26. Peter HH, Warnatz K (2005) Molecules involved in T-B co-stimulation and B

cell homeostasis: possible targets for an immunological intervention in

autoimmunity. Expert Opin Biol Ther 5(Suppl 1): S61–71.

27. Roncarolo MG, Battaglia M, Gregori S (2003) The role of interleukin 10 in the

control of autoimmunity. J Autoimmun 20(4): 269–272.

28. Le Y, Yu X, Ruan L, Wang O, Qi D, et al. (2005) The immunopharmacological

properties of transforming growth factor beta. Int Immunopharmacol 5(13–14):
1771–1782, Epub 2005 Aug 1772..

29. Rice GP, Hartung HP, Calabresi PA (2005) Anti-alpha4 integrin therapy for
multiple sclerosis: mechanisms and rationale. Neurology 64(8): 1336–1342.

30. The Games Collaborative G (2006) Linkage disequilibrium screening for
multiple sclerosis implicates JAG1 and POU2AF1 as susceptibility genes in

Europeans. J Neuroimmunol 23: 23.

31. Osborne BA, Minter LM (2007) Notch signalling during peripheral T-cell

activation and differentiation. Nat Rev Immunol 7(1): 64–75, Epub 2006 Dec
2015..

32. Rutz S, Mordmuller B, Sakano S, Scheffold A (2005) Notch ligands Delta-like1,
Delta-like4 and Jagged1 differentially regulate activation of peripheral T helper

cells. Eur J Immunol 35(8): 2443–2451.

33. Li L, Milner LA, Deng Y, Iwata M, Banta A, et al. (1998) The human homolog

of rat Jagged1 expressed by marrow stroma inhibits differentiation of 32D cells
through interaction with Notch1. Immunity 8(1): 43–55.

34. Hartwell LH, Hopfield JJ, Leibler S, Murray AW (1999) From molecular to
modular cell biology. Nature 402(6761 Suppl): C47–52.

35. Goh KI, Cusick ME, Valle D, Childs B, Vidal M, et al. (2007) The human
disease network. Proc Natl Acad Sci U S A.

36. Kitano H (2002) Computational systems biology. Nature 420(6912): 206–210.

37. Friedman N (2004) Inferring cellular networks using probabilistic graphical

models. Science 303(5659): 799–805.

38. Baecher-Allan C, Hafler DA (2006) Human regulatory T cells and their role in

autoimmune disease. Immunol Rev 212: 203–216.

39. Amsen D, Blander JM, Lee GR, Tanigaki K, Honjo T, et al. (2004) Instruction

of distinct CD4 T helper cell fates by different notch ligands on antigen-
presenting cells. Cell 117(4): 515–526.

40. Quelle FW, Shimoda K, Thierfelder W, Fischer C, Kim A, et al. (1995) Cloning
of murine Stat6 and human Stat6, Stat proteins that are tyrosine phosphorylated

in responses to IL-4 and IL-3 but are not required for mitogenesis. Mol Cell Biol

15(6): 3336–3343.

41. Liu YJ (2005) IPC: professional type 1 interferon-producing cells and

plasmacytoid dendritic cell precursors. Annu Rev Immunol 23: 275–306.

42. Kemper C, Chan AC, Green JM, Brett KA, Murphy KM, et al. (2003)

Activation of human CD4+ cells with CD3 and CD46 induces a T-regulatory
cell 1 phenotype. Nature 421(6921): 388–392.

43. Hayes AL, Smith C, Foxwell BM, Brennan FM (1999) CD45-induced tumor
necrosis factor alpha production in monocytes is phosphatidylinositol 3-kinase-

dependent and nuclear factor-kappaB-independent. J Biol Chem 274(47):
33455–33461.

44. Liu ZG (2005) Molecular mechanism of TNF signaling and beyond. Cell Res
15(1): 24–27.

45. Kang BY, Kim E, Kim TS (2005) Regulatory mechanisms and their therapeutic
implications of interleukin-12 production in immune cells. Cell Signal 17(6):

665–673, Epub 2005 Jan 2015..

46. Hohlfeld R, Wekerle H (2004) Autoimmune concepts of multiple sclerosis as

a basis for selective immunotherapy: from pipe dreams to (therapeutic) pipelines.
Proc Natl Acad Sci U S A 101 Suppl 2: 14599–14606.

Netowrk Analysis Autoimmunity

PLoS ONE | www.plosone.org 14 November 2007 | Issue 11 | e1222



47. Galimberti D, Bresolin N, Scarpini E (2004) Chemokine network in multiple

sclerosis: role in pathogenesis and targeting for future treatments. Expert Rev
Neurother 4(3): 439–453.

48. Neuhaus O, Archelos JJ, Hartung HP (2003) Immunomodulation in multiple

sclerosis: from immunosuppression to neuroprotection. Trends Pharmacol Sci
24(3): 131–138.

49. Stallwood Y, Briend E, Ray KM, Ward GA, Smith BJ, et al. (2006) Small
interfering RNA-mediated knockdown of notch ligands in primary CD4+ T cells

and dendritic cells enhances cytokine production. J Immunol 177(2): 885–895.

50. John GR, Shankar SL, Shafit-Zagardo B, Massimi A, Lee SC, et al. (2002)
Multiple sclerosis: re-expression of a developmental pathway that restricts

oligodendrocyte maturation. Nat Med 8(10): 1115–1121.
51. Polman CH, Reingold SC, Edan G, Filippi M, Hartung HP, et al. (2005)

Diagnostic criteria for multiple sclerosis: 2005 revisions to the ‘‘McDonald
Criteria’’. Ann Neurol 58(6): 840–846.

52. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, et al. (2002)

Accurate normalization of real-time quantitative RT-PCR data by geometric

averaging of multiple internal control genes. Genome Biol 3(7): RE-

SEARCH0034, Epub 2002 Jun 0018.

53. Muller PY, Janovjak H, Miserez AR, Dobbie Z (2002) Processing of gene

expression data generated by quantitative real-time RT-PCR. Biotechniques

32(6): 1372–1374, 1376, 1378–1379.

54. Moreno B, Hevia H, Santamaria M, Sepulcre J, Munoz J, et al. (2006)

Methylthioadenosine reverses brain autoimmune disease. AnnNeurol 60:

323–334.

55. Glover F, Laguna M (1997) Tabu Search: Kluwer Academic Publishers.

56. Kullback S, Leibler RA (1951) On information and sufficiency. Annals of

Mathematical Statics 22: 79–86.

Netowrk Analysis Autoimmunity

PLoS ONE | www.plosone.org 15 November 2007 | Issue 11 | e1222


