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The prion protein (PrP) is crucially involved in transmissible spongiform encephalopathies (TSE), but neither its exact role in
disease nor its physiological function are known. Here we show for mice, using histological, immunochemical and PCR-based
methods, that stimulation of innate resistance was followed by appearance of numerous endogenous retroviruses and ensuing PrP
up-regulation in germinal centers of the spleen. Subsequently, the activated retroviruses disappeared in a PrP-dependent manner.
Our results reveal the regular involvement of endogenous retroviruses in murine immune responses and provide evidence for an
essential function of PrP in the control of the retroviral activity. The interaction between PrP and ubiquitous endogenous
retroviruses may allow new interpretations of TSE pathophysiology and explain the evolutionary conservation of PrP.
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INTRODUCTION
The prion protein (PrP) is essential for the susceptibility to

transmissible spongiform encephalopathies (TSE) such as Creutz-

feldt-Jacob disease (CJD) in humans, bovine spongiform enceph-

alopathy (BSE) in cattle, scrapie in sheep and goats, and chronic

wasting disease (CWD) in deer and elk [1]. In the absence of PrP,

TSE symptoms do not develop [2], and the accumulation of

misfolded PrP in diseased tissue is a hallmark of TSE. According to

the widely accepted protein-only hypothesis, misfolded PrP itself

constitutes the infectious agent [3]. Yet, this dogma awaits to be

proven and is challenged by strong evidence for the involvement of

non-PrP molecules as ‘‘partners in crime’’ [4]. A recent study

demonstrated that synthetic poly(A) RNA, added to purified native

hamster PrP, is a sufficient stoichiometric cofactor for in vitro

amplification of misfolded PrP [5].

Remarkably, hamsters inoculated with samples obtained by

these amplification experiments developed TSE. Rather un-

expectedly though, the disease occurred not only with samples

from amplification that had been initiated by a seed of misfolded

PrP originating from diseased hamster brain, but likewise with

samples from amplification that had started spontaneously, i.e. in

the absence of an initial TSE seed. Moreover, strain characteristics

of TSE caused with inoculum from seeded and spontaneous in vitro

amplification were undistinguishable, but they differed from TSE

caused with inoculum of misfolded PrP that was used to seed

amplification. Hence, TSE strain characteristics of the inoculum

generated by in vitro amplification seemed to be imprinted not by

a seed of misfolded PrP, as the protein-only hypothesis would

entail [3], but rather by the accessory poly(A) RNA. The putative

role of RNA in TSE is also supported by a related study reported

earlier [6], where the accessory component extractable from tissue

homogenate and sufficient for in vitro amplification of misfolded

PrP was recognized to be particular RNA. By other researchers,

RNA aptamers specifically interacting with native or misfolded

PrP were isolated by in vitro selection [7,8]. This indicates that in

complex mixtures, RNA species may compete for binding to PrP

conformers, which could be the basis for TSE strain formation and

interferences [9,10]. However, despite the evidence gained by

means of in vitro experiments for a cofactor role of RNA in TSE, no

TSE-specific RNA has ever been identified. Therefore, the roles of

PrP and possible cofactors in TSE have remained controversial.

The physiological function of PrP might be a key towards better

understanding TSE pathophysiology. Numerous reports from the

past two decades proposed various physiological roles of PrP in

processes as diverse as copper homeostasis, leukocyte differentiation

or neuritogenesis, indicating that PrP may serve more than one

purpose [4,11]. In addition, PrP is a broadly expressed and highly

conserved gene product [12,13], suggesting that susceptibility to

TSE, which could be considered a negative selection criterion for this

protein, is outweighed by a vital function of PrP. Though, this view is

in harsh contrast with observations that PrP seems to be dispensable

for normal development and health of individual mammals [14,15].

Up to date, no concept has emerged that would reconcile the

conflicting aspects of this enigmatic protein.

We have recently described an up-regulation of PrP in the

germinal centers of mouse spleens following immune-stimulation

[16]. Although this regulation is suggestive of an immunological

role of PrP, no consequences of the increased PrP level could be

demonstrated. Here we report that PrP up-regulation occurs in

response to massive appearance of endogenous murine retro-

viruses in the germinal centers upon immune-stimulation. We

show that elevated PrP expression helps to reduce the retroviruses

to the level before their activation, whereas in the absence of PrP
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virus abundance persists. Hence, we have identified in the mouse

a key role of PrP in the control of activated endogenous

retroviruses. Our findings may resolve the aforementioned conflict

in the conception of PrP function and suggest a plausible candidate

for an RNA species possibly involved in TSE.

RESULTS

Co-localized massive appearance of endogenous

murine retroviruses and increased PrP expression in

immune-stimulated splenic FDC networks
Splenic PrP up-regulation was observed 8 days after infection of

naı̈ve mice with vesicular stomatitis virus (VSV) or intravenous

administration of preformed immune complexes [16]. By

immunofluorescence staining, up-regulated PrP was detected in

the network of follicular dendritic cells (FDC), but its exact

localization with respect to FDC dendrites and adjacent

lymphocytes remained unknown. Therefore, we examined splenic

germinal centers of immune-stimulated mice by transmission

electron microscopy (TEM). Staining of ultrathin sections with PrP

specific antibodies yielded an immunogold labeling confined to

FDC dendrites (Figure S1). Surprisingly, dendrites of immune-

stimulated and PrP-expressing FDC were decorated with numer-

ous electron-dense, enveloped particles resembling type C retro-

viruses (Figure 1A). Their retroviral nature was assessed by

staining with a rat antibody specific for the envelope protein (Env)

of murine leukemia retroviruses (MLV), resulting in an immuno-

gold labeling on the outer face of the virus particles (Figure 1A

inset). In contrast to Env, no PrP presence was revealed in the viral

particles, despite morphological evidence for MLV budding from

the PrP-expressing FDC (Figure S1).

In fluorescence microscopy, three different antibodies specific

for MLV envelope glycoprotein and capsid protein p30, respec-

tively, labeled structures on spleen cryosections that co-localized to

FDC networks with strong PrP immunostaining (Figure S2).

Whereas MLV staining appeared granular, PrP staining seemed

continuous along the FDC dendrites (Figure 1B).

We used the p30-specific antibody for Western blot analysis of

spleen homogenates from naı̈ve and VSV-infected C57BL/6 mice

to assess whether the observed MLV particles were associated with

the formation of mature p30 protein. In addition to the

characteristic band at 30 kDa observed after immune-stimulation,

the anti-p30 staining revealed precursor forms of p30 in all tested

C57BL/6 spleen samples (Figure 2A). To assure that the 30 kDa

band of p30 protein was representative for mature MLV, the

activity of reverse transcriptase (RT) in the spleen homogenates

was analyzed. The RT activities, as detected by product-enhanced

RT (PERT) assay, strictly correlated with the respective p30

signals at 30 kDa (Figure S3). This validated p30-specific

immunoblot analysis as a tool to estimate the abundance of

matured MLV in splenic tissue.

Additional Western blot analyses revealed that infection of

C57BL/6 mice with lymphocytic choriomeningitis virus (LCMV)

and administration of thioglycolate or lipopolysaccharide (LPS)

also activated endogenous retroviruses (Figure 2A). The broad

spectrum of effective immune-stimuli suggested that PrP up-

regulation and MLV appearance were consequences of activated

adaptive and innate mechanisms of resistance. This is consistent

with the fact that splenic PrP up-regulation is dependent on the

complement component C1q [16]. Similar to C57BL/6 mice,

DBA/2 and BALB/c mice showed augmented MLV activity

following immune-stimulation by VSV infection as assessed by p30

Western blot analysis and PERT assay (Figures 2B and 4A), and

responded with PrP up-regulation (Figure 2B). In contrast, 129/Sv

did not show increased retrovirus activity following VSV immune-

stimulation and also failed to up-regulate PrP expression

(Figure 2B, 2D, 3, and 4A).

Partial sequence identification of immune-

stimulated MLV
Since the most likely origin of the observed MLV particles is the

activation of proviral genes, 129/Sv might lack these particular

proviruses, in analogy to the reported paucity of AKR-like

proviruses in mouse 129 strains [17]. Clarification of this issue

was expected from the identification of MLV-specific proviral

genes involved in the observed appearance of MLV particles in

immune-stimulated mouse spleens. First, we analyzed total splenic

RNA using real-time RT-PCR with a primer-probe set of broad

specificity for MLV-related RNA sequences. All spleen samples

tested positive for MLV RNA, without significant differences

Figure 1. Microscopic revelation of numerous MLV particles in FDC
network with increased PrP expression after immune-stimulation of
a C57Bl/6 mouse with IC. (A) Ultrastructure of splenic FDC revealed by
TEM. Large panel displays plastic section 70 nm thin, showing
lymphocytes with dark round nuclei (L), and part of an FDC with
lobate nucleus (F) and labyrinthine extensions. Small dark spots (arrows)
on FDC extensions represent viral particles. Bar, 2.5 mm. Inset shows
cryosection 90 nm thin, depicting viral particles on FDC extension. Dot-
like gold particles represent immunostaining specific for MLV Env
protein. Bar, 0.5 mm. (B) Co-localized immunofluorescence staining of
PrP and MLV Env in splenic germinal center. Semithin (400 nm)
cryosection was double-stained with rabbit serum specific for PrP and
rat monoclonal antibody specific for MLV Env. Bar, 25 mm.
doi:10.1371/journal.pone.0001158.g001
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between naı̈ve and immune-stimulated mice (Table 1). This result

most likely reflected the general abundance of MLV-related RNA

species in mouse spleens, as indicated already by the notable RT

‘‘background’’ activity level of naı̈ve spleen lysates (Figure 4A).

Therefore, we isolated MLV particles from immune-stimulated

spleen tissue by Env-specific immunoadsorption and subsequently

extracted the particle-associated MLV RNA (Figure S4). Com-

plementary DNA corresponding to the purified MLV RNA was

amplified and subcloned. From the subcloned PCR products two

sequences of 732 nucleotides each were identified. They are

homologous to published MLV-related sequences in the NCBI

GenBank, with accession number U63133 (nucleotide range

2058–2789) and X94150 (range 2061–2792), respectively. Because

these sequences seemed to represent immune-activated murine

endogenous retroviruses, we named them IMERV-1 (homologous

to U63133) and IMERV-2 (X94150). Their up-regulation upon

immune-stimulation was confirmed by real-time RT-PCR analysis

of total RNA isolated from C57Bl/6 spleens (Figure 4B). In-

terestingly, no RNA related to IMERV-1 or IMERV-2 was

detected in naı̈ve or immune-stimulated 129/Sv spleens

(Figure 4B). Genomic IMERV-1 and IMERV-2 sequences were

detected in C57Bl/6, DBA/2 and BALB/c mice, but were absent

in 129/Sv mice (Table 1). These results corroborated the special

status of 129/Sv mice with regard to their retroviral repertoire.

PrP up-regulation in response to high MLV activity
The IMERV deficiency and the missing splenic PrP up-regulation

of 129/Sv mice pointed to a possible dependence of PrP up-

regulation on MLV activity. We first tested this hypothesis in a cell

culture model of 3T3 fibroblasts infected in vitro with MLV.

Western blot analysis of cell lysates showed that MLV-propagating

cells expressed significantly more PrP than non-infected control

3T3 fibroblasts (Figure S5). Thus, the presence or activity of MLV

is associated with increased PrP expression. Importantly, this PrP

increase was not correlated with an increase of PrP-related RNA

(Table 1), suggesting that a mechanism independent of transcrip-

tion was involved. Correspondingly, in mice splenic PrP was up-

regulated posttranscriptionally after immune-stimulation [16].

This indicated that PrP up-regulation occurred more specifically

than just by broad gene activation in response to viral burden.

We examined splenic PrP expression and the presence of MLV

p30 over 14 days following immune-stimulation of C57Bl/6 mice

by VSV infection (Figure 2C). Retroviral p30 increased at day 5

post-infection, peaked around day 8 and decreased again by day

14. Increased PrP expression was detected by day 8 and persisted

beyond day 14. Thus, the kinetics was in line with the assumption

that splenic PrP up-regulation occurred in response to IMERV,

but also that increased PrP expression might be linked to IMERV

regression.

Retrovirus regression in response to increased PrP

expression
If there was an inhibitory effect of up-regulated PrP on IMERV,

then PrP-deficient mice should show sustained IMERV activity.

To address this subject, Prnp knockout mice were assessed for the

presence of IMERV and their clearance kinetics.

One line of Prnp0/0 mice [14], which were generated on a mixed

129/Sv-C57BL/6 background, did not show IMERV activity

(data not shown) or proviral DNA (Table 1) and was therefore not

further evaluated. In contrast, Prnp2/2 Nagasaki mice were

established on a pure C57BL/6 background [18] and found to be

IMERV-competent. They were compared with C57Bl/6 wild-

type mice (PrP- and IMERV-competent) and 129/Sv wild-type

mice (PrP-competent, IMERV-deficient) on day 8 and day 30 after

VSV infection (Figure 2D and 3). In 129/Sv spleens, no MLV p30

was detected at any time point and PrP expression remained low.

C57BL/6 wild-type spleens revealed high MLV p30 and PrP

Figure 2. Immunoblots showing increase of PrP and mature MLV p30 in spleens of immune-stimulated mice. (A) Comparison of PrP and mature
p30 abundance following various immune-stimuli. C57Bl/6 mice were infected with VSV or LCMV, or treated with thioglycolate (TG) or
lipopolysaccharide (LPS). Eight days after immune-stimulation spleen homogenates were analyzed by Western blot for PrP (upper panels) and p30
(lower panels). Representative blots are shown. Protein bands revealing mature p30 protein are boxed. (B) Capacity of various inbred mouse strains
to respond to VSV infection with increased abundance of PrP and p30. Mice of the strains DBA/2, BALB/c and 129/Sv were infected with VSV. Splenic
PrP and MLV p30 were analysed on day 8 after infection. Representative blots are shown. (C) Kinetic of PrP and p30 abundance following VSV
infection. Spleens of C57BL/6 mice were analyzed on day 0, 3, 5, 8 and 14, respectively, after infection. In the presented Western blots homogenates
of three spleens per time point group were pooled for analysis, in order to obtain averaged results. (D) Different kinetics of PrP and p30 abundance in
129/Sv, C57BL/6 and Prnp2/2 (Nagasaki) mice. Spleens were analyzed on day 0, 8 and 30, respectively, after infection. Per experimental group
homogenates of three spleens were pooled.
doi:10.1371/journal.pone.0001158.g002
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presence on day 8, yet on day 30 the two proteins differed. While

PrP expression was still high, MLV p30 expression had nearly

vanished. In contrast, in C57BL/6 mice lacking PrP (Prnp2/2

Nagasaki) MLV p30 was found enhanced on day 8 and stayed

high at least until day 30. Hence, these results support our

hypothesis that PrP up-regulation negatively controls the splenic

presence of IMERV. An uncertainty about the correct in-

terpretation, however, was caused by the known particularity of

Prnp2/2 Nagasaki mice to ectopically express Doppel protein

(Dpl), a PrP paralogue, in the brain [19]. Conceivably, Dpl may as

well be ectopically expressed in the splenic FDC network, and if

so, the persistence of IMERV in Prnp2/2 Nagasaki mice might not

be the result of PrP absence but of Dpl presence. Immunohisto-

chemistry indeed revealed that Dpl was expressed in the splenic

FDC network of Prnp2/2 Nagasaki mice. In the Prnp+/2 F1

generation of a crossing of C57Bl/6 wild-type and Prnp2/2

Nagasaki mice, both PrP and Dpl were localized in the FDC

network (Figure S6). This co-localization permitted us to show that

PrP expression in Prnp+/2 F1 mice restored the phenotype of

IMERV regression (Figure 4C) irrespective of a putative role of

splenic Dpl in IMERV activity.

Figure 3. Immunohistochemistry illustrating the interdependence of
PrP and IMERV in the splenic FDC network. Frozen spleen sections
representing 129/Sv wild-type, C57Bl/6 wild-type and Prnp2/2 (Naga-
saki) mice on C57Bl/6 background, infected with VSV for 0, 8 and
30 days. Sections were double-stained with rabbit serum specific for
PrP (upper row) and goat serum specific for MLV p30 (lower row). Bar,
100 mm.
doi:10.1371/journal.pone.0001158.g003

Figure 4. Quantification of splenic IMERV activity. Open plot symbols
represent naı̈ve, filled symbols VSV-infected C57Bl/6 (%,&), BALB/c
(n,m), DBA/2 (,,.) or 129/Sv (#,$) mice. Short horizontal lines
indicate average values of respective experimental categories. (A) RT
activity in spleen homogenates on day 8 after VSV infection, as
revealed by PERT assay. (B) Relative abundance of RNA with IMERV-1
and IMERV-2 specific sequences on day 8 after VSV infection, as
assessed by real-time RT-PCR on total splenic RNA. (C) Relative
abundance of mature MLV p30 in spleen homogenates on day 30
after VSV infection, as determined by densitometric quantification of
immunoblots. Samples were obtained from C57Bl/6 wild-type mice (+/
+), Prnp2/2 (Nagasaki) mice (2/2) and F1 offsprings of a crossing of the
former two lines (+/2).
doi:10.1371/journal.pone.0001158.g004
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DISCUSSION
The present study has revealed that PrP up-regulation occurring in

the mouse spleen after immune-stimulation coincides and co-

localizes with the transient appearance of endogenous MLV

(IMERV). Because PrP up-regulation did not occur in mice that

lack the respective IMERV, and in turn, IMERV persisted in the

spleen of mice without PrP expression, we conclude that splenic

PrP expression plays a crucial role in the negative feedback control

of immune-activated endogenous MLV.

Whether PrP expression and retroviral activity are similarly

interconnected in non-splenic tissues and other mammalian

species remains to be determined, yet, support for such an

assumption is provided by cell culture experiments. Over-

expression of PrP counteracted the formation of endogenous

MLV in N2a neuroblastoma cells (data not shown) and repressed

HIV-1 in an infected human cell line [20]. These findings also

indicate that the antiretroviral function of PrP might rely on cell-

autonomous mechanisms. In the case of HIV-1 repression PrP was

reported to interfere with the synthesis of distinct viral proteins on

the level of translation [20], implying an interaction with retroviral

RNA. In support of such an interaction, functional binding of PrP

to retroviral RNA was demonstrated in a cell-free system [21], and

PrP was found to be present not only in cell membranes but also in

the cytosol [22]. Although PrP binding to retroviral RNA in

mammalian cells waits to be confirmed, it is consistent with the

concept of PrP and RNA partnering in TSE as summarised in the

Introduction. We propose that PrP binding to retrovirus-related

RNA is crucial for the antiretroviral effect of PrP expression as well

as the pathophysiology of TSE. The latter may explain the

interactions observed between TSE and (endogenous) retroviruses

in murine in vitro and in vivo models [23–25]. The involvement of

retrovirus-related RNA in TSE might also account for the

activation pattern of microglia that was found to be reminiscent

of an inflammatory response to latent or persistent viruses rather

than to amyloidogenic proteins (including abnormal PrP) [26].

Besides the combined evidence for an involvement of retrovirus-

related RNA in TSE, it is worth mentioning that in mammals this

RNA species occurs ubiquitously, on occasion abundantly, and in

various sizes (down to the range of small interfering RNA).

Omnipresence or small size could be reasons why no TSE-specific

RNA was identified so far. In addition, RNA species can adopt

various conformations, and therefore, tissue preparations contain-

ing (enriched) TSE infectivity may fail to show TSE-specific

ribonucleotide sequences because TSE specificity is imprinted in

the secondary structure. According to our model, in which

interacting PrP and RNA both can assume TSE-related

conformations, principally either binding partner might be able

to initiate per se propagation of the TSE agent. For the

maintenance of propagation and strain characteristics, however,

we assume the interaction of both components, PrP and RNA, to

be required (in accordance with the results of Deleault et al. [5]).

The massive appearance of IMERV in the FDC network of the

mouse spleen is a remarkable finding by itself. Because IMERV

activity occurred in response to various immune-stimuli and in

several inbred mouse strains, it may be a common trait with

physiological functions. Evidence for a connection between

endogenous C-type viruses and the humoral immune response of

mice was reported already three decades ago [27]. Since then,

diverse immunological roles have been discussed for endogenous

retroviruses [28] and we may speculate that IMERV activity

likewise can provide antiviral resistance or modulate immune

responses. The absence of genomic IMERV sequences and

IMERV activity, as reported here for 129/Sv mice, might

therefore be associated with immunological aberrations. Indeed,

mice of the 129 strain show deficits in macrophage recruitment as

well as NK and B cell activation [29–31]. The causes of these

deficiencies have remained elusive, however, the macrophage

impairment was reported to be a polygenic trait [29], which might

be consistent with the absence of IMERV-related genes.

Regarding the putative immunological impact of IMERV,

control of IMERV-like activity may be important, all the more

since retroviral activity in general increases the risks of insertional

modifications of the genome or the emergence of new retroviral

pathogens [32]. The PrP function suggested here might well

extend to the control of further retroviral elements in addition to

IMERV, as indicated by the potential of PrP revealed in in vitro

studies [20,21,33]. Still, for individual animals the restriction of

retroviral activity by PrP might be dispensable, like any proposed

role of PrP, as implicated for instance by the viability of inbred

PrP-deficient laboratory mice. However, it might be vital at the

species level to limit risks posed by the activity of endogenous

retroviral elements.

In summary, our experiments have revealed, by correlation,

a crucial role of PrP expression in the limitation of a common, but

previously unrecognized, phenomenon in the mouse spleen,

namely the massive activity of endogenous retroviruses in germinal

centers after various immune-stimulations. The biological signif-

icance of transient retroviral activity in the spleen and anti-

Table 1. Quantification of PrP-related RNA, MLV-related
RNA (broad specificity), and IMERV-related DNA by real-time
(RT-)PCR.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Type of quantified
nucleic acid

Sampled mouse cells or spleen
tissue

Relative
abundance

PrP RNA 3T3 cells, non-infected 100%

3T3 cells, MLV-infected 93%

MLV RNA (broad) 3T3 cells, non-infected 100%

3T3 cells, MLV-infected 11’143%

N2a cells, non-infected 606%

C57BL/6, naı̈ve 1’300%

C57BL/6, VSV-infected (8d) 1’213%

129/Sv, naı̈ve 985%

129/Sv, VSV-infected (8d) 1’056%

IMERV-1 DNA C57BL/6 100%

DBA/2 115%

BALB/c 123%

129/Sv 0%

Prnp0/0 (Zürich) 0%

F1 (Prnp0/0 (Zürich)6C57BL/6) 50%

Prnp2/2 (Nagasaki) 100%

IMERV-2 DNA C57BL/6 100%

DBA/2 115%

BALB/c 100%

129/Sv 0%

Prnp0/0 (Zürich) 0%

F1 (Prnp0/0 (Zürich)6C57BL/6) 47%

Prnp2/2 (Nagasaki) 107%

Comparison of samples was made within sections defined by type of quantified
nucleic acid. For the top sample of each section RNA or DNA abundance was
arbitrarily set to 100%.
doi:10.1371/journal.pone.0001158.t001..
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retroviral PrP function remains to be established. Yet, our findings

offer an intriguing new viewpoint from which the conceptual

conflicts thus far associated with PrP function and TSE

pathophysiology may be resolved.

MATERIALS AND METHODS

Mice
All mice were bred and maintained under SPF-conditions and

experiments performed in accordance with institutional and Swiss-

national guidelines. Wild-type C57BL/6 and 129/Sv mice were

purchased from the Institute of Laboratory Animals (Vetsuisse

Faculty, University of Zürich, Switzerland). DBA/2 and BALB/c

mice were obtained from Harlan Netherlands (Horst, Nether-

lands). Prnpo/o (Zürich line, mixed C57BL/6x129/Sv background)

and Prnp2/2 (Nagasaki line, C57BL/6) mice were kindly provided

by Adriano Aguzzi (Institute of Neuropathology, University of

Zürich, Switzerland).

Virus infection of mice
VSV-Indiana (VSV-IND) growth and infection were performed as

described before [16]. LCMV strain WE was originally obtained

from Fritz Lehmann-Grube (Heinrich Pette Institute, University of

Hamburg, Germany) and propagated on L929 and/or MC57

cells. Mice were infected with 26102 plaque forming units (PFU)

LCMV-WE injected intravenously as indicated. To avoid

immune-pathological destruction of splenic microarchitecture,

mice were depleted of CD8+ T cells prior to LCMV infection

by monoclonal antibody (YTS 169.4) as previously described.

Non-viral immune-stimulation
Mice were immunized intravenously with IC, as previously

described [16], or with LPS (15 mg intravenously/mouse; DIFCO

Laboratories, Detroit, USA). 1.5ml thioglycolate 3% (DIFCO

0256-17) was administered intraperitoneally. Because VSV in-

fection was the most efficient immune-stimulus for C57Bl/6 mice,

it was chosen for comparative experiments comprising other

mouse strains. Successful immune-stimulation was associated with

significantly increased spleen net weight, in comparison to naı̈ve

controls of the same experimental series, and was readily achieved

with C57Bl/6, DBA/2, 129/Sv and the Prnp knockout mice.

However, BALB/c mice exhibited increased spleen weight in only

one out of two experimental series. BALB/c data of the successful

series are shown.

Electron microscopy
From mouse spleens that were perfusion-fixed with 4% formal-

dehyde and 0.1% glutaraldehyde small pieces of white pulp were

dissected. For plastic embedding, white pulp samples were post-

fixed in 1% glutaraldehyde over-night and subjected to standard

procedures of osmification, dehydration and Epon embedding.

Ultrathin plastic sections were picked up on copper grids and

contrasted with uranyl acetate and lead citrate. For immunogold-

TEM white pulp samples were immersed for 48 h in 2 M sucrose

containing 15% polyvinyl pyrrolidone (10 kDa; Sigma), mounted

on aluminum pins and frozen and stored in liquid nitrogen.

Ultrathin cryosections were prepared according to Tokuyasu [34]

and picked up on nickel grids. Incubation of sections was

performed by floating the grids on droplets of the respective

solution. Immunolabelling was carried out with specific antibodies

diluted in conditioning buffer (PBS containing 0.5% milk powder

and 0.02% Tween). PrP-specific immunostaining was achieved

with rabbit serum XN [16] at a dilution of 1:200. MLV Env-

specific immunostaining employed rat monoclonal antibody

83A25 [35] at 1:2 and subsequent rabbit-anti rat (Jackson

ImmunoResearch Laboratories Inc., West Grove, PA) at 1:300.

Antibody binding was indirectly gold-labeled by incubation with

8- and 12-nm gold-complexed protein A, respectively. Immuno-

labelled sections were embedded and stained with methylcellulose

and uranyl acetate according to Tokuyasu [34]. Micrographs were

taken on a Zeiss EM 910.

Immunohistochemistry
Semithin sections of 400 nm were prepared from sucrose-

infiltrated aldehyde-fixed spleen tissue as for ultrathin cryotomy.

Preparation of cryostat sections from non-fixed spleen samples and

immunostaining were carried out as previously described [16].

Primary antibodies were the following: PrP-specific rabbit

antiserum XN at 1:600, MLV Env-specific rat antibody 83A25

at 1:3, MLV gp71-specific goat serum (kindly provided by Roland

Friedrich, Microbiology and Virology, University of Giessen,

Germany) at 1:3000, MLV p30-specific goat serum (kindly

provided by Hans Lutz, Vetsuisse Faculty, University of Zürich,

Switzerland) at 1:1500, and Dpl-specific affinity-purified goat

antibody Dpl (G-20) (Santa Cruz Biotechnology Inc., Santa Cruz,

CA) at 1:50.

Western blot and PERT analysis
For Western blot analysis, spleen tissue and cell culture sample

preparations, electrophoresis and immunoblot detection were

performed as decribed previously [16]. Employed primary

antibodies were PrP-specific polyclonal rabbit antibody 1B3 [16]

at 1:5000, and MLV p30-specific antibody at 1:10’000. For

determination of splenic reverse transcriptase activity, 10%

homogenates of spleen samples prepared for Western blot analysis

were diluted 1:1000 and subjected to PERT assays as described

elsewhere [36] (making use of a modification for real-time

detection).

Cell culture experiments
Mouse fibroblasts of the 3T3-Swiss albino cell line were cultured

as described previously [16]. For infection with Moloney type

MLV culture medium was complemented 1:2 with 0.45mm-

filtered virus-containing supernatant with a titer .107 pfu/ml

(viral stock kindly provided by Tatiana Afanasieva, Institute of

Neuropathology, University of Zürich, Switzerland) and 8 mg/ml

polybrene (Sigma). Medium was exchanged the next morning.

Mock-infected and MLV-infected fibroblast cultures were pas-

saged after 3 days and harvested on day 5 for Western blot

analysis.

Specific MLV particle isolation
An approximate amount of 46107 paramagnetic beads (Dyna-

beads M450) with covalently linked sheep anti-rat IgG (Dynal

Biotech, Oslo, Norway) was washed, resuspended in 800 ml PBS/

0.1%BSA and added to 1 ml of MLV Env-specific supernatant

83A25 for incubation over-night at 4uC to obtain MLV-specific

beads. A 20% homogenate of immune-stimulated mouse spleen

tissue was prepared in 10 mMTris-HCl pH 7.5 supplemented with

1 mM EDTA, 100 mM NaCl and 5% sucrose. The homogenate

was centrifuged for 30 min at 10’000g and 4uC, and 0.5 ml of the

supernatant was added to washed MLV-specific beads (or, as

a negativ control, to an equal amount of original rat IgG-specific

beads) and incubated for 2 h at ambient temperature. After

incubation beads were collected, washed and processed either for
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Epon embedding, ultrathin sectioning (100 nm) and EM exam-

ination, or for RNA isolation.

RNA and DNA extraction
Total RNA from paramagnetic bead fractions, spleens, or cells was

obtained by direct lysis of the samples in TRI reagent (MRC Inc.)

and further processing according to the manufacturers protocol.

Putative traces of contaminating DNA were removed with DNA-

freeTM Kit (Ambion Inc.).

DNA was extracted from mouse tail, spleen or brain by

decomposing tissue in tail lysis solution over-night at 55uC. After

brief centrifugation of the lysate, DNA was precipitated from the

supernatant with isopropanol. Precipitate was washed with 70%

ethanol, air-dried and reconstituted in 50 mM Tris-HCl pH 8.

Reverse transcription and PCR amplification
Reverse transcription on RNA extracted from paramagnetic bead

fractions was performed using the SuperScriptTM First-strand

Synthesis System for RT-PCR (Invitrogen) with random hexame-

ric primers according to the manufacturers instructions. Sub-

sequent PCR amplification employed the following primers:

forward 59-ataacccagggacctaatgagtc-39 for broad Friend-MLV

genome-related specificity, forward 59-ataacacaagggcccaatga-39

for broad Moloney-MLV genome-related specificity, and reverse

59-cttccacccgcttgttga-39 for both of them.

Cloning and sequencing
PCR products were isolated and purified with the QIAquick Gel

Extraction Kit (Qiagen). Cloning was performed by use of the

pGEMH-T Easy Vector System kit (Promega) and competent E.

coli JM109 cells (Promega). Plasmids were purified with the

Plasmid Midi Kit (Qiagen) and the inserts sequenced on an ABI

377 sequencer using Big Dye terminator chemistry (Applied

Biosystems) and custom primers.

RNA and DNA quantification by real-time PCR
Real-time RT-PCR analysis of RNA was performed as described

previously for GAPDH (internal standard) and PrP-related RNA

[16]. The primer-probe set with broad specificty for MLV was:

forward 59-aagcgggtggaagacatcc-39, reverse 59-agcccgctcaa-

gaggttgt-39, probe FAM-59-ccccaccgtgcccaaccct-39-TAMRA.

The primer-probe set specific for IMERV-1 was: forward 59-

cactttgagggatcaggagcc-39, reverse 59-cttctaggtttagggtcaacacctgt-39,

probe FAM-59-aggttgtgggaccaaaaggacagcc-39-TAMRA. For IM-

ERV-2-related RNA, the set was: forward 59-cacttcgagggatcgg-

gagct-39, reverse 59-cctctatgccaagggtcaacacctgc-39, same probe as

for IMERV-1.

The procedure for real-time PCR analysis of DNA was identical

to the one for RNA analysis except that the template nucleic acid

was 5 ng DNA per reaction and the reverse transcription step was

omitted.

SUPPORTING INFORMATION

Figure S1 TEM of ultrathin cryosections through the germinal

center of a mouse spleen showing an FDC (F) with its labyrinthine

extensions between lymphocytes (L). The wild-type mouse of the

C57Bl/6 strain was immune-stimulated 8 days before by in-

travenous IC. PrP-specific immunogold labelling (small black dots)

is restricted to the FDC extensions. Retrovirus-like particles can

also be discerned, with the morphology of mature (arrows) and

immature budding virus (arrowhead). Bar, 500 nm.

Found at: doi:10.1371/journal.pone.0001158.s001 (1.40 MB TIF)

Figure S2 Immunofluorescence staining obtained with antibo-

dies directed against MLV Env, gp71 and p30 on consecutive

cryosections of spleens of C57Bl/6 mice on day 8 after VSV

infection. On each section double-staining revealed the MLV

protein in conjunction with PrP. Bar, 100 mm.

Found at: doi:10.1371/journal.pone.0001158.s002 (0.09 MB

PDF)

Figure S3 Correspondence of mature MLV p30 abundance and

reverse transcriptase (RT) activity in mouse spleens. Homogenates

from naı̈ve (first from the left) and immune-stimulated C57BL/6

spleens were analysed by Western blot for the p30 protein band at

the 30 kDa position (immunoblots at bottom) and by PERT assay

for RT activity.

Found at: doi:10.1371/journal.pone.0001158.s003 (0.05 MB

PDF)

Figure S4 Isolation and amplification of immune-activated

MLV-related RNA sequences. (A) Immunoabsorptive isolation of

viral particles. Paramagnetic beads were incubated in homogenate

of immune-stimulated C57BL/6 spleens, washed and then

processed for RNA isolation or for visual control by TEM.

Electron micrographs of ultrathin plastic sections show beads

without specificity for MLV (left panel), and the surface of an Env-

specific bead with bound viral particles (right panel). Bar, 1 mm. (B)

MLV-specific RT-PCR products obtained with RNA preparations

from immunoabsorptive bead samples. Reverse transcription and

amplification of RNA from cultivated Moloney MLV (positive

control, lane 1), from non-specific bead samples (lanes 2 and 4)

and from Env-specific bead samples (lanes 3 and 5) were

performed with primer pairs specific for Moloney type (lanes 1–

3) and for Friend type MLV sequence (lanes 4 and 5), respectively.

Visible bands (lanes 1 and 5) represent products of the expected

size of 1.3 kilobases. Marker, lane 6.

Found at: doi:10.1371/journal.pone.0001158.s004 (0.14 MB

PDF)

Figure S5 Increased PrP and p30 expression by 3T3 fibroblasts

following infection with Moloney MLV. Retrovirus infection was

established within 5 days with cell passage in fresh medium. Per

experimental group, i.e. control cells (2 MLV) and infected cells

(+MLV), lysates of three cell cultures were pooled for analysis in

the presented Western blots, in order to obtain averaged results.

Found at: doi:10.1371/journal.pone.0001158.s005 (0.03 MB

PDF)

Figure S6 Dpl and PrP expression in splenic FDC networks of

Prnp2/2 (Nagasaki), C57Bl/6 wild-type Prnp+/+ mouse and F1

offspring of Prnp2/2 (Nagasaki)/C57Bl/6 wild-type crossing

(Prnp+/2), on day 8 after VSV infection. Dpl and PrP were

revealed by immunofluorescence double-staining. Bar, 100 mm.

Found at: doi:10.1371/journal.pone.0001158.s006 (0.09 MB

PDF)
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