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Background. Vision is initiated by phototransduction in the outer retina by photoreceptors, whose high metabolic rate
generates large CO2 loads. Inner retina cells then process the visual signal and CO2. The anion exchanger 3 gene (AE3/
Slc4a3) encodes full-length AE3 (AE3fl) and cardiac AE3 (AE3c) isoforms, catalyzing plasma membrane Cl2/HCO3

2 exchange
in Müller (AE3fl) and horizontal (AE3c) cells. AE3 thus maintains acid-balance by removing photoreceptor-generated CO2

waste. Methodology/Principal Findings. We report that Slc4a32/2 null mice have inner retina defects (electroretinogram
b-wave reduction, optic nerve and retinal vessel anomalies). These pathologic features are common to most human
vitreoretinal degenerations. Immunobloting analysis revealed that Na+/HCO3

2 co-transporter (NBC1), and carbonic
anhydrase II and CAXIV, protein expression were elevated in Slc4a32/2 mouse retinas, suggesting compensation for loss
of AE3. TUNEL staining showed increased numbers of apoptotic nuclei from 4–6 months of age, in Slc4a32/2 mice, indicating
late onset photoreceptor death. Conclusions/Significance. Identification of Slc4a3 as underlying a previously un-
recognized cause of blindness suggests this gene as a new candidate for a subset of hereditary vitreoretinal retinal
degeneration.
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INTRODUCTION
The human retina has extremely high rates of aerobic metabolism

and oxygen consumption, which generates large CO2 loads [1].

For optical reasons, the outer retina, where photoreceptors cells

are localized, is avascular [2]. Efficient elimination of the

considerable CO2 and H+ load produced by photoreceptor

activity is necessary to maintain intracellular (pHi) and extracel-

lular (pHo) pH homeostasis. Aspects of the phototransduction

cascade, including photoreceptor light-sensitive currents [3],

cGMP content of photoreceptors [4], and ion channels activity

[5], are highly sensitive to pH.

Transient changes of intracellular pH (pHi) and extracellular

pH (pHo) upon synaptic activity in the retina influence the

response properties of neuronal circuits. Activity of plasma

membrane acid and base transporters in neurons and glial cells

of the retina regulate those changes. Na+-independent Cl2/

HCO3
2 exchangers (AE) likely contribute to maintain ionic

homeostasis in the retina [6].

The AE family comprises ten genes [7] [8]. One of them, the

AE3 gene (SLC4A3), encodes the full length AE3 (AE3fl) and the

cardiac AE3 (AE3c) isoforms generated by alternative promoter

usage [9]. The predicted cardiac AE3 (AE3c) polypeptide is 1030

amino acids in length and approximately 120 kDa, while the

AE3fl variant consists of 1227 amino acids and ,160 kDa. The C-

terminal 957 amino acids of both polypeptides are identical, but

AE3c contains a unique N-terminal sequence of 73 amino acids,

which replaces the first 270 amino acids of AE3fl. AE3 catalyzes

electroneutral Cl2/HCO3
2 exchange across the plasma cell

membrane, regulating [Cl2]i, [HCO3
2]i, pHi, and volume [8].

In the central nervous system, neuronal and glial brain cells

express only AE3fl isoform. Conversely, the inner retina, which is

also part of the central nervous system, expresses both AE3fl and

AE3c isoforms, in neuronal and glial cells [10].

To explore the role of proton trafficking in the central nervous

system, it is important to complement physiological studies with its

molecular counterpart. Therefore, we studied the functional role

of AE3 in the inner retina, using a mouse model with a target

disruption of the Slc4a3 gene.

While inheritance patterns have been clearly demonstrated for

hereditary vitreoretinal degenerations (HVD), most genes have yet

to be identified. In the few cases for which genes have been

discovered, there is a very clear correlation between the function of

the gene and the associated phenotype. The present study of the

AE3 knockout mouse provides further evidence that AE3 plays an

essential role in catalyzing Cl2/HCO3
2 exchange across the

plasma membrane of Müller and horizontal cells of the inner

retina [10]. Therefore, AE3 contributes to the removal of

photoreceptor-generated CO2 waste, which contributes to main-

taining acid-balance in the inner retina.

We report that mice with homozygous disruption of Slc4a3

present with inner retinal defects and late onset photoreceptor

death, which are the pathologic features of most human HVD

[11].
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METHODS

Animals
The animals were housed and handled with the authorization

and supervision of the Institutional Animal Care and Use

Committee at the University of Alberta. Experiments were

carried out in accordance with the guidelines laid down by the

NIH regarding the care and use of animals for experimental

procedures (NIH Publications No. 80-23, revised 1996). The

procedures also conformed to the ARVO Statement for the Use

of Animals in Ophthalmic and Vision Research. All efforts were

made to minimize the number of animals used and their

discomfort.

Generation and genotyping of Slc4a32/2 mice
The Slc4a3 gene was disrupted by replacing a region of the gene

that contained most of exon 6, intron 6, the cardiac-specific first

exon and promoter, and exon 7 with the neomycin resistance

gene (GE Shull, manuscript in revision). The region deleted

contained codons 209–319 of the long form of AE3 and codons

1–72 of the cardiac-specific form. Expression of the cardiac-

specific mRNA was eliminated. Due to the introduction of

premature stop codons and frameshifts, the open reading frames

of any mRNAs transcribed from the promoter for the longer

variant of AE3 do not include the codons for amino acids 209–

1227, which contain the anion transport domains. Genomic

DNA was extracted from 3.0 mm ear notch biopsies with

a Qiagen Kit (Qiagen Inc., ON, CA) and this DNA was used

for genotyping by polymerase chain reaction. For the detection of

the wild type allele (+) the oligonucleotides AE3wt.for 59-GAT

GAA GAT GAC AGC CCA GGC CTT CC, and AE3wt.rev 59-

CCG GCT CTT CTG TGT GGA GAT TCG GG, were used

as forward and reverse primers, and amplified a 593 bp

fragment. The forward primer corresponds to a portion of the

deleted AE3 gene; thus the mutant allele was not amplified. The

AE3wt.for primer, and AE3dNEO.rev primer, 59-GAC AAT

AGC AGG CAT GCT GG amplified a 654 bp fragment of the

mutant allele (2).

Preparation of mouse retina membranes
Freshly isolated mouse retinas were homogenized by 12 strokes

of a Dounce homogenizer in 0.5 ml/retina of ice-cold 0.32 M

sucrose, 1 mM EGTA, 0.1 mM EDTA, 10 mM HEPES,

pH 7.5, containing protease inhibitors (MiniComplete, Roche).

Homogenates were centrifuged at 1,440 g for 5 min in a Beck-

man G5-6K centrifuge. Supernatants were removed and

centrifuged at 66,700 g for 30 min at 4uC in a Beckman TLA

100.4 rotor. Resulting membrane fraction was resuspended in

25 ml/retina, of PBS (140 mM NaCl, 3 mM KCl, 6.5 mM

Na2HPO4, 1.5 mM KH2PO4, pH 7.5). Non-membranous frac-

tions were kept for whole retinal lysate preparation. Protein was

quantified by Bradford assay, and 50 mg of protein used for

immunoblots.

Protein Expression
Expression constructs for human CAII[12], mouse CAXIV[13]

and rat NBC1[14], have been described previously described.

CAII, CAXIV, and NBC1 proteins were expressed by transient

transfection of HEK293 cells[15], using the calcium phosphate

method[16]. Cells were grown at 37uC in an air/CO2 (19:1)

environment in high glucose Dulbecco’s Modified Eagles Medium

(DMEM), supplemented with 5% (v/v) fetal bovine serum and 5%

(v/v) calf serum.

Immunodetection
HEK293 cells were mock-transfected, or individually transfected

with human CAII, mouse CAXIV, or rat NBC1, cDNAs. Two

days post-transfection, cells were washed in PBS buffer, and lysates

of the whole tissue culture cells were prepared by addition of

150 ml 26SDS sample buffer ((4% (w/v) sodium dodecyl sulfate,

0.13 M Tris, 2% (v/v) 2-mercaptoethanol, pH 6.8) to 60 mm

Petri dish. Samples (50 mg protein for HEK293 cell lysates, 50 mg

protein for whole retinal lysates, and 50 mg protein for mouse

retina membranes) were resolved by SDS-PAGE on 8–10%

acrylamide gels [17]. Proteins were transferred to polyvinylidene

fluoride (PVDF) membranes, and then incubated with rabbit anti-

CAII ((H-70, Santa Cruz (SC), CA, 1:1000 dilutions), goat anti-

CAXIV (N-19, SC, CA, 1:500), rabbit anti-AE3 (AP3, 1:1000

dilution), rabbit anti-AE3c (1:1000 dilution) [15], or mouse anti-a-

tubulin (TU-02, SC, CA, 1:1000 dilution), antibody. Polyclonal

anti-NBC1 antibody was generated by immunizing rabbits with

a peptide corresponding to the conserved C-terminal sequence of

mouse NBC1 (COOH-DSKPSDRERSPTFLERHTSC-NH2,

Synpep, USA). Antibodies were affinity purified and cross-

reactivity tested using heterologous system (individually transient

transfection of HEK293 cells with NBC1 and NBC3 cDNAs,

respectively). NBC1 antibody was used at a dilution of 1:500.

Immunoblots were incubated with 1:1000 dilution of donkey anti-

rabbit IgG (SC, CA), or mouse anti-goat IgG, or sheep anti-mouse

IgG (NA931V, Amersham Biosciences, UK), conjugated to

horseradish peroxidase [18]. Blots were visualized and quantified

using ECL reagent and a Kodak Image Station.

Immunostaining of mouse retinas and analysis by

confocal microscopy
For immunofluorescence experiments, mice were euthanized with

pentobarbital, intravenously (200 mg/kg). Eyes were excised and

immediately frozen at 280uC in Shandon CryomatrixTM

(Thermo Electron Corporation, PA). Cryostat sections (20 mm

thick) of retinas were then cut onto glass slides. Following washing

(265 min with PBS), and blocking (10% Chicken Serum in PBS,

30 min), retinas were incubated with primary antibodies in PBS

buffer, containing 0.5% Triton X-100 (overnight, in a humidified

chamber, 25uC), washed (365 min in PBS) and incubated with

secondary antibody as above (1 h, in a humidified chamber,

25uC). Primary rabbit polyclonal anti-AE3 (AP3) antibody [10],

rabbit anti-AE3c [15], and rabbit anti-PKC-aC-20, Santa Cruz,

USA), were used at 1:100 dilution. Primary goat polyclonal anti-

CAII (C14, Santa Cruz, USA), and goat polyclonal anti-CAXIV

(N-19, Santa Cruz, USA), were used at 1:100 dilution. Mouse

monoclonal anti-GFAP (SMI-22, Sternberger Monoclonals Inc.),

and mouse monoclonal anti-Bassoon (VAM-PS003, Stressgen),

were used at 1:1000 and 1:500 dilutions, respectively. Secondary

chicken anti-rabbit conjugated to Alexa Fluor 488 (green), or

secondary chicken anti-goat conjugated to Alexa Fluor 594 (red),

were used at 1:100 dilutions, or secondary goat anti-rabbit

conjugated to Alexa Fluor 488 (green), or secondary goat anti-

mouse conjugated to Alexa Fluor 594 (red), was used at 1:1000

dilutions. In control experiments, slides were incubated only with

secondary antibodies (data not shown). Slides were washed three

times in PBS and mounted and viewed using confocal microscopy.

Immunostained retinas on slides were mounted in Prolong Anti-

fade solution containing DAPI for nuclear staining (Molecular

Probes, OR, USA). Slides were imaged with a Zeiss LSM 510 laser

scanning confocal microscope imaging system mounted on an

Axiovert 100 M controller. Images were collected using an oil

immersion 436 objective, at a resolution of 0.5–0.7 mm field
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depth. Filtering was used to integrate the signal collected over 4–8

frames to decrease noise (scan time of 7 s/frame). Multiple sections

from different mice were examined. Some retinas were stained for

GFAP and imaged as above, directly on retinal flat mounts.

Electron microscopy
Mice were euthanized as above. Eyes were fixed by transcardiac

perfusion with 1% formaldehyde and 2% glutaraldehyde 0.1 M

sodium phosphate, pH 7.2, then removed and fixed additionally

for 1 h with 1% osmium tetroxide in 0.1 M sodium phosphate,

pH 7.2. Tissues were then dehydrated and embedded in a 1:1

mixture of Epon 812 (Tousimis) and Araldite 502 (Electron

Microscopy Sciences) epoxy resins. Sections of quadrants of the

retina were cut, including the optic nerve head or at 0.5 mm

peripherally, and stained with 1% toluidine blue. Sections were

viewed and imaged with a Hitachi Transmission Electron

Microscope H-7000.

Apoptotic nuclear staining
After eye removal as described for immunostaining, eyes were

post-fixed in 4% paraformaldehyde for 1 h and then immersed in

10% (1 h), 20% (1 h), and 30% (12–16 h) sucrose. In situ cell death

detection kit TUNEL Label Mix (Roche) was used to detect

apopotic nuclei (green). Briefly, frozen 20 mm tissue sections were

immersed in 20 mg/ml of proteinase K nuclease free buffer

(Roche) with 10 mM Tris/HCl, pH 7.4, for 2 min at 4uC.

Sections were rinsed repeatedly with phosphate-buffered saline

(PBS) and then permeabilized with 0.1% Triton X-100 in 0.1%

sodium citrate for 2 min on ice. After washing twice with PBS,

50 ml of the TUNEL reaction mixture was applied to the samples.

Slides were incubated in a humidified chamber atmosphere for

45 min at 37uC in the dark. At the end of the incubation, slides

were washed repeatedly with PBS, and mounted under coverslips,

in the presence of DAPI. For control slides, TUNEL Label only

was used, omitting the TUNEL enzyme in the reaction mixture,

and no staining was detected.

Funduscopy
Under ketamine (150 mg/kg i.p.) and xylazine (10 mg/kg i.p.)

anesthesia, pupils were dilated with a drop of Tropicamide (Alcon

Laboratory). A digital camera was used in conjunction with a 78D

lens (Volk) mounted between the camera and the mouse eye.

Photographs were taken using conscious mice to avoid corneal

clouding. Vibrissae were gently and partially removed with fine

scissors to prevent them from obscuring the photograph.

Fluorescein angiography
Immediately after euthanasia (as described above), mice were

transcardiacally perfused with 2 ml of a fresh solution of

Fluorescein Isothiocyanate Dextran 500,000-conjugate (Sigma;

15 mg/ml of distilled water, filtered through 0.8 mm filter). The

eyes were removed, post-fixed for 30 minutes and then retina flat

mounts dissected to be post-fixed for one hour on filter paper (to

force a flat shape during fixation). Tissues were mounted on slides

and visualized with a Zeiss LSM 510 confocal microscope.

Electroretinography
After overnight dark adaptation (12–15 h), animals were prepared

for bilateral ERG recordings under dim red light. Under

anesthesia with a mixture of ketamine (150 mg/kg i.p.) and

xylazine (10 mg/kg i.p.), the head was secured with a stereotaxic

holder and the body temperature was maintained at 38uC, using

a homeothermic blanket. Pupils were dilated using 1% Tropica-

mide. A drop of 0.9% saline was applied on each cornea to

prevent dehydration and to allow electrical contact with the

recording electrode (gold wire loop). A 25-gauge platinum needle

inserted subdermally behind each eye, served as reference

electrode. Amplification (at 1–1000 Hz bandpass, without notch

filtering), stimulus presentation, and data acquisition were pro-

vided by the Espion E2 system from Diagnosys LLC (Lowell, MA).

Stimuli consisted of single white (6500 K) flashes (10 ms duration),

repeated 3–5 times to verify the responsiveness reliability. For

intensity responses, stimuli were presented at 19 increasing

intensities varying from 25.7 to 2.9 log cds/m2 in luminance.

To allow for maximal rod recovery between consecutive flashes,

inter-stimuli-intervals was increased (as the stimulus intensities

were progressively increased) from 10 s at lowest stimulus intensity

up to 2 min at highest stimulus intensity. Amplitude of the b-wave

was measured from the a-wave negative peak up to the b-wave

positive apex, and not up to the peak of oscillations, which can

exceed the b-wave apex. Following 10 min of photopic adaptation

(30 cd/m2 background), cone-driven intensity responses were

studied, using single flashes with intensities ranging from 21.6 to

2.9 log cds/m2 along 11 steps of incremental intensities. Flicker

ERG was then recorded, starting at 3 Hz, then 5 Hz and up to

45 Hz (along steps of 5 Hz) to establish the critical flicker fusion,

according to 10 mV criterion amplitude. Peak-to-peak amplitudes

were plotted as a function of the flicker frequency.

Statistics
Data points represent mean6s.e.m. Statistical significance be-

tween groups was assessed using ANOVA, with P,0.05

considered significant.

URL
Detailed information regarding the potential genes causing

vitreoretinal degenerations can be obtained using the web-based

server, OMIM (Online Mendelian Inheritance in Man). http://

www.ncbi.nlm.nih.gov/entrez/query.fcgi?db = OMIM

RESULTS
To explore the role of AE3 in the retina we analyzed a mouse

model with a targeted disruption of Slc4a3, in which mRNAs

encoding both AE3 full-length (AE3fl) and AE3c variants had been

disrupted. PCR-based genotyping distinguished Slc4a3 wild type

(+/+), heterozygous (+/2) and null (2/2) mice (Fig. 1A).

Immunoblots revealed that AE3 was expressed only in Slc4a3+/+

Slc4a3+/2 mice (Fig. 1B). Slc4a32/2 mice developed normally, and

were behaviorally and anatomically undistinguishable from their

Slc4a3+/+ littermates. Mutations in human SLC4A4, another

HCO3
2 transporter (NBC1, Na+/HCO3

2 co-transporter), have

been associated with short stature, poor dentition, proximal renal

tubular acidosis, and bilateral cataracts with corneal opacity and

late blindness onset in humans [19–21]. Slc4a32/2 mice, however,

were fertile and had normal corneas and dentition with no major

systemic defects (Fig. 1C).

Consistent with anatomical observations in an independently

generated Slc4a3-null mouse line [22], Slc4a32/2 retinas appeared

normal with all layers present and of comparable thickness to age-

matched Slc4a3+/+ littermates at 4 months of age (Fig. 2a, 2c).

While light microscopic studies revealed a normal retina, they are

not optimal for assessing the integrity of outer retina component

such as outer segment discs and the intricate relationship between

outer segments and retinal pigment epithelial cells. Ultrastructural

analysis showed the presence of full-length outer segments with

Blindness with AE3 Deficiency
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invaginating retinal pigmented epithelium villi as well as normal

appearance of Bruch’s membrane. The discs from the outer

segments were perfectly aligned (Fig. 2b, 2d). Together, the light

and electron microscopy data confirm the absence of any gross

retina morphology disturbances in Slc4a3-null mice.

The absence of any cataract formations in the eyes of Slc4a3-

null mice allowed additional anatomical analysis using funduscopy

(Fig. 2e, 2f). The retina, optic disc, choroid, and blood vessels were

comparable between mutant and wild type mice. There were also

no signs of any pigment migration or vitreous condensation.

To obtain a more detailed scrutiny of the retina, we probed

specific structures on retinal flat mounts. Immunolabeling of

astrocytes with specific glial fibrillary acidic protein (GFAP)

antibody, showed that inner retina vessels were wrapped by dense

astrocytic processes at 8 months of age in Slc4a32/2 mice (Fig. 2g,

h). This pathological feature, which was absent in WT mice, is

analogous to the vascular sheathing previously described on

histological sections of human retinas [23]. This observation

prompted us to characterize inner retina blood vessels in greater

detail than possible with funduscopy. Transcardiac perfusion with

fluorescein confirmed normal appearance of inner retina vessels in

8-month-old WT mice (Fig. 2i, j). Conversely, age-matched

Slc4a32/2 mice had inner retina blood vessels that formed

sporadic loops (Fig. 2k). These loops were typical of pathological

cases in which venules and arterioles are shunted, i.e. not

separated by capillaries. Overall, inner retina blood vessels

followed tortuous trajectories (Fig. 2l) and the major vessels in

the central area of the retina tended to have thinner diameters.

Detailed characterization of the optic disc, beyond the level

possible with funduscopy was undertaken using GFAP immuno-

labeling of astrocytes on cross sections of the retina. Astrocytic

processes had marked disorganization at the level of optic nerve

head (Fig. 2m). In Slc4a3+/+ mice, the optic nerve head consisted of

well-aligned bundles (not shown).

Confocal immunofluorescence (Fig. 3a–d) confirmed the

expression of the two alternate AE3 forms [10], AE3 cardiac

(AE3c), and AE3 full length (AE3fl), respectively in horizontal cells

[somas in inner nuclear layer (INL) and processes in outer

plexiform layer (OPL)], Müller cells (somas and processes in the

inner nuclear layer, and processes in the inner plexiform layer),

and somas in the ganglion cell layer of Slc4a3+/+ but not Slc4a32/2

retinas. Slc4a32/2 mice over-expressed the intermediate filament

protein GFAP in Müller cells and astrocytes (Fig. 3f; 6 months),

but not in age-matched Slc4a3+/+ mice (Fig. 3e). Elevation of

GFAP levels in Slc4a32/2 retinas was confirmed on immunoblots

(Fig. 3g, 3h; 4–8 months). Indeed, GFAP increased ,3.5 fold in

Slc4a32/2 mice, relative to wild type Slc4a3+/+. Another

pathologic hallmark was the aberrant sprouting of rod bipolar

cell dendrites into the outer nuclear layer, evidencing that retinal

remodeling does occur in Slc4a32/2 mice. Finally, the observation

that the presynaptic marker bassoon undergoes down-regulation

in AE32/2 (Fig. 3i, 3j) indicates further pathological changes.

To test for potential retina dysfunction in Slc4a32/2 mice,

photoreceptor activity was distinguished from post-synaptic inner

retina activity by measuring the electroretinogram (ERG) a-wave

and b-wave, which respectively represent photoreceptor and inner

retina activity. Reduction of any of these components implies

visual losses. We found a pronounced and selective ERG b-wave

depression up to ,60%, that was age-independent (Fig. 4a, 4b,

4d, 4e, 4g, 4h). Another indicator of inner retina function, the

flicker ERG, also paralleled b-wave reductions in Slc4a32/2 mice

(Fig. 4f, 4i). Moreover, oscillatory potentials (wavelets on

ascending b-wave), which also reflect inner retina functional

integrity, were absent at all ages tested in Slc4a32/2 mice. In

addition to specific inner retina defects at all ages in Slc4a32/2

mice, there was a progressive scotopic a-wave amplitude

reductions (reaching statistical significance only by 4 months;

see Fig. 4b, 4c, 4g) implying phototransduction failure in the

already compromised vision of these mice, secondary to the

ongoing inner retina defect.

AE3fl and AE3c proteins are found in a specific type of glial

cells (Müller), and of neuronal cells (horizontal), respectively [10].

Both NBC1 [24] and carbonic anhydrase enzymes II (CAII) and

XIV (CAXIV) [25], which are involved in bicarbonate metabo-

lism and transport, are found in these same two cell types

selectively expressing AE3. Therefore, we examined the expression

of CAII (whole lysate), and CAXIV and NBC1 (membrane)

cellular fractions of freshly isolated Slc4a32/2 null and Slc4a3+/+

wild type mouse retinas (4–8 months), by immunoblotting.

Samples were probed with a-tubulin as a loading marker.

Cytoplasmic CAII, and CAXIV, with catalytic domain anchored

to the extracellular surface, showed strong expression in Slc4a32/2

and Slc4a3+/+ retinas (Fig. 5A). NBC1 was also detectable in

Slc4a32/2 and Slc4a3+/+ retinas (Fig. 5A). Notably, expression of

CAII, CAXIV, and NBC1 increased by 30%, 35%, and 50%,

respectively, in Slc4a32/2 compared to Slc4a3+/+ retinas (Fig. 5B).

Figure 1. Loss of the wild-type Slc4a3 allele and AE3 protein
expression in Slc4a3 gene-targeted mice. (A) PCR genotyping of
mutant mice using genomic DNA extracted from ear notch biopsies.
Open and filled arrows identify mutant and wild-type alleles, re-
spectively. (B) Immunoblot analysis of protein samples prepared from
isolated retinas of wild-type (Slc4a3+/+), heterozygous (Slc4a3+/2) and
null (Slc4a32/2) mice using a C-terminal antibody to AE3 (top panel),
which recognizes both AE3 isoforms. Open and filled arrows show full
length (AE3fl), and cardiac (AE3c) AE3 isoforms, respectively. Parallel
blot of protein samples from above were probed with a-tubulin as
a loading marker (gray arrow) (bottom panel). (C) Facial characteristics of
8-month old Slc4a32/2 mouse.
doi:10.1371/journal.pone.0000839.g001
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This abnormal elevation in CAII, CAXIV, and NBC1 (not shown)

protein levels, was confirmed by immunohistochemistry combined

with confocal microscopy, in retinas of Slc4a32/2 and Slc4a3+/+

mouse (Fig. 6). Frozen vertical sections of Slc4a32/2 and Slc4a3+/+

mouse retina were mounted on the same slide and used to study

localization and immunoreactivity of CAII and CAXIV, in adult

mice. CAII was found in horizontal cells, predominantly

associated with cell membranes (somas in inner nuclear layer

and processes in outer plexiform layer) (Fig. 6A), whereas CAXIV

showed intense labeling of Müller cells (somas and processes in the

INNER NUCLEAR LAYER, and processes in the inner

plexiform layer), and somas in the ganglion cell layer (Fig. 6B),

in both Slc4a32/2 and Slc4a3+/+ mice. Interestingly, under same

experimental and imaging capture conditions, immunoreactivity

of CAII and CAXIV labeling in Slc4a32/2 null mouse was

stronger than in wild type littermates, confirming elevated

expression of CA proteins in the pathologic retinas.

Increased expression of HCO3
2 transporter (NBC1), and

HCO3
2 regulatory proteins (CAII, CAXIV) suggests the occur-

rence of compensatory changes in response to the loss of AE3 in

Slc4a32/2 mouse retinas. Functional defects in the Slc4a32/2 null

mice (ERGs) indicates that the ability to maintain acid–base

balance is dramatically compromised in the inner retina and

cannot be fully compensated by other pH regulatory proteins. We

examined whether this leads to cell death in the retina. Staining for

apoptotic cells, using TUNEL, revealed increased number of

apoptotic nuclei from 4–6 months, in both the outer and inner

nuclear retina layers, in Slc4a32/2 but not Slc4a3+/+ retinas

(Fig. 7A).

We have confirmed a key role played by the AE3 Cl2/HCO3
2

exchangers in the mammalian retina, proving that bicarbonate

transport and metabolism are key elements of normal ocular

function. The specific visual phenotype resulting from AE3

deficiency, however, is unexpected, considering that the AE3

Figure 2. Histological analysis, funduscopy, and immunohistochemistry examination of the Slc4a32/2 mouse retina. Retina cross-sections
(20 mm-thick) from Slc4a3+/+ (a) and Slc4a32/2 (b) mice stained with hematoxylin-eosin, scale bar = 50 mm. Electron micrographs of Slc4a3+/+ (c) and
Slc4a32/2 (d) mouse retinas, scale bar = 5 mm; OS = outer segment; IS = inner segment; ONL = outer nuclear layer; OPL = outer plexiform layer;
INL = inner nuclear layer; IPL = inner plexiform layer; GCL = ganglion cells layer. Fundus photos in 8-month-old Slc4a3+/+ wild type (e) and Slc4a32/2

littermate mouse (f). Confocal microscopic pictures of retina flat mounts stained with GFAP (g, h), scale bar = 50 mm. Confocal microscopic
reconstructions (z-stack of 50 mm depth) of fluorescein-filled blood vessels in retina flat mounts showing several loops indicative of shunting
between venule and arteriole (arrows) in 8 month old Slc4a32/2 (k) not seen in WT (i); at higher magnification, tortuous vessels are obvious in
Slc4a32/2 (j) compared with straight trajectories in Slc4a3+/+(l), scale bar = 100 mm. Confocal fluorescence image of six-month old Slc4a32/2 mouse
retina (m), stained with anti-glial fibrilar acidic protein (GFAP) antibody, at the level of the optic nerve head (anterior lamina cribosa), scale
bar = 50 mm.
doi:10.1371/journal.pone.0000839.g002
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Figure 3. Localization of AE3fl and AE3c in mouse retina and retinal changes in Slc4a32/2 mice. (a–d) Retina cross sections of 4 months Slc4a3+/+

mice (a, c), showing staining of the outer plexiform layer and Müller cells somas (arrows) and processes (arrowheads), and horizontal cells (diamond),
using C-terminus antibody (a); somas in the ganglion cell layer were also immunolabeled. N-terminus antibody (specific to AE3c isoforms) labeled
horizontal cell somas and dendrites (c). Specific staining was absent in 4 months Slc4a32/2 littermates (b, d) scale bar = 25 mm. GFAP was restricted
to inner limiting membrane in Slc4a3+/+ mice (e), while it stained radial (arrows) and tangential (stars) processes and was elevated in the inner limiting
membrane (arrowheads, a and b) in age-matched Slc4a32/2 mice (f); scale bar = 20 mm. (g) Western blot analysis of protein samples (50 mg) prepared
from whole retinal lysates of wild-type Slc4a3+/+, and null Slc4a32/2 mice, resolved by 10% SDS-PAGE (top panel); a-tubulin served as a loading
marker (bottom panel). (h) Summary of GFAP expression normalized to a-tubulin. Values are expressed relative to Slc4a3+/+ protein levels. Brackets
represent number of retinas analyzed. *Indicates statistically significant difference (P,0.05), compared to Slc4a3+/+ wild type mice. Immunostaining of
Slc4a3+/+ (i) and null Slc4a32/2 mice (j) retinas examined by confocal microscopy using double-labeling for Bassoon (OPL, red) and PKC-a (rod bipolar
cells, green). Arrows indicate sprouting of processes in the OPL of Slc4a32/2 mice; scale bar = 20 mm.
doi:10.1371/journal.pone.0000839.g003
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anion exchanger is expressed in other excitable tissues such as the

heart and brain.

DISCUSSION
In this work, we have demonstrated that the apoptotic cascade is

initiated as a result of absence of AE3-mediated HCO3
2 fluxes.

AE3 activity normally contributes to the regulation of pHi, [Cl2]

and cell volume. In addition to contributing to cytoplasmic pH

regulation in Müller glial cells, AE3 may act as an additional

HCO3
2 efflux mechanism working in concert with CAII and

CAXIV to remove CO2 produced by photoreceptors. Along

with AE3c, CAII and CAXIV are also involved in tight

regulation of horizontal cells pHi, increasing the effectiveness of

the bicarbonate buffer, forming metabolon-like systems [26]

(Fig. 7B).

The consequence of AE3 deficiency is a unique visual defect

phenotype associated with a deregulation in pH mechanisms:

a selective inner retina defect followed at later ages by

photoreceptor degeneration. As for the human counterpart, all

aspects of retina dysfunction reported here share analogies with

Figure 4. ERG responses in Slc4a32/2 mice. (a) Diminished ratios of ERG b-wave over a-wave maximal amplitudes for Slc4a32/2 mice under scotopic
adaptation when normalized against age-matched Slc4a32/2 mice. Lowered b/a ratios indicate preferential b- over a-wave loss, and these differences
were statistically significant at 1–8 months of age. (b) Decline with age of scotopic a-wave and b-wave amplitudes, as well as photopic b-wave
amplitude and critical flicker fusion for Slc4a32/2 mice, normalized against age-matched Slc4a32/2 mice. In comparison with other parameters,
scotopic a-wave amplitude began to decline at later ages. (c–e) Intensity response curves for scotopic (c) a-waves and (d) b-waves, as well as for (e)
photopic b-waves. (f) Amplitude of flicker response in function of stimulus frequency under photopic adaptation. (g–i) Representative ERG traces
obtained during intensity response series under (g) scotopic and (h) photopic adaptation, and during (i) flicker frequency series under photopic
adaptation. For panels (a–f), results depict the mean 6 s.e.m. For panels (g–i), units on the left are in (g–h) cds/m2, and (i) Hz.
doi:10.1371/journal.pone.0000839.g004
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most forms of human vitreoretinal degeneration: selective re-

duction of scotopic ERG b-wave amplitude, optic nerve and

retinal vessel anomalies, and sheathing of retinal vessels.

Specific inner retina defect: pH implication
In the visual system, AE3 activity contributes to regulation of pHi,

[Cl2], and cell volume. In addition to regulating pHi in Müller

glial and horizontal neuronal cells, AE3 may contribute to the

removal of photoreceptor-generated CO2 waste.

Herein, we have demonstrated the occurrence of functional

defects in the AE32/2 null mice by electroretinogram (ERG)

(Fig. 4). Potential retina dysfunction in AE32/2 mice was

evaluated by measuring ERG a-wave and b-wave, which

respectively represent photoreceptor and inner retina functional

activity. Reduction of any of these components implies visual

losses. We found a pronounced and selective ERG b-wave

depression that was present at all ages tested (1–8 months) in the

AE32/2 mice. Selective b-wave depression in AE32/2 mice

(evidenced by a drop in b/a ratio; Fig. 4a) is likely related to

lower extracellular pH in the inner retina and reduced buffering

power, following failed HCO3
2 secretion by AE3. Consistent

with this observation, ERG recordings from isolated toad retina

Figure 5. Expression of carbonic anhydrases II and XIV, and NBC1 Na+/HCO3
2 cotransporter proteins in Slc4a32/2 mice. CAII, CAXIV, and NBC1

expression in adult Slc4a32/2 and wild type mouse retinal extracts, detected on immunoblots. (A) HEK293 cells individually transfected with CAII,
CAXIV, and NBC1, cDNAs, and mock-transfected HEK293 cells, respectively, were used for positive and negative control of retinal immunoblots.
Protein samples (50 mg) were probed with a-tubulin as a loading marker for Slc4a32/2 and Slc4a3+/+ retinas. (B) Summary of the protein expression
normalized to a-tubulin. Values are expressed relative to the Slc4a3+/+ protein expression. The amount of CAII, CAXIV, and NBC1 protein is increased
in the Slc4a32/2 mutant relative to wild type Slc4a3+/+ mice. Brackets represent number of retinas analyzed. *Indicates statistically significant
difference (P,0.05), compared to Slc4a3+/+ wild type mice.
doi:10.1371/journal.pone.0000839.g005
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indicate that acidification selectively suppresses the b-wave [27].

Small reductions in extracellular pH (on the order of 0.25)

impede the function of the Cav1.4 presynaptic calcium channels

[28], involved in synaptic transmission between photoreceptors

and bipolar cells. Dysfunction in Cav1.4, such as occurs in

congenital stationary night blindness (type 2), leads to selective b-

wave diminution, with sprouting of bipolar cell dendrites [29] as

reported here in Slc4a32/2 retina. Therefore, both the absence

of synaptic inputs on aberrantly extended bipolar cell dendrites,

and Cav1.4 dysfunction in the photoreceptor to bipolar cell

synapses would contribute to selective b-wave reduction in

Slc4a32/2 mice. Furthermore, loss of AE3 in Müller cells likely

affects their function, impacting on b-wave generation such as

seen in Müller cell sheen dystrophy [30]. Lack of AE3 in

horizontal cells might also contribute to b-wave reductions, since

exclusive loss of horizontal cells causes selective b-wave

reductions [31]. In addition, horizontal cell inhibitory feedback

to cones (responsible for receptive field antagonistic surround) is

regulated by pH changes at the synaptic level. Changes in pH

resulting from H+ accumulation modulate the presynaptic

Cav1.4 voltage-gated calcium channels, in fish retina [32], and

in transfected cells [28]. Also, reduction in flicker ERG and

oscillatory potential amplitudes, at a time when scotopic a-waves

remain unaffected, both support the occurrence of a selective

inner retina defect. A progressive scotopic a-wave amplitude

reduction, however, was observed in AE32/2 null mice only at 4

month of age and later, suggesting initiation of photoreceptor

dysfunction and potentially photoreceptor death (Fig. 4c). The

delayed onset of photoreceptor pathologies could be attributable,

in part, to prolonged Müller cell dysfunction [33]. The elevated

expression of GFAP by Müller cells reflects the induction of

gliotic responses characteristic of retinal degeneration. Müller

cells are essential to retina ionic homeostasis and impairment of

their supportive functions have been associated with retinal

dystrophies [33].

Ocular anomalies in AE32/2 and CAXIV2/2 null mice
Functional abnormalities in AE32/2 mice retinas were accompa-

nied by increased expression of CAII and CAXIV enzymes, and

NBC1 Na+/ HCO3
2 co-transporter, suggesting the occurrence of

compensatory changes for the loss of AE3 (Fig. 5, 6). While we

found compensatory changes in the AE32/2 knockout mice, the

ability to maintain acid–base balance in the inner retina is likely to

remain dramatically compromised given the phenotype of these

mice.

Finally, the AE32/2 null mice presented with late onset

photoreceptor cell death (Fig. 7A). Presumably, following

functional ERGs and anatomical abnormalities, the apoptotic

cascade was initiated in the AE32/2 null mice, as a result of absent

AE3-mediated HCO3
2 fluxes.

In the eye, CAXIV, a membrane bound isozyme, is expressed

within the retina, in Müller glial cells and retinal epithelial cells

[25,34]. Because CAXIV is expressed in astrocytes, Müller cells,

and the retinal epithelial cells, its expression spans the entire

thickness of the retina. CAXIV distribution pattern is consistent

with involvement in pH regulation and trans-retinal transport

functions. Studies using CA inhibitors suggest that CAs, most likely

CAII, CAIV and CAXIV, buffer the excess acidification in retina

under certain metabolic conditions by preventing increase in H+

concentration [35–37]. Therefore, a role for CAXIV in buffering

the subretinal space volume could be predicted.

A mouse deficient for CAXIV was recently described [37]. Of

interest, flash ERGs performed at 2, 7, and 10 months of age

showed that the rod/cone a-wave, b-wave, and cone b-wave were

significantly reduced (up to 45%) in the CAXIV2/2 compared to

wild-type mice [38], matching with findings of AE32/2 mice.

Moreover, reductions in the dark-adapted response were not pro-

gressive between 2 and 10 months, as reported here for AE32/2

mice, suggesting a functional linked between AE3 and CAXIV in

the normal eye function. Although CAXIV2/2 and AE32/2 null

mice shared very similar abnormal electrophysiological responses

in the eye, the more profound pathology observed in the AE32/2

mice suggests additional roles played by the AE3 Cl2/HCO3
2

exchanger in the retina.

Finally, we have found that the AE3/CAXIV forms a physical

and functional complex in the mouse retina (Alvarez et al.

Manuscript in preparation). The AE3-mediated HCO3
2 flux is

maximized by CAXIV interaction. Tethering of CAXIV [39] and

CAII [12] to AE3 maximizes the transmembrane HCO3
2 gradient

Figure 6. Localization of carbonic anhydrases II and XIV in Slc4a32/2

mouse retina. Frozen vertical sections of adult wild type Slc4a3+/+ and
Slc4a32/2 null mouse littermates retina were mounted in the same slide
and labeled with goat anti-CAII ((A), 1:100 dilution) or goat anti-CAXIV
((B), 1:100 dilution) antibodies. Immunofluorescence signals were
visualized by Alexa fluor 594-conjugated anti-goat IgG antibody (red,
1:100 dilution). Sections were mounted in a DAPI media to identify
nuclei, and images collected with a Zeiss LSM 510 laser-scanning
confocal microscope with 640/1.3 oil immersion objective (Neofluar
oil). Merged images display CAII and CAXIV labeling overlapping nuclei
staining. Scale bar = 20 mm. ONL = outer nuclear layer; OPL = outer
plexiform layer; INL = inner nuclear layer; IPL = inner plexiform layer;
GCL = ganglion cells layer.
doi:10.1371/journal.pone.0000839.g006

Blindness with AE3 Deficiency

PLoS ONE | www.plosone.org 9 September 2007 | Issue 9 | e839



local to AE3, thereby activating transport rate. Association of the

AE3 Cl2/HCO3
2 exchanger and carbonic anhydrases II and XIV

may represent a mechanism for the disposal of high CO2 and H+

production, and for pH regulation in the inner retina and brain.

Recurrent phenotypes found for AE32/2 and CAXIV2/2 null

mice, and on direct interaction of AE3 and CAXIV, suggest that the

association of AE3 Cl2/HCO3
2 exchanger and CAXIV enzyme

play a key role in normal ocular function.

Clinical implications
To date, only one human variant (Ala867Asp substitution), has

been identified in the SLC4A3 gene [21,40]. The Ala867Asp variant

was associated with common subtype idiopathic generalized

epilepsy (IGE) in humans [40]. The effect of the variant on AE3

function has not been assessed. Eye examination and heart

function of patients with the SLC4A3 Ala867Asp variant resulting

in IGE have yet to be reported.

This paper provides the first documentation for a role of AE3 in

normal ocular function. In addition, our findings demonstrate that

lack of AE3 causes retinal pathology stereotypical of most

vitreoretinal degenerations. Therefore SLC4A3 (AE3) is a novel

candidate gene that must now be considered for the diagnosis of

HVD.

HVD are a complex group of genetic disorders manifesting

abnormalities of the vitreous and retina, affecting approximately 1

in 3000 people [41]. HVD includes lattice degeneration, snowflake

vitreoretinal degeneration, X-linked juvenile retinoschisis, vitreor-

etinopathies (chromosome 5q, e.g. Wagner syndrome), chondro-

dysplasias (e.g. Stickler syndrome), and enhanced S-cone syn-

drome/Goldmann-Favre vitreotapetoretinal degeneration [42–

48]. HVD can be difficult to distinguish because of subtle and

Figure 7. Apoptosis in retinas of Slc4a32/2 mice. (A) Absence of apoptotic nuclei in retinas of 4 and 6-month-old Slc4a3+/+ mice. Nuclei (blue) are
stained with DAPI dye. Apoptotic nuclei are shown (green) in retinas of age-matched Slc4a32/2 mice littermates, with predominant apoptotic nuclei
found at 6-months of age. (B) Model demonstrating functional significance of AE3fl expression in Müller glial cells, and functional significance of AE3c
in horizontal cells. In Müller cells, cytoplasmic carbonic anhydrase (CAII) can trap CO2 release by the photoreceptors intracellularly by converting to
HCO3

2 and H+. AE3fl located in Müller cells end feet facilitate the removal intro the vitreous or the blood of the HCO3
2 and H+, in a process that is

maximized by the CAXIV. In horizontal cells, AE3c may contribute to pHi homeostasis by exchanging intracellularly produced HCO3
2 with Cl2. CAII

and CAXIV are also involved in tight regulation of horizontal cells pHi, increasing the effectiveness of the bicarbonate buffer system.
doi:10.1371/journal.pone.0000839.g007
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overlapping clinical findings. Nevertheless, nearly all HVD present

with altered ERG, in particular a reduction or absence of the

scotopic ERG b-wave, different degrees of retinal lesions, poor

visual acuity, and retinal blood vessel abnormalities [49].

Abnormal development of the vitreous progresses to increased

vitreoretinal traction and retinal detachment, with a concomitant

loss of vision. Additional ocular and systemic features of HVD may

occur, depending on the underlying cause.

Our results provide compelling evidence linking AE3 Cl2/

HCO3
2 exchangers, pH imbalance in the inner retina, and

vitreoretinal degeneration.
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