
Divide and Conquer: Enriching Environmental
Sequencing Data
Anne Bergeron1*, Mahdi Belcaid2, Grieg F. Steward3, Guylaine Poisson2
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Background. In environmental sequencing projects, a mix of DNA from a whole microbial community is fragmented and
sequenced, with one of the possible goals being to reconstruct partial or complete genomes of members of the community. In
communities with high diversity of species, a significant proportion of the sequences do not overlap any other fragment in the
sample. This problem will arise not only in situations with a relatively even distribution of many species, but also when the
community in a particular environment is routinely dominated by the same few species. In the former case, no genomes may
be assembled at all, while in the latter case a few dominant species in an environment will always be sequenced at high
coverage to the detriment of coverage of the greater number of sparse species. Methods and Results. Here we show that,
with the same global sequencing effort, separating the species into two or more sub-communities prior to sequencing can
yield a much higher proportion of sequences that can be assembled. We first use the Lander-Waterman model to show that, if
the expected percentage of singleton sequences is higher than 25%, then, under the uniform distribution hypothesis, splitting
the community is always a wise choice. We then construct simulated microbial communities to show that the results hold for
highly non-uniform distributions. We also show that, for the distributions considered in the experiments, it is possible to
estimate quite accurately the relative diversity of the two sub-communities. Conclusion. Given the fact that several methods
exist to split microbial communities based on physical properties such as size, density, surface biochemistry, or optical
properties, we strongly suggest that groups involved in environmental sequencing, and expecting high diversity, consider
splitting their communities in order to maximize the information content of their sequencing effort.
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INTRODUCTION
Whole genome shotgun sequencing is a standard approach for

quickly achieving a high degree of genome coverage for individual

organisms. This procedure is now also being applied to environ-

mental sequencing projects in an approach commonly referred to

as metagenomics or microbial community genomics [1]. For this

application, a community shotgun library is prepared from DNA

that has been extracted from a natural assemblage of micro-

organisms, rather than from an individual isolate. Creation of such

a library is a convenient way to capture the full spectrum of

microbial genetic diversity within a particular sample, but the

library is a jumble of genome fragments from many different

microbial species or strains, often numbering in the thousands to

hundreds of thousands or more [1,2]. As a consequence, random

sequencing of clones from a metagenomic library often results in

a low proportion of overlapping fragments. Much of the power of

genomics derives from understanding genes in their genomic

context, and the failure to assemble individual sequence reads

(singletons) into longer stretches (contigs) represents a significant

loss of genomic information that was originally present in the

sample.

It has been proposed that physical fractionation of a microbial

community prior to metagenomic analysis should improve the

assembly process by reducing the complexity within each of the

resulting fractions [3], but neither the specific conditions under

which this should be true nor the magnitude of the benefit have

been critically examined. The benefits of fractionation are most

obvious in cases where a single population of interest is selectively

enriched from a more complex community. In this case, all of the

sequencing effort can be focused on a single fraction that is highly

enriched in the population of interest, and genome reassembly for

that population is improved [4]. What is unclear is whether, and to

what degree, fractionation improves assembly in a more general

sense, i.e., in cases where a single population is not specifically

targeted and sequencing effort is distributed evenly among

fractions.

In preparation for an investigation of marine viral diversity, we

wished to quantify the possible benefits of splitting a complex viral

community into fractions prior to library construction. Viruses

make a particularly appropriate case study for examining this

question. In practice, metagenomic analyses of viral assemblages

have yielded very low frequencies of contigs [5,6,7], so any steps

that could be taken to improve assembly would be useful. At the

same time, viruses are amenable to physical fractionation by

a variety of centrifugation [8,9] and chromatographic [10,11,12]

techniques, which means that if benefits of fractionation can be
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established theoretically this knowledge might be readily translated

into practice.

To test the theoretical benefits of fractionation, metagenomic

library construction and analysis were modeled for virtual viral

communities, with known structure and diversity, that were either

kept intact or split into fractions having non-overlapping sets of

populations. Total sequencing effort was the same in all cases, but

was divided evenly between fractions in the case of split

communities. The proportion of sequences contributing uniquely

to a contig was used as an index of assembly success. The model

provides a theoretical basis for understanding the effects of

fractionation on sequence assembly and predicts the specific

conditions under which fractionation should be beneficial.

RESULTS AND DISCUSSION
In the first section we present a simple model that assumes that

species are uniformly distributed in a community. While this

assumption might be far from the biological reality, its mathe-

matical tractability allows us to discuss, in a simple setting, results

that upgrade to more complex models presented in the subsequent

section.

The Uniform Distribution Model
In this first model, we work with a community of M different

species, with genome length G in base pairs (bp), and we assume

that all the species have the same abundance. An environmental

sequencing project is described by the following parameters:

N : the number of fragments that are sequenced,

L : the average length in bp of each sequence,

T : the minimum overlap, in bp, required to assemble

sequences.

Throughout this paper, we will consider N, the sequencing effort, as

a constant. The value of L depends on the sequencing quality and

approach, Sanger-like or pyrosequencing [13], and the value of T

is used as a threshold in the assembly process.

Given this model, it is possible to evaluate the expected number

of singletons that are sequences that do not overlap any other, in

the assembly. Using the Lander-Waterman model [14,15], we

have:

Claim 1 Under the uniform distribution assumption, the

expected number of singletons of an environmental sequencing

project is:

S~Ne{2N(L{T)=(MG):

When a community is split into two sub-communities, the

number of species in the two sub-communities can be represented

by pM and (12p)M, where p is a number between 0 and 1. We are

interested in comparing the effect of splitting the original N-

sequences project into two N/2-sequences projects, one for each of

the two sub-communities. Many different measures can be used to

compare assemblies, and we begin with a very simple measure: we

compare the number of singletons in each assembly. In

metagenomics projects, singletons typically form a huge pro-

portion, often more than half, of the sequencing effort. On the

other hand, large contigs are a rarity, making the usual measures

of assembly quality almost useless.

Let S1+S2 be the sum of the expected numbers of singletons

resulting from the two N/2-sequences projects. If S.S1+S2, then

the split project has assembled more sequences than the original

project. We will refer to the difference S2(S1+S2) as the number of

assembled singletons resulting from the split. We have:

Claim 2 Under the uniform distribution assumption, if

N(L{T)

MG
ƒln 2

then S2(S1+S2)$0, for all possible values of p. Furthermore,

S2(S1+S2) = 0 when p = 0.5.

The significance of Claim 2 is better explained by computing

the quantity N(L2T)/(MG) with realistic values. The following

sequencing project of a community of phages is inspired by the

parameters and diversity estimates of [7]:

M : 5000 species of phages,

G : average genome length of 50 000 bp,

N : 400 000 fragments sequenced,

L : average sequence length of 102 bp,

T : minimum overlap of 35.

With these values, N(L2T)/(MG) = 0.1072, which is indeed

smaller than ln 2 = 0.6931… For p = 0.1, the values of S and S1+S2

are respectively 322 810 and 246 007 which means that, when the

community is split into two sub-communities containing re-

spectively 10% and 90% of the original species, the same

sequencing effort will yield 76 804 more assembled singletons.

Figure 1(A) shows the gain in overlapping sequences for this

experiment, for values of p between 0.01 and 0.5. It is interesting

to note that splitting the species into two almost equal sub-

communities is both highly unlikely from a biological point of

view, and undesirable from a computational point of view.

The value N(L2T)/(MG) augments proportionally to the

coverage, defined as NL/(MG), which is the expected number of

times a single base pair will be sequenced. When coverage

augments, the benefits of splitting the community gradually

disappear. If we lower the diversity of the preceding experiment

to M = 1000, then the value of N(L2T)/(MG) is still smaller but

close to ln 2, and the gain in assembled singletons is more modest,

as can be seen in Figure 1(B).

Finally, when N(L2T)/(MG) becomes greater than ln 2, with

a diversity of M = 680 for example, then losses of assembled single-

tons occur when the smallest community is too small. Figure 1(C)

shows that these losses occur when the smallest sub-community

represents less than 10% of the population. This phenomenon is

explained by the fact that, at low coverage, the number of singletons

grows with the sequencing effort, but as coverage augments, the

number of singletons peaks, and eventually shrinks when substantial

parts of the genome are assembled. A loss of assembled singletons is

not necessarily bad, since many of the species of the small sub-

community are sequenced at a high coverage (more than 66 for

p = 0.1). This could produce a high number of complete genomes of

sparse species, showing that merely counting the number of

singletons in an assembly is a very crude way to compare assemblies.

When N(L2T)/(MG) = ln 2, then, by Claim 1,

S~Ne{2N(L{T)=(MG)~Ne{2 ln 2~N=4:

This means that, under the uniform distribution assumption, if

a sequencing project is expected to produce at least N/4

unassembled sequences, or 25% of the sequencing effort, then

splitting the community is always a wise strategy.

This apparently counter-intuitive result can be explained by the

following observations. For highly diverse communities, or for
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large genomes, the number of singletons initially grows linearly

with the sequencing effort: doubling the sequencing effort doubles

the number of singletons. However, this is not true for less diverse

communities, or for smaller genomes. Consider, for example,

a large jigsaw puzzle. If a group of pieces is picked at random,

most of them will not fit together, even if the number of selected

pieces is doubled. On the other hand, the reverse effect is observed

as the number of pieces increases with respect to the size of the

puzzle. Selected pieces that do not fit together are less frequent,

and eventually vanish.

By combining these two behaviors, we explore the window in

which fractionation yields both a better assembly, for the small

sub-community, and a reasonable sampling of the diversity of the

original community. The jigsaw puzzle analog of splitting

a community would be the fairly common strategy of sorting out

pieces of a given color, in the hope of assembling in parallel

a smaller but significant part of the big picture. This strategy works

best when the selected color does not cover half of the area (blue

sky with small patches of clouds) or only a tiny rectangle (a little

red house in the mountain). Physical separation of species, like

sorting puzzle pieces by color, requires knowledge and yields

information. It is this information that is used to get better

assembly results with the same sequencing effort. Of course, the

cost of getting this information must also be considered when

planning a project.

Non-uniform Models
When the species of a community are not uniformly distributed,

the mathematical analysis of the effects of splitting a community is

much harder, and always depends on the exact distribution. Since

the structure and diversity of actual microbes community is still

largely unknown, we choose to attack the problem using

simulations with a distribution of M = 4991 surnames found in

a fixed geographical location, the Province of Quebec, that had

a long tradition of giving the surname of the father to his children.

Each surname is identified to a species. A more detailed

presentation of this community, called Quebec-Ohana, can be

found in the Material and Methods section. A second community,

Quebec-Ohana-Truncated, is formed by the 1319 most abundant

species of Quebec-Ohana.

Again, let N be the number of fragments sequenced. A

simulated environmental sequencing project draws a sample of

N individuals in the community, with a probability for an

individual to be selected proportional to the abundance of its

species. Then, given the number of times a species is sampled, it is

possible to compute the expected number of singletons contributed

by each species in the sample (see Material and Methods). Splitting

a community into sub-communities was done by random choices,

and all the results were averaged on 10 different splits, for each

value of p. We used the values of the last section for parameters G,

N, L and T.

Finally, in order to be able to compare similar experiments, we

performed simulated environmental sequencing on a uniformly

distributed community of 4991 species. Table 1 gives detailed

statistics of simulated assemblies when these three communities are

split into two sub-communities containing respectively 10% and

90% of the original species.

The biggest gain in assembled singletons is observed in the

uniformly distributed community, and is still important in the two

other communities. The gain for the uniform distribution, 76 626,

is highly consistent with the predicted result of last section (the

model gave an expected gain of assembled singletons of 76 804 for

M = 5000). This distribution also has the highest percentage of

singletons, 80.5%, in the 400 000-sequences project. The two

other distributions have a lower percentage of singletons in the

400 000-sequences project, respectively 42.3% and 30.4%, but the

percentages of the number of assembled singletons over the

number of original singletons is comparable for all three

distributions, ranging from 16.1% to 23.8%. It is interesting to

note that recent environmental sequencing projects [16] have

(A)   N(L-T)/(MG) = 0.1072
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(B)   N(L-T)/(MG) = 0.5360
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(C)   N(L-T)/(MG) = 0.7882
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Figure 1. These three curves depict the gain (loss) in assembled
singletons when a 400 000 sequences project is divided equally into
two 200 000 sequences projects on sub-communities of increasing
sizes, assuming uniform abundance. The values of the horizontal axis
are the sizes, in fraction, of the smaller sub-communities. In curve (A),
the total number of species is 5000, thus N(L2T)/(MG) = 0.1072 In curve
(B), the total number of species is 1000, and N(L2T)/(MG) = 0.5360
approaches ln 2. In curve (C), with only 680 species, N(L2T)/
(MG) = 0.7882 exceeds ln 2, and losses are observed when the smallest
subcommunity is too small.
doi:10.1371/journal.pone.0000830.g001
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percentages of singletons (53%) that are comparable to the

percentages that we obtained in these three experiments.

Figure 2 shows the gain in assembled singletons, for values of p

between 0.05 and 0.5. The trends observed in the theoretical

results on uniform models are clearly visible. All three curves show

that the greatest advantages are obtained when the two sub-

community are split unequally, and the comparison between the

two Quebec-Ohana communities shows that the higher the

diversity, the higher the benefits of splitting.

Relative Diversity
In this section, we investigate the possibility of recovering the

relative diversity of two sub-communities resulting from a split,

given their comparative assembly statistics.

In the simulations, apart from the number of singletons, we also

computed the expected number of sequences that participate in

contigs of size 2 to 100 (see Data S1). These series of values will be

called the assembly spectrum. When a community of M species is split

into two sub-communities of pM and (12p)M species, it is thus

possible to compare not only the number of singletons, but also

their whole spectra. Figure 3 gives an example of two (partial)

spectra for a split of Quebec-Ohana in sub-communities

representing 10% and 90% of the species, and for contig sizes

from 2 to 15.

In order to compare spectra, we computed the Euclidian

distance between the two spectra, that is, if aq and bq represent,

respectively, the number of sequences that participate in contigs of

size q in each assembly, we computed:

d~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX100

q~1

aq{bq

� �2

vuut :

These values are shown in Figure 4, for values of p between 0.05

and 0.5, for all three communities.

The surprising finding of this experiment is that, when the small

sub-community represents more than 30% of the entire commu-

nity, the behavior of the distance is almost the same for the three

communities. This implies that, if the distance between two

assemblies is lower than 40 000, then the relative diversity of the

two sub-communities can be recovered, independently of the

abundance distribution of the original population. For example,

a distance d = 20 000 would imply that the entire community was

split in sub-communities containing approximately 40% and 60%

of the original species.

For values of p between 0.05 and 0.3, the distance curves for

Quebec-Ohana and Quebec-Ohana-Truncated are also very

similar, despite the fact that these two communities have different

structure and diversity. For low values of p, the community with

uniform abundance has a diverging behavior, with much greater

distances between assemblies, suggesting that distances over

120 000 could indicate that the community has indeed a uniform

abundance distribution.

Table 1. Statistics on the number of singletons, before (S) and after (S1+S2) a split 10%–90%, for a total sequencing effort of
400 000.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Community S Percentage of singletons S1+S2 Percentage of singletons Gain in assembled singletons Percentage of gain

Uniform 321915 80.5 245288 61.3 76626 23.8

Quebec-Ohana 169316 42.3 141983 35.5 27333 16.1

Quebec-Ohana 121661 30.4 98757 24.7 22903 18.8

Truncated

doi:10.1371/journal.pone.0000830.t001..
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Figure 2. These three curves show the gain in assembled singletons
when a 400 000 sequences project is divided equally into two
200 000 sequences projects on sub-communities of increasing sizes,
for three communities with different structure and diversity. The
values of the horizontal axis are the sizes, in fraction, of the smaller sub-
communities. For the top curve, the community has 4991 equally
abundant species. For the middle curve, the community has 4991
species whose abundance distribution mimics the distribution of
surnames in the Province of Quebec. The community for the bottom
curve is formed by the 1319 most abundant species of the preceding
community.
doi:10.1371/journal.pone.0000830.g002
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Figure 3. This figure shows parts of the spectra of assemblies
resulting from a split of a 400 000 sequences simulated project of
Quebec-Ohana in two sub-communities representing, respectively,
10% and 90% of the species. The small sub-community has fewer small
contigs than the large sub-community, but more larger contigs, for
sizes greater than 5.
doi:10.1371/journal.pone.0000830.g003
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Conclusions
Our results imply that when diversity is high, as in most natural

viral communities [2], pre-fractionation of a community almost

always improves the overall proportion of assembled sequences.

An implied corollary of this result is that pooling of samples [7], is

likely to lead to a loss of information compared to that which

would be obtained by evenly dividing the same sequencing effort

among libraries prepared from the individual samples.

Gaining some practical benefit from this theoretical insight

could involve relatively minor adjustments to current protocols for

viral metagenomics and relatively little extra effort. Viral

assemblages are usually purified by banding in density gradients

prior to metagenomic library construction [2]. Since this pro-

cedure also separates populations of viruses based on differences in

their buoyant density [17], viruses could simply be harvested from

a density gradient as two or more density fractions. Metagenomic

libraries from the two fractions could then be constructed and

sequenced as separate samples. Even making this simple

adjustment in strategy has the potential to increase the frequency

of contigs per unit sequencing effort.

MATERIAL AND METHODS

The Uniform Distribution Model
In this section, we give formal proofs of Claim 1 and Claim 2. We

first recall the relevant results of the Lander-Waterman model

[15], which is adapted to traditional sequencing projects of the

genome of one species. Define:

G : the length of the genome,

N : the number of fragments that are sequenced,

L : the average length in bp of each sequence,

T : the minimum overlap, in bp, required to assemble

sequences.

Then the expected number S of singletons in the assembly is

S~Ne{2N(L{T)=G:

Proof of Claim 1: Suppose a community of M species has uniform

abundance distribution, with all species having the same genome

size G. If a total sequencing effort of N sequences is applied to this

community, we can expect that each species will contribute N/M

sequences to the project. Applying the Lander-Waterman model

to each species yield the following expected number S9 of

singletons from each species:

S0~(N=M)e{2N(L{T)=(MG):

Since there are M species, the total expected number of singletons

will be

S~Ne{2N(L{T)=(MG),

and this completes the proof of Claim 1.

The proof of Claim 2 relies on the following two lemmas

whose – rather technical – proofs are available in Proofs S1.

Lemma 1 If x.0 then
Pn

i~0

n

i

� �
xn{2i

§2n:

Lemma 2 If x.0 and a.0 then axa1/x2(ax+a1/x)$a(a22).

Proof of Claim 2: If the community of M species is split into two

sub-communities of pM and (12p)M species, and if the sequencing

effort is distributed equally between the sub-communities, then the

expected number of singletons S1+S2 from the two projects will be:

S1zS2~(N=2)e
{

N(L{T)

pMG z(N=2)e
{

N(L{T)

(1{p)MG :

Let a = eN(L2T)/(MG) and x = (12p)/p. We will prove that x.0 and

a#2 implies S2(S1+S2)$0. Using a and x yields the following

expressions for the gain in assembled singletons:

S{(S1zS2)~
N

a2
{

N

2aax
{

N

2aa1=x

~
N

2aaxa1=x

2

a
axa1=x{ax{a1=x

� �

~
N

2aaxa1=x

2

a
{1

� �
axa1=xz axa1=x{ax{a1=x

� 	� �

Since a#2, the first term of the sum is positive. By Lemma 1,

x+1/x$2, implying that axa1/x$a2. Applying this bound and

Lemma 2 to the second term yields the following:

S{(S1zS2)§
N

2aaxa1=x

2

a
{1

� �
a2za a{2ð Þ

� �

~
N

2aaxa1=x
2a{a2za2{2a

 �

~0

This completes the proof of Claim 2.

Quebec-Ohana: A Community of Surnames
The Province of Quebec has a unique history in North America.

Starting in 1608, a few thousand French settlers occupied the

territory, which then passed, in 1760, under British rule. The

decision of the British administration to allow the French settlers to

keep their language and religion resulted in the effective isolation

of this community. The specific characteristics of the Quebec

population have already been used in genetic studies (see, for
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Size of the smallest community
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Figure 4. These three curves show the distances between the two
assembly spectra obtained by splitting equally a sequencing effort
on two sub-communities of pM and (12p)M species, for values of p
from 0.05 to 0.5, and for three communities with different structure
and diversity. For all values of p, the two curves corresponding to
Quebec-Ohana communities are very close. For p larger than 0.3, the
three curves are almost identical.
doi:10.1371/journal.pone.0000830.g004
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example [18]). Up to 1981, the tradition to give the surname of the

father to its children resulted in a current population of surnames

whose distribution pattern could be similar to bacteria and viruses

populations. Currently, 4991 different surnames occur with

a frequency higher than 0.001% in the estimated 7.5 million

residents of the province.

The ‘‘Institut de la statistique du Québec’’ has published a detailed

distribution of the abundance of these 4991 surnames [19]. We used

this distribution as a basis for constructing our test community,

Quebec-Ohana, identifying each different surname as a species (part

of Hawaiian culture, ‘ohana’ means ‘family’ in an extended sense of

the term including both blood-related or extended). The abundance

of each species in this community is the relative abundance of

a surname in the community of 4991 surnames. The most abundant

species, Tremblay, forms 1.29% of the population, and 16 species, all

of French origin, account for 10% of the population.

At the other end of the abundance curve, 3672 species (73.6%

of the species) each form 0.01% or less of the population of

Quebec. Removing these species yielded a community of the 1319

most abundant species of Quebec-Ohana, Quebec-Ohana-Trun-

cated. The abundance of each species in this community is the

relative abundance of a surname in the community of 1319

surnames. The abundance distributions of these two communities

are available in Data S2.

Simulated Environmental Sequencing
In order to simulate an N-sequences sequencing project, we begin

by sampling N individuals, with a probability for an individual to

be selected proportional to the abundance of its species in the

community. Each individual in the sample will contribute one

fragment to be sequenced. From this sample, we compute:

Fi : the number of species for which i fragments have

been sequenced.

The next step is to compute Cq, the expected number of

sequences in contigs of size q. For a contig of size q, one needs q21

overlaps and two non-overlap gaps. The Lander-Waterman model

[15] gives the probability that a randomly selected fragment is part

of a contig of size q as:

wqi~qf
q{1

i 1{fið Þ2,

where

fi~1{e
{

i(L{T)

G :

In environmental sequencing projects, there is a strong possibility

that many species will contribute just a few fragments to the total

project. It is thus necessary to modify the above model and add the

necessary condition that a species must contribute at least q

fragments in order to have a chance to contribute contigs of size q

to the assembly. By adding this condition, we slightly depart from

the model derived in [5].

For a species for which i fragments have been sequenced, the

probability pqi that a randomly selected fragment is part of a contig

of size q is thus given by:

pqi~

wqi if 1ƒqƒi{1

1{
Pi{1

q~1

wqi if q~i

0 if qwi

8>>><
>>>:

Finally, the expected number Cq of sequences in contigs of size q

is obtained by summing all the contributions of individual species:

Cq~
X
iw0

i � Fi � pqi:

SUPPORTING INFORMATION

Data S1 Results of the simulations

Found at: doi:10.1371/journal.pone.0000830.s001 (0.04 MB

XLS)

Data S2 Structure and diversity of Quebec-Ohana

Found at: doi:10.1371/journal.pone.0000830.s002 (0.96 MB

XLS)

Proofs S1 Proofs of Lemma 1 and Lemma 2

Found at: doi:10.1371/journal.pone.0000830.s003 (0.03 MB

PDF)
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