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Background. Axial elongation is a key morphogenetic process that serves to shape developing organisms. Tail extension in
the ascidian larva represents a striking example of this process, wherein paraxially positioned muscle cells undergo elongation
and differentiation independent of the segmentation process that characterizes the formation of paraxial mesoderm in
vertebrates. Investigating the cell behaviors underlying the morphogenesis of muscle in ascidians may therefore reveal the
evolutionarily conserved mechanisms operating during this process. Methodology/Principle Findings. A live cell imaging
approach utilizing subcellularly-localized fluorescent proteins was employed to investigate muscle cell behaviors during tail
extension in the ascidian Ciona intestinalis. Changes in the position and morphology of individual muscle cells were analyzed
in vivo in wild type embryos undergoing tail extension and in embryos in which muscle development was perturbed. Muscle
cells were observed to undergo elongation in the absence of positional reorganization. Furthermore, high-speed high-
resolution live imaging revealed that the onset and progression of tail extension were characterized by the presence of
dynamic and polarized actin-based protrusive activity at the plasma membrane of individual muscle cells. Conclusions/

Significance. Our results demonstrate that in the Ciona muscle, tissue elongation resulted from gradual and coordinated
changes in cell geometry and not from changes in cell topology. Proper formation of muscle cells was found to be necessary
not only for muscle tissue elongation, but also more generally for completion of tail extension. Based upon the characterized
dynamic changes in cell morphology and plasma membrane protrusive activity, a three-phase model is proposed to describe
the cell behavior operating during muscle morphogenesis in the ascidian embryo.
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INTRODUCTION
Tissue elongation is a fundamental morphogenetic engine of

metazoan development and usually requires dynamic changes in

cell topology (the number of contacts with neighboring cells) [1]

and/or cell geometry (axial dimensions) along one or more axes.

Fundamental to this process are the dynamic cell behaviors and

intercellular interactions that act to produce global patterns of

tissue rearrangement. Emerging strategies to resolve the behavior

of individual cells in vivo now provide the potential for un-

precedented detail in analyses of morphogenesis.

Due to its rapid development, relative transparency and

characteristic features of the chordate body plan, the ascidian Ciona

intestinalis represents a useful model for embryological studies [2,3].

Six different main tissues are identifiable in developing Ciona embryos

and include the muscle, notochord, mesenchyme, endoderm, neural

tissue, and epidermis [4]. Of these, muscle, notochord and mesen-

chyme constitute the three different mesodermal lineages. Like most

other cell lineages in the ascidian embryo, the muscle is derived from

a fixed number of precursors that produce an invariant final number

of differentiated cells (36 muscle cells in the fully developed Ciona

larva) [4]. Synchronous cell divisions on each side of the ascidian

embryo lead to the formation of the final number of muscle cells in

the tail by the early tailbud stage (,9 hours after fertilization at 18uC)

[5]. Nonetheless, the tail keeps extending steadily after this stage, for

at least an additional 3 hours until the point of larval hatching, by

which time it has increased in length more than four-fold.

From an evolutionary perspective, the ascidian muscle lineage

may provide a simplified model for analyzing the formation of

paraxial mesoderm in chordates. The muscle cells of the ascidian

larva are positioned in a paraxial location, where they flank the

axially positioned notochord. Ascidian muscle cells express homologs

of vertebrate transcriptional regulators required for specification and

differentiation of paraxial mesoderm, including Snail, Tbx6 and

MyoD ([6]; reviewed in [7]). However, unlike the paraxial mesoderm

of vertebrates, the ascidian muscle lineage does not undergo

segmentation along its anteroposterior axis. Thus, ascidians may

provide a system for in vivo analysis of the individual cell behaviors

underlying paraxial mesoderm formation and differentiation,

uncoupled from the segmentation processes of somitogenesis.

To obtain an understanding of the molecular and cellular basis

for the morphogenesis and patterning of an embryo, a detailed

characterization of the geometry and spatial arrangement of

individual cells within developing tissues is required. To this end,

we have used in vivo imaging to investigate and quantify the
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baseline muscle cell behaviors taking place in wild type Ciona

embryos and to contrast these with the cell behaviors operating in

a developmentally perturbed context.

We have used live imaging to analyze the behavior of muscle

cells in vivo in relation to the embryonic context in which they

operate, and the global morphogenetic changes they collectively

produce. We found that carefully orchestrated and dynamic

changes in muscle cell geometry and plasma membrane protrusive

activity characterize tail extension in the Ciona embryo.

MATERIALS AND METHODS

Ascidians
Adult Ciona intestinalis were purchased from Marine Research and

Educational Products (M-REP, Carlsbad CA). The animals were

kept at 17uC in recirculating artificial seawater. In vitro fertilization,

dechorionation, and culture of embryos were carried out as

described previously [8].

Plasmid construction
The sna.H2B-GFP vector was constructed by amplifying the human

histone H2B-EGFP fusion gene from the pCX::H2B-EGFP vector [9]

using the primers H2B-F (59-AAT TGC GGC CGC GAT GCC

AGA GCC AGC GAA GTC TG-39) and GFP-R (59-CAG GTG

GCT CAG CTT ACT TGT ACA GCT CGT CC-39). This

fragment was cloned into the NotI and BlpI sites of the Ci-Bra-GFP

vector [8], and the 737 bp Ci-sna promoter [10] was then cloned into

the resultant plasmid at the XhoI and NotI sites. sna.H2B-RFP was

generated by cloning the Ci-sna promoter into the XhoI and NotI sites

of Bra.mRFP [11] to generate the sna.RFP vector, and by

subsequently amplifying H2B from the pCX::H2B-EGFP vector

using the primers H2B-F and H2B-R (59-ATT CGC GGC CGC

CTT AGC GCT GGT GTA CTT GGT G-39), and cloning the

resulting PCR fragment into the NotI site of the sna.RFP vector. The

sna.GPI-GFP vector was constructed by amplifying the GPI-EGFP

fusion protein coding sequence from pCX::GPI-EGFP [12,13] using

the primers GPI-EGFP-F (59-CCT TGC GGC CGC GAT GGT

AGA GAT GCT GCC AAC TG-39) and GPI-EGFP-R (59-CAC

GGT GGC TCA GCT ACA GAG AAA TGA AGT CCA GGG

C-39), and by cloning the resultant fragment into the NotI and BlpI

sites of Bra.EGFP, followed by insertion of the 737 bp Ci-sna

promoter at the Eco0109I and the NotI sites. Tbx6b.H2B-GFP was

generated by cloning an XhoI/NotI fragment from Tbx6b.lacZ,

which contains a 1.5 kb muscle enhancer of Ci-Tbx6b (J. Kugler and

A.D.G., unpublished results), into the XhoI and NotI sites of

sna.H2B-GFP. Tbx6b.GPI-GFP was generated by cloning the

XhoI/NotI fragment from Tbx6b.lacZ into the XhoI and NotI sites of

sna.GPI-GFP. Tbx6b.PH-YFP was generated by cloning a fusion of

the PLC delta pleckstrin homology (PH) domain and YFP, derived

from the PH-EGFP construct [14] and a Ciona codon optimized

version of YFP [15] into the NotI and BlpI sites of Tbx6b.GPI-GFP.

Electroporations
Purified circular plasmid DNA was prepared using the Nucleo-

Bond plasmid kit (BD Biosciences, San Jose CA) and used to

electroporate one-cell Ciona embryos as described previously [8].

Each transgene was tested in at least three independent

experiments using different batches of embryos.

Vital dye staining
Embryos were incubated in FM4-64 (Molecular Probes, Carlsbad

CA) at a final concentration of 20 mM in sea water for 1 hour

prior to imaging.

Cytochalasin D treatment
Embryos were grown to the neurula stage and transferred into

a solution of 500 nM cytochalasin D (Calbiochem, San Diego CA)

in filtered seawater. Embryos were incubated in cytochalasin D for

15 minutes prior to imaging. For measurements of tail extension,

embryos were treated with cytochalasin D for one hour, and were

then recovered into filtered seawater and maintained until

untreated control embryos from the same batch had reached the

late tailbud stage.

Phalloidin staining
Embryos were grown to the swimming larval stage and fixed in 4%

formaldehyde in seawater for 30 minutes. After three washes in

PBT, larvae were incubated with rhodamine phalloidin (Molecular

Probes, Carlsbad CA) at a concentration of 5 U/ml in PBT for

30 minutes. Following labeling, the larvae were washed three

times in PBS prior to mounting for imaging.

Transmission electron microscopy
Swimming control larvae and larvae electroporated with sna.Bix

were fixed by suspension and immediate pelleting in 2.5%

glutaraldehyde in 0.1 M sodium cacodylate buffer that contained

0.34 M NaCl and incubated overnight at 4uC. After three washes in

0.1 M sodium cacodylate buffer, larvae were post-fixed for 1 hr. in

1% osmium tetroxide and 1.5% potassium ferricyanide (aqueous),

washed as above, rinsed in deionized water and en-bloc stained with

aqueous 3% uranyl acetate for 1 hr. After dehydration through an

ethanol series, the samples were infiltrated with increasing

concentrations of Spurr’s resin and left at 60uC for ,24 hr.

Semi-thin (0.5 um) and ultra-thin (65 nm) sections were cut

using a Diatome diamond knife on a Leica Ultracut S

ultramicrotome. Ultra-thin sections were further contrasted with

lead citrate, then viewed in a JEOL JEM 100CX-II electron

microscope. Images were recorded on Kodak 4489 electron

microscope film. Negatives were scanned into digital format.

In vivo image acquisition
All confocal images shown are of living embryos maintained under

physiological conditions. Embryos were viewed for onset of

transgene activity and for determination of electroporation

efficiencies under a Leica MZFLIII stereo dissecting microscope

equipped with epifluorescence illumination and appropriate filters

for visualizing fluorophores of interest. Embryos were mounted on

coverslip-bottomed dishes (MatTek, Ashland MA) for confocal

imaging. Laser scanning confocal data was acquired with

a LSM510 META (Zeiss, Thornwood NY) on a Zeiss Axiovert

200M. Spinning disc confocal data were acquired with an Ultra

View spinning disc confocal (Perkin Elmer, Waltham MA) on

a Zeiss Axiovert 200M. z-stacks were taken at 0.3–2.0 mm

intervals at time intervals of 30–300 seconds. For each experi-

ment, several hundred electroporated embryos were obtained.

One representative embryo was selected for imaging, while the

remaining embryos were maintained as stage-matched controls.

Image processing
Raw data were processed using Imaris (Bitplane AG at http://

www.bitplane.com/), Volocity (Improvision at http://www.im-

provision.com/) or Image J (http://rsb.info.nih.gov/ij/) software.

Each image series was re-animated and/or annotated using Adobe

Premiere Pro software (Adobe at http://www.adobe.com/) or

QuickTime Player (Apple Computer, Inc. at http://www.apple.

com/quicktime/).

Ciona Muscle Morphogenesis
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Image quantitation
Analysis of cell positions was conducted by manually selecting

nuclei using the Volocity software and by measuring centroid

positions. Nuclear positions and internuclear distances were

plotted using Microsoft Excel (Microsoft at http://www.micro-

soft.com). To normalize the data for movements of the embryo

within the field of view, which occurred during the course of

imaging, the anterior tip of the embryo’s trunk was considered to

be a fixed point in space (origin), and all measurements were

corrected accordingly. Embryos also rotated about the z-axis as

the tail extended, complicating comparisons between time points.

To correct for this rotation, the line extending from the anterior

tip of the trunk to the ventral notch at the intersection of the trunk

and the tail was considered to have an angle ø = 0u at all time-

points. Tailbud embryos were staged based on tail length

(measured as the distance along the midline from the anterior

tip of the notochord to the posterior tip of the tail), due to the fact

that the rate of development in ascidians varies according to the

ambient temperature [5].

RESULTS

Elongation of muscle tissue during tail extension
To selectively visualize muscle cells we used a promoter isolated

from the Ciona intestinalis snail locus [10]. The sna.Venus reporter

construct, driving expression of the yellow fluorescent protein

Venus [16], allowed us to label and follow the muscle lineage in

vivo in developing Ciona embryos with no deleterious effects on

development (Fig. 1; Movie S1) [11]. In vivo imaging of

fluorescently labeled muscle cells in sna.Venus transgenic animals

highlighted the elongation of the muscle tissue during the course of

tail extension (Fig. 1; Movie S1). Fluorescence was first detected at

gastrulation (Figure 1A); thereafter, embryos were 3D time-lapse

(i.e. 4D) imaged until the late tailbud stage, without perturbing

normal development. During gastrulation, the muscle precursors

underwent invagination (Figure 1A,B), and became positioned

bilaterally during the neurula stage (Figure 1C). From the early to

late tailbud stages the muscle lineage was seen to exhibit

a considerable elongation, increasing in length more than four-

fold along the anteroposterior axis as the embryo underwent tail

extension (Figure 1D–F).

Tail extension in the absence of muscle cell division

or intercalation
Although live imaging of sna.Venus transgenic embryos offered an

unprecedented visualization of muscle tissue morphogenesis

throughout the embryonic development of Ciona, the widespread

cytoplasmic distribution of the native Venus fluorescent protein

did not permit resolution of individual muscle cells (cross-sectional

slices in Figure 1). Since labeling different sub-cellular compart-

ments currently provides the highest resolution read-out of in vivo

cell behavior and cell fate [17–19], we went on to generate and 3D

time-lapse image transgenic animals expressing spectrally distinct,

subcellularly-localized fluorescent proteins to label the nuclei and

plasma membranes of muscle cells.

The invariant cell lineage of the Ciona muscle provides the

potential for analyzing morphogenesis at the scale of individual

cell behaviors (Figure 2A). To visualize the position of individual

cells within the muscle tissue and assess their role in tail extension,

Figure 1. 3D time-lapse series of muscle development in a Ciona intestinalis embryo visualized by electroporation with the sna.Venus plasmid.
(A) gastrula, (B) neural plate, (C) neurula, (D) early tailbud, (E) mid tailbud, and (F) late tailbud stages from a single embryo are shown. The anterior of
the embryo is to the left, posterior to the right. A maximum intensity projection of all slices along the z-axis is shown in the xy-plane view for each
stage. Cross-sectional slices in the xz and yz-planes are shown above and to the left of the xy-axis view, respectively, and the positions of the slices are
represented in the insets. Time stamps are shown in each panel. Scale bars represent 40 mm.
doi:10.1371/journal.pone.0000714.g001
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we labeled their nuclei with an H2B-RFP reporter (Figure 2B–I;

Movie S2) comprising the monomeric red fluorescent protein

mRFP1 fused to human histone H2B, which labels active

chromatin [9]. In embryos electroporated with sna.H2B-RFP,

chromatin localized red fluorescence was first detected in muscle

precursor cells at the neurula stage (Figure 2B) and persisted

through the course of tail extension (Figure 2C–E). In agreement

with previous data generated from bright field visualization of

ascidian embryos [20], muscle cells were observed to undergo their

final cell division at the neurula stage, with no proliferation

occurring during the period of tail extension.

To analyze changes in the morphology of individual muscle

cells during tail extension we labeled the cell membranes with

a plasma membrane marker to allow identification of cell

Figure 2. Schematic illustrations depicting muscle cell development in Ciona and high-resolution imaging of muscle development by dual-
tagging muscle cells with spectrally distinct, subcellularly-localized fluorescent proteins. (A) Schematics of the muscle lineage of the Ciona
intestinalis embryo at the one-cell, 8-cell, 32-cell, 110-cell, neurula, early tailbud, mid tailbud and late tailbud stages, with the cell lineages marked by
conventional nomenclature. Only one side of the embryo is labeled. Tail muscle precursors are labeled in orange, neural tissue in light blue, trunk
mesenchyme in light purple and trunk ventral cells (heart progenitors) in dark purple. Blastomeres that give rise to more than one tissue are stippled
with the colors corresponding to their fates. (B–I) Time series of embryos co-electroporated with sna.GPI-GFP and sna.H2B-RFP. (B,F) neurula, (C,G)
early tailbud, (D,H) mid tailbud, and (E,I) late tailbud stages are shown. (B–E) A single slice in the z-axis is shown in the xy-plane of view. Cross-
sectional slices in the xz and yz-planes are shown above and to the left of the xy-axis view, respectively, and the positions of the slices are represented
in the insets. (F–I) A maximum intensity projection of all slices along the z-axis is shown in the xy-plane of view. Scale bars, 40 mm.
doi:10.1371/journal.pone.0000714.g002
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boundaries and therefore provide information on cell morphology

and topology [1]. Muscle cell boundaries were specifically labeled

by a GFP fusion protein containing a glycosylphosphatidylinositol

(GPI) tag, which was encoded by the sna.GPI-GFP plasmid

(Figure 2B–I, Movie S2) [13].

Plasma membrane localized green fluorescence was first

detected in muscle precursors at the gastrula stage in embryos

electroporated with sna.GPI-GFP (data not shown). Prior to tail

extension, during the neurula stage, muscle cells became positioned

paraxially to the notochord (Figure 2B). During the early tailbud

stage (Figure 2C) they underwent only minor refinements in their

position relative to their neighbors before adopting a final and

invariant position that was retained throughout the mid and late

tailbud stages (Figure 2D,E; Movie S2). In this final configuration,

muscle cells were aligned on either side of the notochord, as three

rows of cells along the anterior two thirds of the length of the tail and

as two rows at the distal end of the tail (Figure 2I). This final

arrangement of muscle cells is highly stereotyped and was observed

in all wild type embryos (data not shown).

Once their position and nearest neighbor contacts were locked

in their terminal position, cells in the medial row of the muscle

exhibited hexagonal topologies characteristic of epithelial cells

(Figure 2I) [1]. The adjacent dorsal and ventral rows of muscle

cells, which provide the interface with other tissues, also had

straight epithelial-like borders. However, these cells were usually

pentagonal, with those borders that interfaced with other tissues

aligned perpendicularly to the dorsoventral axis (Figure 2I).

During tail extension, individual muscle cells did not undergo

extensive rearrangements in their relative positions (Figure 2G–I);

however, the continuous epithelial sheet they formed on either side

of the notochord underwent a ,4-fold elongation during tail

extension. Together, these observations suggest that changes in cell

geometry (length versus height) must play a major role in this

process.

Consistent with our results from electroporation of sna.Venus,

both sna.H2B-RFP and sna.GPI-GFP were found to be de-

velopmentally neutral, even when co-electroporated to simulta-

neously label and image two compartments of the same cell

(Figure 2I). The settings for image acquisition were optimized so

that in all experiments expression of fluorescent proteins and

confocal imaging were found to have no effect on embryos. Both

the onset of otolith melanization and muscle contractions were

synchronous between imaged and control embryos (Figure S1).

Muscle cell expansion during tail extension
Given that elongation of the muscle tissue is achieved in the

absence of cell proliferation, it may be expected that expansion is

coordinated and takes place along the entire length of the tail, at

a constant or variable rate, rather than occurring only at

a posteriorly positioned growth zone. To measure the movements

of individual cells positioned at different points along the

anteroposterior length of the tail we used sna.H2B-RFP to track

the positions of muscle cell nuclei over the course of tail extension

(Figure 3A; Movie S3). The positions of individual muscle cell

nuclei were tracked from the early tailbud to the late tailbud stage

(1 hour, 30 minutes; Figure 3A,B). To plot the movement of

multiple nuclei over time the anterior tip of the embryo was

considered to remain fixed in space at the origin for all time points

(Figure 3B). During tail extension muscle cells showed an overall

movement in the y-axis relative to the position of the origin, likely

accounting for the increase in tissue length (Figure 3B). The more

posterior cells also displayed a vector component trending towards

the origin along the x-axis, caused by the curling of the tail during

its extension. Late in tail extension these posterior nuclei moved

away from the origin, as the tail began to uncurl (Figure 3B).

Throughout the course of tail extension the distance between

nearest-neighbor pairs along the anteroposterior axis increased in

a linear fashion, and the rate of expansion was similar for all pairs

(Figure 3C). Although the distance between ‘‘mn 2’’ and ‘‘mn 3’’

was greater than that between other pairs of cells, the rate of

expansion was equivalent to that of other pairs. These results

demonstrated that tail extension was accompanied by an

expansion of muscle cells along the length of the tail, resulting in

a constant increase in distance between all pairs of muscle nuclei

along the anteroposterior axis.

To analyze muscle cell development in a perturbed develop-

mental context we misexpressed the Xenopus homeodomain-

containing transcription factor Bix1 [21] in muscle precursors,

using the sna.Bix construct, which had previously been shown to

cause shortening and/or bending of the tail when electroporated

in Ciona embryos [22]. Although Ciona mutants characterized by

an impairment in tail extension have been previously described,

such mutations are attributable to specific defects in notochord

development [23,24]. Since no ascidian mutants with specific

perturbations in muscle morphogenesis have yet been described,

sna.Bix represented the best available tool for perturbing this

process without impeding either specification of muscle cells or the

initial stages of their differentiation.

From the mid tailbud to the late tailbud stages, embryos

electroporated with sna.Bix displayed a rate of tail extension that

was approximately 50% that of wild type embryos from the same

batch cultured in parallel (Figure S2B; 1.2 mm per minute for

sna.Bix embryos versus 2.4 mm per minute for the wild type

embryo). Although tail extension was impaired in embryos

electroporated with sna.Bix, muscle cell specification and differen-

tiation were observed. For example, expression levels of three

markers of muscle differentiation, muscle actin, myosin regulatory light

chain, and troponin I, were found to be similar in wild type and sna.Bix

embryos when assayed by in situ hybridization (Figure S3). However,

sna.Bix embryos showed a delay in the onset of muscle contractions

as compared to wild type embryos (Figure S4, Movie S4), while fully

developed sna.Bix larvae were unable to perform the coordinated

muscle contractions necessary for swimming (data not shown).

Labeling of F-actin with rhodamine phalloidin suggested that muscle

cells expressing Bix1 have fewer, less organized myofibrils than do

muscle cells in wild type embryos (Figure S5). These data were

confirmed by transmission electron microscopy (Figure S6).

To investigate differences in muscle morphogenesis between

wild type and developmentally perturbed embryos, we utilized the

labeling tools and applied the metrics described previously to

analyze embryos electroporated with the sna.Bix construct. The

fluorescent reporter plasmids containing the Ci-sna promoter were

found to be unsuitable markers for these experiments due to

a reduction of fluorescence in the presence of Bix1, likely caused

by a downregulation of the sna promoter element. To overcome

this limitation, we analyzed the sna.Bix phenotype using another

muscle enhancer, isolated from the Ciona Tbx6b gene (J. Kugler and

A.D.G, unpublished results). Measurements of wild type embryos

electroporated with the Tbx6b constructs were equivalent to those of

embryos bearing sna transgenes (data not shown). Unlike sna.H2B-

GFP or sna.H2B-RFP, the activity of Tbx6b.H2B-GFP was not

reduced in embryos co-electroporated with sna.Bix. Therefore,

characterization of the muscle phenotype induced by Bix1 was

conducted using embryos co-electroporated with sna.Bix and

Tbx6b.H2B-GFP (Figure 3D; Movie S5).

Comparisons made between muscle cells in similar positions in

the tails of wild type and sna.Bix embryos demonstrated that

Ciona Muscle Morphogenesis
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muscle nuclei in perturbed embryos underwent less movement

than did comparable cells in control embryos (Figure 3B,E). The

overall direction of movement of sna.Bix muscle nuclei was away

from the anterior tip; however, the curvature of movement tracks

that is characteristic of wild type embryos was not observed in

sna.Bix embryos (Figure 3E). Muscle nuclei in sna.Bix embryos

did exhibit an increase in internuclear distance during tail

extension, but the rate of change in internuclear distance was

considerably reduced compared to that of wild type embryos

(Figure 3F; 0.06 in the sna.Bix embryo versus 0.16 in the wild

type embryo; values are unitless because they represent ratios of

internuclear distance over tail length).

Muscle elongation during tail extension is

accomplished through changes in cell geometry
To analyze the role of cell morphology dynamics in the process of

muscle tissue elongation, we used the sna.GPI-GFP plasmid to

visualize muscle cell topology and to quantify muscle cell geometry

in tailbud stage embryos (Figure 4A; Movie S6). Cell geometry was

calculated as the ratio of cell length (medial length of the cell

parallel to the anteroposterior axis of the embryo) to cell height

(medial length of the cell perpendicular to the anteroposterior axis

of the embryo). The average ratio of length to height in five cells

imaged within a single embryo was found to be close to 1:1 at the

early tailbud (tail length = 160 mm; Figure 4B). This ratio

increased steadily over the course of tail extension up to a ratio

of 3.5:1 at the late tailbud stage (tail length = 350 mm; Figure 4B).

These numbers correlated with similar observations made in four

other embryos (data not shown).

To further understand the role of muscle elongation in tail

extension, we measured the changes in muscle cell shape in

sna.Bix embryos co-electroporated sna.Bix with the Tbx6b.GPI-

GFP construct to label cell boundaries (Figure 4C; Movie S7). The

majority of muscle cells labeled in these perturbed embryos did not

take on the stereotypic hexagonal and pentagonal topologies that

characterized the ordered arrangement of muscle cells in wild type

embryos. Muscle cells in sna.Bix embryos displayed a disordered

arrangement, with most cells having trapezoidal or pentagonal

topologies (Figure 4C). Rates of muscle cell elongation in sna.Bix

embryos were much lower than those in wild type embryos

(Figure 4D).

To confirm these results using an analogous labeling technique,

muscle cell shape changes were also measured in embryos

incubated in the vital dye FM4-64, which labels cell membranes.

In embryos incubated in FM4-64, fluorescence was observed

specifically in cell membranes and development was not perturbed

(Figure S). Muscle cells labeled with FM4-64 showed comparable

Figure 3. Tracking the position of muscle nuclei during tail extension in wild type and perturbed embryos. In each case, the same embryo is
shown at the early tailbud (left) and late tailbud (right) stages. Nuclei followed for tracking are highlighted with false colors and numbered. The
anterior tip of the embryos (origin) and the notch at the intersection of the trunk and the tail, used to correct for movement in the frame, are
highlighted in yellow and pink, respectively. Time stamps are shown in each panel. (A) A wild type embryo electroporated with sna.H2B-RFP, and (D)
a perturbed embryo co-electroporated with sna.Bix and Tbx6b.H2B-GFP. (B, E) Paths of movement of selected muscle cell nuclei (mn), relative to
the position of the anterior tip, in wild type (B) and sna.Bix (E) embryos. (C, F) Change in internuclear distance between nearest neighbor muscle
cells during tail extension in unperturbed (C) and sna.Bix (F) embryos. Tail lengths for the sna.Bix (F) embryo were measured in parallel from
a stage-matched wild type embryo. Because sna.Bix affects tail extension, staging of sna.Bix embryos was based upon measurements of wild type
embryos cultured in parallel from the same batch. Wild type embryos were monitored on a wide-field inverted microscope located directly adjacent
to the laser scanning confocal microscope, to ensure that the two samples were maintained in similar environmental conditions. Scale bars, 40 mm.
doi:10.1371/journal.pone.0000714.g003
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rates of elongation to those labeled with GPI-GFP (Figure S7A,B).

However, FM4-64 was more susceptible to photobleaching than

was GPI-GFP, and was internalized by the cells over time,

therefore permitting only short-term plasma membrane labeling

and live imaging (data not shown). Since FM4-64 labeling lacked

tissue specificity, embryos were electroporated with Tbx6.H2B-

GFP to allow identification of muscle cells (Figure S7A).

Muscle geometry was also measured in sna.Bix embryos co-

electroporated with Tbx6b.H2B-GFP and counter-stained with

FM4-64 (Figure S7C). Muscle cells in sna.Bix embryos showed

minimal changes in geometry during the period of tail extension

(Figure S7D). The differences in the rate of muscle extension

between sna.Bix embryos coexpressing Tbx6b.GPI-GFP (Figure

C,D) and those labeled with FM4-64 (Figure S7C,D) likely

reflected the variability in the expression levels of Bix1 due to

mosaic incorporation of the sna.Bix plasmid [22].

Nevertheless, muscle cells in sna.Bix embryos exhibited an

average increase in the ratio of length to height of less than 2-fold,

while over the same period the ratio increased by nearly 3-fold in

wild type embryos (Figure 4E). Overall, the tails of sna.Bix

embryos failed to extend, as compared to wild type embryos

(Figure S2B). These results further support the observation that

changes in muscle cell geometry underlie muscle elongation in the

absence of cell division.

Despite the remarkable morphogenesis of the muscle lineage

during tail extension, measurements of the 3D time-lapse data

revealed that muscle cells undergo no volumetric growth during this

process (Figure 5). To evaluate the potential role of muscle cell

growth in muscle elongation, muscle cell volume was measured

during the course of tail extension in wild type embryos

(Figure 5A,B). The volumes of muscle cells were found, on average,

to remain constant over the course of tail extension (Figure 5C). This

suggests that the process of muscle elongation is accomplished

through axial deformation of muscle cells, rather than through

volumetric growth. Consistent with this, the increase in anteropos-

terior length of muscle cells was accompanied by decreases in both

their dorsoventral height and mediolateral width (Figure 5D).

Developmental changes in muscle cell surface

projections
The precise molecular mechanisms underlying the profound

changes in cell shape during muscle elongation in the ascidian

remain mostly unknown. To assess the role of intercellular

interactions in the muscle during tail extension, we performed

a detailed study of protrusive activity at the plasma membrane of

muscle cells labeled using the sna.GPI-GFP construct. High-speed

imaging of sna.GPI-GFP embryos using a spinning disc confocal

microscope resolved transient projections extending from the

lateral surface of muscle cells (Figure 6A–D and Movie S8). Such

projections were not detected by laser scanning confocal

microscopy, likely due to the longer acquisition times necessary

for each xy frame. Projections could first be imaged on the surface

of muscle cells at the neurula stage, extending from one muscle cell

to another (Figure 6A and Movie S8). Individual projections were

transient, with an average duration of less than one minute. The

average length of the projections was 1.5 mm from base to tip

(n = 43).

Figure 4. Changes in muscle cell geometry during tail extension. (A) Muscle cell boundaries highlighted by GPI-GFP in an embryo co-
electroporated with sna.GPI-GFP and sna.H2B-RFP, shown at early tailbud and late tailbud stages. (B) Average muscle cell shape (ratio of length to
height; n = 5) from the sna.GPI-GFP + sna.H2B-RFP embryo plotted against tail length, with standard deviation shown for each data point. (C)
Embryo co-electroporated with sna.Bix to perturb muscle development and Tbx6b.GPI-GFP to mark muscle membranes. (D) Graph of average
muscle cell shape (ratio of length to height; n = 5) from the sna.Bix + Tbx6b.GPI-GFP embryo plotted against tail length of a wild type embryo
monitored in parallel, with standard deviation shown for each data point. (E) Schematic of muscle cell shape changes in wild type and sna.Bix
embryos during tail extension. Time stamps are shown in each image panel. Scale bars, 40 mm.
doi:10.1371/journal.pone.0000714.g004
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To gain insight into the molecular nature of the muscle cell

surface projections we employed additional fluorescent protein

fusions that demarcate components of the cytoskeleton. F-actin

was imaged using a pleckstrin homology (PH) domain fluorescent

protein fusion encoded for by the sna.PH-YFP construct. When

previously fused to GFP, the phospholipase C-delta 1 PH domain

has been shown to associate with, and provide a read out of, F-

actin polymerization at the cell surface [14,25]. Embryos

electroporated with sna.PH-YFP displayed plasma membrane

protrusive activity that was indistinguishable from that observed in

embryos electroporated with sna.GPI-GFP, suggesting that the

projections are likely actin-based (Figure 6E–H and Movie S9).

We next quantified the number and orientation of these actin-

based plasma membrane projections (Figure 6I–L). Muscle cell

surface projections were most abundant at the neurula stage

(Figure 6A,I; 2.160.8 projections/cell, n = 28), decreased in

number by the early tailbud stage (Figure 6B,J; 1.560.1

projections/cell, n = 12), and were almost entirely absent by the

mid tailbud (Figure 6C,K) and late tailbud stages (Figure 6D,L).

No clear trend was observed in the orientation of projections at the

neurula stage (Figure 6I). However, by the early tailbud stage the

majority of projections were oriented anteriorly (Figure 6J).

Muscle cell surface projections are reduced in

developmentally perturbed embryos
To test whether muscle cell surface projections were affected when

muscle elongation was perturbed, embryos were electroporated

Figure 5. Muscle cell volume during tail extension. (A) Cross-sectional slices of GPI-GFP labeled muscle cells at the early tailbud stage. The
underlying notochord cells are highlighted by coelectroporation of Bra.RFP [11]. (B) Cross-sectional slices of the same muscle and notochord cells at
the late tailbud stage. (C) Graph of cell volumes for three muscle cells during tail extension. (D) Graph of changes in anteroposterior length,
dorsoventral height and mediolateral width during tail extension in ‘‘muscle cell 1’’ from the previous panel. Scale bars, 10 mm.
doi:10.1371/journal.pone.0000714.g005
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with sna.Bix and Tbx6b.PH-YFP (Figure 6M–P and Movie S10).

sna.Bix embryos displayed a reduction in the number of

projections at both the neurula (Figure 6M,Q) and early tailbud

(Figure 6N,R) stages, as compared with wild type embryos.

Projections were also absent from mid tailbud (Figure 6O,S) and

late tailbud (Figure 6P,T) stage embryos, suggesting that formation

of these projections is impaired in sna.Bix embryos, rather than

being delayed in onset. In sna.Bix embryos the failure of muscle

cells to adopt their proper topology and geometry is correlated

with a reduction in the number of plasma membrane projections.

To shed light on the morphogenetic role of muscle cells

projections, embryos were treated with cytochalasin D, a potent

inhibitor of actin polymerization [26]. Embryos incubated in

500 nM cytochalasin D exhibited an arrest in the dynamics of

muscle cell projections (Figure 7). While in wild type embryos the

average duration of projections was less than 2 minutes

(Figure 7A–D), in embryos treated with cytochalasin D the

average duration of projections was greater than 5 minutes

(Figure 7E–H). Cytochalasin D also affected the process of tail

extension, mimicking the effects of sna.Bix expression. Embryos

incubated in cytochalasin D for one hour at the neurula stage, and

recovered into filtered seawater, displayed significantly shorter tails

at the late tailbud stage than did wild type embryos (214629 mm

(n = 16) for cytochalasin D treated embryos versus 306630 mm

(n = 12) for wild type embryos). Latrunculin B, which similarly

impairs actin polymerization, was also tested at different

concentrations, but exhibited high levels of cytotoxicity as

compared with cytochalasin D (data not shown).

DISCUSSION
A detailed characterization of the morphogenetic events that

constitute normal embryonic development is essential for un-

derstanding the regulation of developmental processes and the

patterning mechanisms underlying them. By combining 3D time-

lapse imaging with transient transgenesis in ascidian embryos we

have investigated in vivo wild type and perturbed muscle

development at the cellular level. Ciona embryos, due to their

Figure 6. Differential protrusive activity at the plasma membrane of muscle cells during tail extension. (A) Neurula, (B) early tailbud, (C) mid
tailbud and (D) late tailbud stage embryos electroporated with sna.GPI-GFP and imaged by high-speed spinning disk confocal microscopy.
Brightfield images of stage matched embryos are shown in the bottom left corner of each panel. High magnification views of the muscle cells
membranes outlined by dashed lines are shown in panels A and B. (E–H) Actin-based cell surface projections imaged by electroporation of
Tbx6b.PH-YFP. (I–L) Polar plots of muscle cell protrusion length and orientation in neurula, early tailbud, mid tailbud, and late tailbud embryos.
Protrusion length and angle are shown as the distance from the center of the plot and the angle from the x-axis respectively. (M–P) Cell surface
projections in perturbed embryos. Embryos were co-electroporated with sna.Bix and Tbx6b.PH-YFP. (Q–T) Polar plots of muscle cell protrusion
length and orientation in perturbed embryos co-electroporated with sna.Bix and Tbx6b.PH-YFP. Distance in mm is shown along the x-axis. Scale
bars, 20 mm.
doi:10.1371/journal.pone.0000714.g006
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overall size, transparency and rapid development provide an ideal

model system for such multidimensional live imaging studies.

High-resolution imaging of developing muscle cells

using spectrally distinct subcellularly-localized

fluorescent reporters
Analysis of developing muscle cells was achieved at an un-

precedented resolution in living Ciona embryos by means of

subcellularly-localized fluorescent proteins, which allowed visual-

ization of muscle cell behavior in situ during tail extension. Human

histone H2B-tagged fluorescent proteins provided markers of cell

position and division during the course of development [27,28],

and were used to identify and track individual muscle cell positions

in 3D over time. Additionally, lipid-modified GPI-tagged fluores-

cent proteins highlighted the cell surface, permitting quantitative

measurements of cell shape changes during tail extension and

visualization of a novel dynamic protrusive activity at the plasma

membrane. Furthermore, in vivo imaging of a PH-YFP fusion

indicated that this protrusive activity was actin-based.

Stereotypical changes in muscle cell geometry

underlie tail extension
We have used live imaging to generate a detailed in vivo description

of cell behaviors underlying tail extension in the absence of cell

division or intercalation. Ciona muscle cells were observed to

undergo changes in their geometry during tail extension starting at

the neurula stage, elongating along the anteroposterior axis (Movie

S2). This change in geometry occurred without changes in cell

topology, as cells remained locked in their position relative to their

neighbors. Morphometric analysis of the imaging data we have

collected demonstrates that the rate of elongation is linear and that

by the late tailbud stage, cell length (along the anteroposterior axis)

exceeds by almost four times the cell height (along the dorsoventral

axis). Our analyses of the positions of nuclei demonstrate that the

rate of expansion is consistent between muscle cells along the

entire length of the tail during tail extension. Elongation of the

muscle during tail extension is accomplished entirely through

changes in the geometry of individual muscle cells in the absence

of intercalation or other changes in the relative positions of cells.

A three-phase model for cell behavior during muscle

morphogenesis
Using high-speed imaging to visualize non-superficial cells within

a developing embryo we have identified filopodial projections

present on the lateral surface of muscle cells prior to the initiation,

and during the early stages, of tail extension (Movies S8 and S9).

The behavior we observed can be divided into three contiguous

phases that span muscle elongation (Figure 8). During the initial

phase (1), at the beginning of muscle cell elongation at the neurula

stage, cells exhibit a highly protrusive activity, with multiple

randomly oriented plasma membrane projections. In the next

phase (2), during the early stages of tail extension, protrusive

activity at the plasma membrane declines but becomes polarized

such that projections orient anteriorly. In the final phase (3), once

tail extension is underway, the surface of muscle cells becomes

largely quiescent, suggesting that intrinsic cellular polarity is

established and cell elongation during this period is accomplished

in the absence of dynamic protrusive changes at the plasma

membrane.

Our observations are intriguing as epithelial cells exhibiting

a classical polygonal morphology are believed to achieve in-

tercellular interactions via specialized junctions [29] and have not

been reported to exhibit extensive protrusive activity; thus the

dynamic protrusive activity that we are observing is novel. On the

other hand, it is also likely that this type of spatiotemporal

resolution has not been achieved previously, as the high-speed,

high-resolution live imaging approach we have undertaken has yet

to be applied to in situ investigations of cell surface dynamics of

epithelial cells within a living organism. This suggests that

Figure 7. Impairment of muscle cell activity by cytochalasin D. (A) Brightfield image of a wild type neurula stage embryo, with dashed lines
outlining the region shown in high magnification in panels B–D. (B–D) High-speed confocal images of a wild type embryo electroporated with
sna.GPI-GFP. Yellow arrowheads highlight dynamic projections, which had a duration of less than two minutes. (E) Brightfield image of a neurula
stage embryo incubated in 500 nM cytochalasin D, with dashed lines outlining the region shown in high magnification in panels F–H. (F–H) High
speed confocal images of an embryo electroporated with sna.GPI-GFP and treated with cytochalasin D. Blue arrowheads highlight projections,
which were static throughout the 5 minute imaging period. Scale bars, 10 mm.
doi:10.1371/journal.pone.0000714.g007
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advances in optical imaging modalities coupled with the

availability of subcellularly-localized fluorescent protein reporters

exhibiting high signal-to-noise ratios may reveal behaviors not

previously documented in vivo.

Recent work carried out in living Xenopus embryos using

a similar approach has shown that, during somitogenesis,

presomitic mesoderm cells undergo an increase in the number of

filopodial projections as they change their orientation with respect

to the notochord [30]. Similarly to our observations of filopodia in

the muscle cells of Ciona, these protrusions are polarized, in this

case being oriented posteriorly towards the nascent somitic

boundary [30]. This suggests that the dynamic protrusive activity

that we are observing in the developing Ciona muscle might be part

of an evolutionarily conserved set of cell behaviors that accompany

mesoderm formation independent of segmentation events.

The fact that the filopodia are observed only in muscle cells that

are undergoing active spatial rearrangements suggests that they

may be mediating the interactions occurring among neighboring

muscle cells as well as between the muscle and its adjacent tissues

during early morphogenesis. Such interactions could involve

biomechanical stimulation of cells and/or activation of signal

transduction pathways.

A possible role for signal transduction facilitated by muscle cell

filopodia is consistent with findings in both Ciona and Xenopus that

mutations in planar cell polarity genes that inhibit the convergent

extension of mesodermal cells also affect the protrusive activity of

these cells [24,31]. A link between cell surface signaling and tissue

elongation is also supported by studies in C. elegans, where

mutations of the Rho kinase gene let-502 inhibit myosin-mediated

cell elongation [32].

The cell surface projections that we have described may be

required for muscle cell elongation, given that inhibition of their

formation is associated with defects in muscle patterning in both

sna.Bix and cytochalasin D treated embryos. Future work will

focus on a detailed characterization of the molecular architecture

of Ciona muscle cell filopodia and targeted analysis of their role in

muscle cell morphogenesis. Preliminary studies carried out using

mutant versions of C. intestinalis Rho GTPases [33] and WASP

[34,35] suggest that these candidate factors may not play a direct

role in filopodia formation (data not shown).

Given the unilateral extension of the muscle, it will also be

important in the future to establish whether patterned protein

localization is observed within these muscle cells, as has been

documented in epithelia during germband extension in Drosophila

[29].

The role of muscle cell elongation in tail extension
Having defined the behaviors of muscle cells operating in a wild

type embryo, we sought to examine them in a developmentally

perturbed context. Using the sna.Bix construct to perturb muscle

formation, we measured the effects of this perturbation on muscle

cell elongation. Bix1 is a homeodomain protein that likely acts as

a transcriptional repressor [21], and that has previously been

shown to impair tail extension when expressed in developing Ciona

muscle cells [22]. In wild type embryos, muscle cells appear to be

actively driving tail extension in cooperation with notochord cells,

through their coordinate elongation, while in muscle cells

expressing Bix1, muscle elongation is impaired, thus constraining

tail extension [22]. These results are consistent with findings from

studies in other ascidian species. Tail morphogenesis in the

absence of muscle cells has been described in ascidian embryos

produced from interspecific hybridization of the urodele Molgula

oculata and the anural M. occulta, where only short tails were formed

through convergent extension of the notochord alone [36].

Likewise, Munro and Odell [37] observed no tail extension in

embryos of the urodele ascidian Boltenia villosa lacking muscle and

neural tissue.

Our results demonstrate that tail extension in Ciona is driven not

only by the axially positioned notochord, but also by the paraxially

positioned muscle. Given the intimate association and coordinated

elongation of notochord and muscle, it is likely that some level of

intercellular communication exists between these two developing

tissues. It will therefore be important to apply the suite of tools and

methodologies that we have developed to the investigation of

notochord cell behavior. It will also be of interest to determine

what interactions exist between the notochord and the muscle

cells, and to quantify the respective contributions of these tissues to

the morphogenesis of the ascidian tail. Such studies will provide

a detailed model for understanding the cell behaviors and

interactions underlying tail extension, a process that is common

to all chordate lineages.

In conclusion, our work exploits high resolution in vivo imaging

to reveal the cellular behaviors underlying tail extension and

establishes muscle development in Ciona as an in vivo model for

analyzing how changes in cell geometry affect morphogenesis of

a tissue. Moreover, muscle cell development in Ciona mirrors many

aspects of muscle cell gene regulation and morphogenesis

documented in other organisms, and as such may serve as

a paradigm for related studies of in vivo cellular behaviors. The

high-resolution multi-spectral live imaging approach we have

Figure 8. Three-phase model of cell behavior operating during tail
extension in Ciona. High magnification photomicrographs of muscle
cells expressing GPI GFP are shown in the left column. Schematics of
wild type muscle cells are shown in the middle column, with the
borders and projections of a single cell outlined in red. Schematics of
muscle cells expressing Bix1 are shown in the right column. Muscle cells
undergo their last division at the neurula stage. As they adopt their
stereotypical relative positions they exhibit highly protrusive activity at
the lateral plasma membranes. By the early tailbud stage, as cells have
initiated elongation, protrusive activity has declined but has become
polarized, with the majority of plasma membrane protrusions extend-
ing anteriorward. By the mid tailbud stage, elongation is underway and
protrusive activity has ceased, with cells appearing almost quiescent. In
sna.Bix embryos very few projections are observed in muscle cells and
muscle elongation is impeded.
doi:10.1371/journal.pone.0000714.g008
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exploited provides the first multi-dimensional blueprint of muscle

cell behavior operating in situ during normal development, and

shows that in vivo imaging of genetically-encoded fluorescent

proteins enables direct quantitative comparisons of cell behaviors

in wild type and perturbed embryos.

SUPPORTING INFORMATION

Figure S1 Synchronous development of imaged and control

embryos. (A) Embryo imaged by laser scanning for 2 hours during

tail extension. The embryo was maintained at ambient room

temperature of 21uC and the photomicrograph was captured at

10 hours post fertilization. (B, C) Wild type embryos from the

same fertilization as the embryo in (A). Wild type embryos were

cultures in parallel with the imaged embryo. Control embryos

were maintained under conditions identical to those of the imaged

embryos, excluding exposure to laser excitation. Imaged and

control embryos were synchronous as measured by rate of tail

extension, time to otolith melanization, and onset of muscle

contractions.

Found at: doi:10.1371/journal.pone.0000714.s001 (9.16 MB TIF)

Figure S2 Tail extension is perturbed in embryos electroporated

with sna.Bix. (A) Brightfield images of wild type and sna.Bix

embryos at mid tailbud and late tailbud stages. Time stamps are

shown in each image. (B) Change in tail length in wild type and

sna.Bix embryos for the period of development represented in

panel (A).

Found at: doi:10.1371/journal.pone.0000714.s002 (2.92 MB TIF)

Figure S3 Muscle cells are correctly specified in embryos

electroporated with sna.Bix. Expression of marker genes of

muscle differentiation in wild type and sna.Bix embryos. (A, B)

Expression of muscle actin in wild type and sna.Bix embryos. (C,

D) Expression of myosin regulatory light chain (MRLC) in wild

type and sna.Bix embryos. (E, F) Expression of troponin I in wild

type and sna.Bix embryos. Scale bars, 40 mm.

Found at: doi:10.1371/journal.pone.0000714.s003 (5.47 MB TIF)

Figure S4 Phenotypes and movement of wild type and sna.Bix

larvae. A time series is shown with sna.Bix larvae (left) and wild

type larvae (right). Images were taken at two second intervals.

Arrows indicate the movement of the two wild type larvae due to

muscle contractions during the time series. Note that neither of the

sna.Bix larvae has changed position. Scale bars, 200 mm.

Found at: doi:10.1371/journal.pone.0000714.s004 (1.56 MB TIF)

Figure S5 Organization of myofibrils in wild type and sna.Bix

larvae, as visualized by rhodamine phalloidin labeling. (A)

Myofibrils in a wild type larva. (B) Myofibrils in a larva

electroporated with sna.Bix. Myofibrils in the sna.Bix larvae

are less numerous and less organized than those in wild type

larvae.

Found at: doi:10.1371/journal.pone.0000714.s005 (2.39 MB TIF)

Figure S6 Organization of myofibrils in wild type and sna.Bix

muscle cells, as visualized by transmission electron microscopy

(TEM). (A) Low magnification TEM image of a semi-longitudinal

section of the tail of a Ciona larva. Muscle cells are distinguishable

based on their shape and on the high number of mitochondria. (B)

Higher magnification of the area outlined by a red rectangle in

panel A, encompassing the boundary between adjacent muscle

cells. On each side of the cells’ boundary, numerous myofibrils can

be seen. (C) When a ,30,0006 magnification is employed,

regularly patterned myofibrils, indicated by arrows, can be

distinguished. (D) Low magnification TEM image of the tail of

a Ciona larva electroporated with sna.Bix. An irregularly shaped

muscle cell is boxed by a red rectangle and shown at a higher

magnification in (E). (F) Higher magnification image of the region

boxed by a red rectangle in (E). Arrows indicate disorganized

myofilaments.

Found at: doi:10.1371/journal.pone.0000714.s006 (5.46 MB

PDF)

Figure S7 Changes in muscle cell geometry during tail extension

visualized with the vital dye FM4-64. (A) Embryo electroporated

with Tbx6b.H2B-GFP to mark muscle cells and incubated with

FM4-64 to label cell membranes. (B) Graph of average muscle cell

shape (ratio of length to height; n = 5) from the Tbx6b.H2B-

GFP+FM4-64 embryo plotted against tail length, with standard

deviation shown for each data point. (C) Embryo co-electro-

porated with sna.Bix to perturb muscle development and

Tbx6b.H2B-GFP to mark muscle cell nuclei, and incubated with

FM4-64, which labels cell membranes. (D) Graph of average

muscle cell shape (ratio of length to height; n = 5) from the

sna.Bix+Tbx6b.H2B-GFP+FM4-64 embryo plotted against tail

length of a wild type embryo monitored in parallel, with standard

deviation shown for each data point. Scale bars, 40 mm.

Found at: doi:10.1371/journal.pone.0000714.s007 (2.81 MB TIF)

Movie S1 Time lapse imaging of an embryo electroporated with

sna.Venus.

Found at: doi:10.1371/journal.pone.0000714.s008 (5.69 MB

MOV)

Movie S2 Time lapse imaging of tail extension is shown in a wild

type embryo coelectroporated with sna.GPI-GFP and sna.H2B-

RFP.

Found at: doi:10.1371/journal.pone.0000714.s009 (1.94 MB

MOV)

Movie S3 Movement of muscle cell nuclei in a wild type embryo

during tail extension. Tracked cells are false-colored.

Found at: doi:10.1371/journal.pone.0000714.s010 (0.27 MB

MOV)

Movie S4 Wide field time-lapse of late tailbud or larval stage

sna.Bix embryos.

Found at: doi:10.1371/journal.pone.0000714.s011 (3.29 MB

MOV)

Movie S5 Movement of muscle cell nuclei in a sna.Bix embryo

during tail extension. Tracked cells are false-colored.

Found at: doi:10.1371/journal.pone.0000714.s012 (0.34 MB

MOV)

Movie S6 Changes in muscle cell shape in a wild type embryo

during tail extension.

Found at: doi:10.1371/journal.pone.0000714.s013 (0.83 MB

MOV)

Movie S7 Changes in muscle cell shape in a sna.Bix embryo

during tail extension.

Found at: doi:10.1371/journal.pone.0000714.s014 (0.94 MB

MOV)

Movie S8 High speed imaging of a wild type embryo

electroporated with sna.GPI-GFP. Note protrusive activity of the

muscle cell surfaces during the neurula and early tailbud stages.

Found at: doi:10.1371/journal.pone.0000714.s015 (8.95 MB

MOV)

Movie S9 High speed imaging of a wild type embryo

electroporated with Tbx6b.PH-YFP.

Found at: doi:10.1371/journal.pone.0000714.s016 (10.34 MB

MOV)
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Movie S10 High speed imaging of an embryo coelectroporated

with sna.Bix and Tbx6b.PH-YFP.

Found at: doi:10.1371/journal.pone.0000714.s017 (1.00 MB

MOV)
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