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Background. During planning and execution of reaching movements, the activity of cortical motor neurons is modulated by
a diversity of motor, sensory, and cognitive signals. Brain-machine interfaces (BMIs) extract part of these modulations to
directly control artificial actuators. However, cortical modulations that emerge in the novel context of operating the BMI are
poorly understood. Methodology/Principal Findings. Here we analyzed the changes in neuronal modulations that occurred
in different cortical motor areas as monkeys learned to use a BMI to control reaching movements. Using spike-train analysis
methods we demonstrate that the modulations of the firing-rates of cortical neurons increased abruptly after the monkeys
started operating the BMI. Regression analysis revealed that these enhanced modulations were not correlated with the
kinematics of the movement. The initial enhancement in firing rate modulations declined gradually with subsequent training
in parallel with the improvement in behavioral performance. Conclusions/Significance. We conclude that the enhanced
modulations are related to computational tasks that are significant especially in novel motor contexts. Although the function
and neuronal mechanism of the enhanced cortical modulations are open for further inquiries, we discuss their potential role in
processing execution errors and representing corrective or explorative activity. These representations are expected to
contribute to the formation of internal models of the external actuator and their decoding may facilitate BMI improvement.

Citation: Zacksenhouse M, Lebedev MA, Carmena JM, O’Doherty JE, Henriquez C, et al (2007) Cortical Modulations Increase in Early Sessions with
Brain-Machine Interface. PLoS ONE 2(7): e619. doi:10.1371/journal.pone.0000619

INTRODUCTION
Brain Machine Interfaces (BMIs) hold promise for restoring motor

functions in severely paralyzed patients [1–7]. State of the art

BMIs take advantage of recent advances in electrophysiological

techniques and neural decoding algorithms. Multi-electrode arrays

facilitate simultaneous recordings from hundreds of neurons in

multiple cortical areas. Movement related signals that modulate

the activity of these neurons are extracted using neural decoding

techniques and employed to control an external actuator. The

BMI neural decoder includes free parameters that in typical BMI

experiments with monkeys are determined from neural recordings

during a training session with reaching movements. However, the

requirement to produce similar movements through the BMI

introduces a novel motor context, which may in turn affect the

cortical modulations that drive the BMI.

During planning and execution of reaching movements, the

modulations in the firing rate of cortical motor neurons reflect

multiple motor, sensory, and cognitive variables [8–12]. Neural

modulations that represent the direction and speed of the

movement have been extensively studied during stereotypical

reaching movements, and described computationally using tuning

curves [13–16]. Recent BMI experiments indicate that neural

tuning to movement direction [6] or velocity [7,17] may change

following BMI operation. However, changes in neuronal modula-

tions beyond those related to movement kinematics have not been

investigated.

The operation of a BMI presents a novel motor context in

which the external actuator is controlled based on the predictions

generated from a limited subset of neurons. During initial BMI

operation, the movement of the actuator may deviate from the

intended movement, and result in errors, as evident from the

degradation in behavioral performance [7]. Here we addressed the

effect of operating in this novel motor context on the nature of

neuronal modulations in the motor cortex. Our spike-train

analyses show that initial BMI operation was associated with

increasing neuronal modulations, which were not merely associ-

ated with movement kinematics.

Firing-rate modulations are masked by neural noise, which

hampers their unambiguous estimation form recorded spike-trains

[18]. Averaging techniques that are applied to reduce the neural

noise also diminish the effect of rate-modulating signals. Current

rate-estimation methods focus on firing-rate modulations that are

correlated with specific modulating signals, like the direction and

speed of the movement. Such methods rely on identifying the

relevant modulating signals and ignore potential contributions by

other signals [19]. Instead of estimating the firing-rate, we focus in

this paper on quantifying its variance, i.e., the variance of the

neural activity that is associated with overall rate-modulations.

This provided a scale for assessing the variance associated with

specific modulating signals, which were estimated using linear

regression. Using these tools we demonstrate that the variance

associated with neuronal rate-modulations increased during initial
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BMI operation without a matching increase in the variance

explained by the movement kinematics. Furthermore, the variance

associated with neuronal modulations decreased with subsequent

BMI training sessions. Possible hypothesis regarding the nature of

these enhanced modulations are discussed to motivate further

research.

METHODS

Behavioral task and brain-machine interface

operations
The BMI experiments were performed in two adult female

monkeys (Macaca mulatta) and consisted of 10 BMI sessions for

the first monkey and 23 for the second. The experiments are

described in detail in [7] and briefly described here. Neural

activity was recorded from Nn = 1002300 neurons in multiple

cortical areas including the primary motor cortex (M1), dorsal

premotor cortex (PMd), supplementary motor area (SMA), and

primary somatorsensory cortex (S1) in one monkey and medial

intraparietal (MIP) of the posterior parietal cortex (PP) in the

second monkey.

Each experimental session started with a training session in

which the monkey controlled the position of a cursor on

a computer screen by moving a hand-held pole (pole control), with

the task of acquiring a randomly placed visual target within 5 sec

to obtain a juice reward. A linear filter was trained to predict the

velocity of the movement from the binned spike-counts of the

recorded neurons. After training, the filter generated real-time

predictions of the velocity, which were reproduced by the cursor

and/or a robotic arm (brain control). The monkeys continued to

move the pole after brain control started (brain control with hand

movements, BCWH), but later assumed a stationary arm posture

after the pole was taken away (brain control without hand movements,

BCWOH). Lack of muscle activity during BCWOH was demon-

strated by EMG measurement from wrist flexors, extensors and

biceps. Performance accuracy diminished after the transition from

pole- to brain-control, and after the monkeys stopped moving their

arms. However, the BMI task performance improved with further

training in all the control modes, clearly indicating that motor

learning was involved.

Percent Overall Modulation (POM)
Spike-trains can be considered as realizations of point processes

[20,21]. The number of spikes recorded in a bin of size b, Nb,

depends on the average bin-rate in that bin Lb, which is

modulated by the encoded signals, as depicted in Figure 1 (upper

diagram). However this dependence is stochastic and the variance

of the spike-count Var[Nb] may differ from the variance of the bin-

rate Var[Lb]. While the variance of the spike-count can be

measured directly, it is the variance of the bin-rate that is of

interest here because it reflects signal modulations. In order to

investigate these modulations, we defined the percent overall

modulation (POM) as:

POM~
Var½Lb�
Var½Nb�

:100% ð1Þ

Since the variance of the bin-rate cannot be measured directly, the

POM cannot be estimated without further assumptions. However,

instead of restricting the analysis to firing-rate modulations that

involve specific modulating signals, we made only basic assump-

tions about the nature of the spikes trains. In particular, we

Figure 1. Inhomogeneous Poisson process and implied variance distribution.
doi:10.1371/journal.pone.0000619.g001

Cortical Modulations with BMI

PLoS ONE | www.plosone.org 2 July 2007 | Issue 7 | e619



assumed that the spike trains are realizations of inhomogeneous

Poisson processes, which are the simplest point processes that can

describe rate modulations. We further generalized the analysis to

additive noise models whose variance is proportional to the mean.

The simplest point process, the homogenous Poisson process, is

characterized by a constant rate and thus is inadequate for

describing task-related firing rate modulations. Despite their

constant rates, homogeneous Poisson processes generate spike

trains with highly variable spike-counts, whose variance equals the

mean, i.e., Var[Nb] = E[Nb]. Taking the homogeneous Poisson

process as a model of neural activity with no modulations, we

conclude that the resulting variance, which equals the mean rate,

is attributed to the neural noise.

The inhomogeneous Poisson process, which is characterized by

time-varying rate that is independent of the history of the spike

train, is the simplest point process that can describe firing rate

modulations [20,21,22]. For inhomogeneous Poisson processes,

the variance of the spike-count Var[Nb] is related to the variance of

the bin-rate Var[Lb] according to Var[Nb] = Var[Lb]+E[Nb] [20].

This relationship can be interpreted as a decomposition of the total

variance in the binned spike-count into the variance of the

underlying information bearing parameter, or bin-rate Var[Lb],

and the variance that would have occurred if Nb was generated by

a homogenous Poisson process, E[Nb], i.e., the neural noise

(Figure 1). Thus, the variance of the modulated bin-rate is the

excess variance of the binned spike-count beyond the level

expected from a homogeneous Poisson process. The resulting

POM can be evaluated from the statistics of the binned spike-count

as (Figure 1):

POM~
Var½Lb�
Var½Nb�

:100%~
Var½Nb�{E½Nb�

Var½Nb�
:100%~

1{
1

F

� �
:100%

ð2Þ

where F~
Var½Nb�
E½Nb�

is the Fano factor [23,22]. Given spike-trains

of finite duration, we estimated the POM using the sample-mean

and sample-variance of the binned spike-counts, instead of the

mean and variance, respectively.

The POM analysis can be extended to cases where the binned

spike-count include signal-dependent zero-mean noise, i.e.,

Nb = Lb+e [24]. The probability distribution of the noise e is assumed

to be conditionally normal with signal dependent variance:

f(e|Lb),N(0,c2Lb). Note that this model converges to the in-

homogeneous Poisson process for large rates and c= 1. Since for

any signal level the error is zero mean, the variance of the spike

counts is given by: Var[Nb] = Var[Lb]+c2E[Nb], as shown in the

Supplemental text (Text S1). The resulting POM can be evaluated as:

POM(c)~
Var½Lb�
Var½Nb�

:100%~
Var½Nb�{c2E½Nb�

Var½Nb�
:100%

~ 1{c2
� �

:100%zc2POM(1)

ð3Þ

where POM(1) is the POM of an inhomogeneous Poisson process

(c= 1) as defined in Equation (2). Thus, the results and conclusions

based on the POM defined in Equation (2) can be easily extended for

the general case of additive signal-dependent noise. In particular:
dPOM(c)

dPOM(1)
~c2, so increasing/decreasing trends in estimated POM

based on Equation (2) reflect increasing/decreasing trends in

POM(c).

Significantly Modulated Neurons
The POM of spike-trains that are evoked by homogeneous Poisson

processes is zero. However, when estimated from finite spike-

trains, the sample-POM is randomly distributed and may take non-

zero, either positive or negative, values. Under the homogeneous

Poisson process assumption, the distribution of the sample-POM,

estimated from a finite sample of n bins, is asymptotically normal

with zero mean and variance of 2/n. We defined neurons as

significantly modulated if their estimated POM indicated that the

homogeneous Poisson process hypothesis could be rejected at 95%

confidence level for at least one control mode (pole, BCWH, or

BCWOH). For a typical sample of 12000 bins (20 minutes of an

experiment with 100 msec bins), the standard deviation of the

sample- POM is 1.3%. Note that neurons that are significantly

modulated in only one or two control modes may exhibit zero of

even negative sample-POM in the other mode(s) due to the limited

length of the analyzed spike-train.

Percent Velocity Modulation (PVM)
Velocity tuning is often determined in center-out reaching

experiments, where the direction of movement is approximately

constant [13,16]. For general arm movements, this method was

generalized to characterize the tuning of the neural activity to the

velocity at a specific time lag [17]:

N(k)~ax(l)Vx(kzl)zay(l)Vy(kzl)zas(l)S(kzl)zac(l)z

e(k,l) ,
ð4Þ

where k is the index of the current time-bin, N(k) is the spike counts

(in bins of 100msec), Vx and Vy are the x- and y-components of the

velocity, S~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2

xzV2
y

q
is the speed, l is the relative lag (positive/

negative l corresponds to rate-modulations preceding/ succeeding

the velocity measurement, respectively), ax(l), ay(l) and as(l) are the

tuning parameters, ac(l) is a bias parameter, and e(k, l) is the

residual error. The coefficient of determination of the single-lag

regression R2(l) quantifies the fraction of the variance in the neural

spike-count that is attributed to, or explained by, the velocity at lag

l. However, since the velocity values at different lags are

correlated, the lag-by-lag analysis cannot be used to determine

the fraction of the variance that is attributed to the spatio-temporal

velocity profile. Hence, we further generalized the analysis to

account for the tuning of the neural activity to the spatio-temporal

velocity profile in the surrounding window according to:

N(k)~
XL2

l~{L1

ax(l)Vx(kzl)z
XL2

l~{L1

ay(l)Vy(kzl)z

XL2

l~{L1

as(l)S(kzl)zacze(k)

ð5Þ

where e(k) is the residual error, and L1 and L2 are the number of

preceding and succeeding lags in the velocity profile, respectively.

We used L1 = L2 = L = 9 to include a 1900-ms window around the

current bin. The regression in Equation (5) was evaluated using

truncated Singular Value Decomposition to stabilize the solution

despite the large condition number of the spatio-temporal velocity

matrix (around 106) [25,26]. Truncation was performed at the

singular value that preserved 95% of the variance in the velocity

measurements.

The coefficient of determination of the spatio-temporal re-

gression of Equation (5), R2, describes the fraction of the variance
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in the binned spike-count that is linearly related to variations in the

spatio-temporal velocity profile in the surrounding window.

Expressed as a percentage, R2 is referred to as the percent

velocity-related modulation, or PVM.

Percent Kinematics Modulation (PKM)
The above analysis was further extended to include other

kinematics variables that may modulate the neural activity,

including the position and magnitude of acceleration:

N(k)~
XL2

l~{L1

bx(l)Px(kzl)z
XL2

l~{L1

by(l)Py(kzl)z

XL2

l~{L1

bs(l)S(kzl)z
XL2

l~{L1

ba(l)A(kzl)zbcze(k)

ð6Þ

Where Px and Py are the x- and y-components of the position, and

A~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

xzA2
y

q
is the magnitude of the acceleration vector whose

x-component is given by Ax(l) = Vx(l)2Vx(l21) = Px(l)22P(l21)+
Px(l22) and y-component given by the corresponding expression.

Note that the velocity and acceleration vectors are implicitly

included in Equation (6) as the first and second order differences

between the positions in consecutive lags.

The coefficient of determination of the spatio-temporal re-

gression in Equation (6) was expressed as a percentage and

referred to as the percent kinematics modulation, or PKM.

Variations in percent modulations
In order to evaluate the variations in the percent modulations (i.e.,

POM, PVM or PKM) within and across different control modes and

training sessions, we estimated their values for each neuron in 2-

minute non-overlapping intervals. Within each control mode, the

POM, PVM and PKM of individual neurons were determined by

averaging across all the relevant 2-minute intervals. The ensemble-

POM, ensemble-PVM and ensemble-PKM in a specific 2-minute

interval were determined by averaging across all the significantly

modulated neurons. Comparisons between control modes and

training sessions were based on the mean-POM, mean-PVM and

mean-PKM, which were computed by averaging the correspond-

ing ensemble values across all the intervals in the same control

mode.

Principal Component Analysis
Principal component analysis (PCA) is a standard technique for

discovering the dimensionality of a data set and decomposing it

into uncorrelated components [27,28]. The sequences of spike-

counts from Nn neurons is transformed linearly (with unit norm

weight vectors) into Nn principal components, which are un-

correlated with each other and have extreme variance values.

Since the principal components in this application are weighted

sums of the recorded spike-counts they may be referred to as

‘‘principal-neurons’’.

Specifically, we computed the Nn6Nn sample-correlation matrix

of the normalized spike-counts of the Nn neurons, whose i-j

element is the sample-correlation between the normalized spike-

counts Ni and Nj of the i-th and j-th neurons, recorded during the

relevant part of the experiment. The variance of the principal-

neurons was determined by the eigen-values l1§l2§ � � �§lNn
of

the sample-correlation matrix. In particular, l1 is the maximum

variance of any weighted-combination of the recorded spike-

counts with a unit norm weight vector. The normalized eigen-

value l̂i~
li

PNn

j~1

lj

describes the fraction of the variance in the

original data that is captured by the i-th principal-neuron.

Expressed as a percentage, it defines the percent of the total

variance in the neural ensemble carried by the i-th principal-

neuron.

RESULTS
The neural activity of most of the cortical neurons was more

variable during brain control than during pole control. Generally,

rate variability was higher than would be predicted by a homoge-

neous Poisson process, as indicated by variance that exceeded the

mean (Figure 2, top panels). The variance of the binned spike-

count (in 100-ms bins) exceeded the mean spike-count for most of

the Nn = 183 neurons recorded in this session, (83%, 88% and 92%

during pole control, BCWH and BCWOH, respectively). This

excess variability was also evident in the ratio of the variance to the

mean (the Fano factor), which was found to be mostly above 1.0

(Figure 2, bottom panels). Most importantly, the transition to brain

control resulted in even higher excess variability and larger Fano

factor for most of the neurons (78% and 87% of the recorded

cortical neurons during BCWH and BCWOH, respectively) as

evident from the scatter plots of Figure 2.

Percent Overall Modulation
The percent overall modulation (POM), defined in Equation (1),

represents the percentage of the variance of the binned spike-count

that is attributed to rate modulations (Figure 1, Methods). The pie-

plots in Figure 3 illustrate the distribution of the variance in

the spike-counts recorded from two M1 neurons in different

control modes, based on the POM computed using Equation (2)

(Methods). During pole control (Figure 3, top pies), rate

modulations accounted for only 7% for the typical neuron

depicted on the right and 36% for a highly modulated neuron

depicted on the left. The contribution of rate-modulations to the

variance of the neural activity was more significant in brain control

with and without hand movements, accounting, respectively, for

13% and 34% of the variance for the typical neuron (Figure 3,

right middle and bottom pies) and 37% and 58% for the highly

modulated neuron (Figure 3, left middle and bottom pies). These

examples indicate that POM was higher in brain control than in

pole control.

Figure 4 demonstrates the same trend for all the significantly

modulated neurons. Insignificantly modulated neurons, i.e.,

neurons with little or no rate modulation in all the control modes

(Methods), were considered irrelevant for task performance, and

were excluded from further analysis. During the session analyzed

in Figure 4, 87% of the 183 recorded neurons exhibited significant

modulations in at least one control mode. Most of the significantly

modulated neurons exhibited higher POM during brain control

than during pole control, as evident in the top panels of Figure 4

(78% and 91% of the significantly modulated neurons in BCWH

and BCWOH, respectively, Table 1). For few neurons the

estimated POM during pole control was even negative (possibly

due to the finite length of the spike-train, see Methods) and

became positive only during BCWH or BCWOH. Thus, the top

panels in Figure 4 depict the changes in the firing rate statistics

expressed in Figure 2 in terms of the POM.

The distributions of the POM of the significantly modulated

neurons during brain control (BCWH and BCWOH) differed

significantly from the distribution of the POM during pole control

(Wilcoxon rank sum test, p = 1.2% and p = 10210% for BCWH

Cortical Modulations with BMI
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and BCWOH, respectively) as shown in the bottom left panel of

Figure 4. The mean POM (6std) in the different modes were

8.8%610.7%, 12.2%611.7%, and 18.8%614.4% for pole

control, BCWH, and BCWOH, respectively. The corresponding

distributions for M1 and PMd neurons are shown in the right

bottom panels of Figure 4.

Variations in POM during that session are shown in Figure 5 for

the ensemble-mean (top left) and for a typical PMd neuron (top

right). The ensemble-POM is the average POM over all the

significantly modulated neurons (Methods). The figure indicates

that the ensemble-POM remained relatively stable in each mode of

operation, but changed abruptly after the transition to brain

control and especially after the transition to brain control without

hand movements.

POM and firing rate statistics
The underlying changes in the spike-count statistics (bottom panels

of Figure 5) indicate that the ensemble-POM increased mainly due

to an increase in the variance of the spike-count, which was not

Figure 3. Percent Overall Modulation (POM) in pole control, BCWH
and BCWOH for two representative M1 units.
doi:10.1371/journal.pone.0000619.g003

Figure 4. Percent Overall Modulation (POM) for Nsig = 160 signifi-
cantly modulated units recorded in the same session analyzed in
Figure 2. Top: Scatter plot of POM in brain versus pole control. Bottom:
distribution of POM of all significantly modulated units (left) and those
in M1 (right upper, Nsig = 56) and PMd (right lower, Nsig = 55).
doi:10.1371/journal.pone.0000619.g004

Figure 2. Firing rate statistics for Nn = 183 units recorded in one session. Mean-variance relationship computed based on 100-ms bins (top panels);
and scatter plots of Fano factor in brain versus pole control (bottom panels). BCWH–Brain control with hand movements, BCWOH–Brain control
without hand movements.
doi:10.1371/journal.pone.0000619.g002
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matched by the change in the mean spike-count. Indeed, most of

the neurons (78%) whose POM was higher in BCWH than in pole

control, exhibited also a larger variance, especially neurons in

PMd (92%) and M1 (94%), as summarized in Table 1.

The transition from BCWH to BCWOH resulted in further

increase in POM for most of the significantly modulated neurons

(87%). This increase resulted from a combination of increasing

variance and decreasing mean rate. Increasing POM from BCWH

to BCWOH was usually associated with increasing variance,

especially for PMd neurons (85%, Table 1), as shown for a typical

PMd neuron in Figure 5 (bottom right). Furthermore, considering

the overall transition from pole control to BCWOH, increasing

POM was associated with increasing variance for most of the

neurons (72%); especially among PMd (98%) and M1 (74%)

neurons (Table 1). Thus, the overall increase in POM from pole

control to BCWOH is attributed mainly to increasing variance.

Direct transition from pole control to BCWOH was tested in

later sessions in which the joystick was removed immediately after

the pole control epoch. The changes in the POM and the firing

rate statistics during such a session are depicted in Figure 6. The

large increase in the POM after the transition to BCWOH (top

panels, ensemble average–left, a typical PMd neuron–right) is

related mainly to increasing variance (bottom panels, respectively).

Indeed, most (75%) of the neurons whose POM was higher in

BCWOH than in pole control, exhibited also a larger variance,

especially neurons in PMd (93%), and M1 (72%) (Table 1).

POM in different cortical areas
The mean-POM, computed as the mean of the ensemble-POM

across each control mode (Methods), was higher in brain control

than in pole control for all cortical areas examined from both

monkeys (Figure 7, Table 2). The standard deviation of the

ensemble-POM during each control mode is marked by an error

bar (reflecting variations in the ensemble-POM across time). The

change in the mean-POM from pole control to either BCWH or

BCWOH was higher than the respective standard deviations in

most of the recorded cortical areas (except for the limited group of

SMA neurons).

Variance distribution in principal neurons
The POM analysis decomposed the variance of the spike-counts of

individual neurons into the variance associated with rate

Table 1. Number of neurons with increasing POM (POMinc)
and increasing variance (Varinc), during the sessions depicted
in Figure 4, and 5, out of the Nsig significantly modulate
neurons.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Transition All PMd M1 S1 SMA

Figure 4, 5

Nn = 183 Nsig 160(*) 55 56 33 13

Pole R BCWH POMinc 125 48 35 28 12

% of Nsig 78% 87% 62% 85% 92%

Varinc 97 44 33 16 4

% of POMinc 78% 92% 94% 57% 33%

BCWH R BCWOH POMinc 139 46 51 31 8

% of Nsig 87% 84% 91% 94% 62%

Varinc 72 39 23 3 7

% of POMinc 51% 85% 45% 10% 87%

Pole R BCWOH POMinc 145 51 50 32 10

% of Nsig 91% 93% 89% 97% 77%

Varinc 104 50 37 12 5

% of POMinc 72% 98% 74% 37% 50%

Figure 6

Nn = 185 Nsig 169(*) 59 56 36 15

Pole R BCWOH POMinc 155 56 50 35 11

% of Nsig 92% 95% 89% 97% 73%

Varinc 116 52 36 23 4

% of POMinc 75% 93% 72% 66% 36%

(*) Including neurons in ipsilateral M1, which are too few to analyze as a group.
doi:10.1371/journal.pone.0000619.t001..
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Figure 5. Variations in POM (top) and spike-count statistics (bottom)
during the same experimental session analyzed in Figure 4
(ensemble-average–left panels; single PMd unit–right panels). The
POM and spike-count statistics were computed in 2-minute non-
overlapping intervals and averaged across all the Nsig = 160 significantly
modulated neurons to obtain the ensemble-average.
doi:10.1371/journal.pone.0000619.g005

Figure 6. Variations in POM (top) and spike-count statistics (bottom)
during an experimental session with direct transition form pole
control to BCWOH (ensemble-average–left panels; single PMd unit–
right panels). The POM and spike-count statistics were computed in 2-
minute non-overlapping intervals and averaged across all the Nsig = 169
significantly modulated neurons to obtain the ensemble-average.
doi:10.1371/journal.pone.0000619.g006
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modulations and the variance associated with neural noise

(Figure 3). At the ensemble level, principal component analysis

(PCA, Methods) was used to decompose the total variance of the

neural activity into uncorrelated principal components, or

‘‘principal neurons’’. Figure 8 depicts the percent variance carried

by the different principal neurons during the same session

analyzed in Figures 4, 5 and 7. The percent variance dropped

sharply for the first few principal neurons and remained relatively

constant thereafter. In an ideal case, when the noise is generated

from independent identically distributed random processes, the

percent variance of the background noise is constant. Thus, the

relatively constant variance level beyond the initial 5–15 principal

neurons can be attributed mainly to the neural noise. In contrast,

the excess variance of the initial principal neurons above the

background level reflects correlated activity among the different

neurons and can be attributed mainly to rate-modulations by

common modulating signals.

The decomposition of the variance of the ensemble activity into

principal neurons extends the single-neuron based POM analysis,

and suggests that the modulating signals responsible for the POM

were highly correlated. Indeed, the accumulated excess variance in

the initial principal neurons (Figure 8) was comparable to the

average POM indicated in Figure 5, and small compared with the

accumulated variance of the background noise level. Furthermore,

as seen from Figure 8, the variance of the first principal neuron,

i.e., the maximum variance of any weighted sum of the neural

activity (with unit norm weight vector), was higher during brain

control than during pole control. This indicates that the variance

of the modulating signals, which contributed to correlated neural

activity, was higher during brain control than during pole control.

Percent velocity modulation
The contribution of the velocity of movement (both the velocity-

vector and the speed) to the variability in the neural activity, was

evaluated using the regression between the spike counts in 100-ms

Figure 7. Mean-POM of the Nsig significantly modulated units in
different cortical regions during different control modes in a single
session with each monkey. Full bars mark the mean values across all the
2-minute intervals in the same control mode, and error bars represent the
standard deviation. M1–primary motor cortex, PMd–dorsal premotor
cortex, S1–primary somatosensory cortex, SMA–supplementary motor
area, PP–Posterior Parietal Cortex (medial intraparietal).
doi:10.1371/journal.pone.0000619.g007

Table 2. Mean-POM and Mean-PVM of neurons in different brain regions during each control mode. The standard deviations reflect
variations in the ensemble-statistics across time.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Mean6std PMd M1 S1 SMA PP

Monkey #1 #1 #1 #1 #2

Nsig 55 56 33 13 62

POM (%) Fig 7 Pole 2.960.9 17.560.7 5.761.0 6.662.3 21.561.0

BCWH 7.561.1 20.061.1 8.760.9 10.162.7 25.763.3

BCWOH 12.060.7 30.161.6 15.561.5 10.762.9 27.662.9

PVM (%) Fig 10 Pole 1.260.2 7.260.5 3.760.7 4.361.4 7.360.6

BCWH 2.360.3 6.460.5 3.360.5 4.260.9 9.862.6

BCWOH 2.160.3 5.161.1 2.761.0 2.460.4 6.963.6

PKM (%) Pole 1.360.2 8.060.7 4.260.8 4.461.3 7.260.6

BCWH 2.660.4 7.160.5 3.960.5 4.360.9 9.262.6

BCWOH 2.460.3 5.861.2 3.261.1 2.660.5 7.263.8

doi:10.1371/journal.pone.0000619.t002..
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Figure 8. Percent variance carried by the different principal neurons
during the same session analyzed in Figure 5. The analysis
decomposed the variance carried by the ensemble of the significantly
modulated neurons recorded from all brain regions. Inset: zoomed-in
version of the same plot for the initial 20 principle neurons.
doi:10.1371/journal.pone.0000619.g008
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bins and the velocity profile during the surrounding 1900-ms

window (Methods, Equation (5)). Spike trains evoked during pole

control were related to the hand velocity, while spike trains evoked

during BCWOH were related to the cursor velocity. The analysis

for BCWH accounted for the correlation with both the hand and

cursor velocities. The coefficient of determination, R2, of the

regression quantifies the fraction of variance in binned spike-

counts that is attributed to the velocity profile. Expressed as

a percentage, the coefficient of determination is referred to as the

percent velocity-related modulation (PVM, Methods).

We also extended the analysis to include all the kinematics

variables, i.e., the time course of the position (which implicitly

includes the time course of the velocity and acceleration), speed

and magnitude of the acceleration, in the surrounding 1900-ms

window, as described by Equation (6) (Methods). The resulting

coefficient of determination was expressed as a percentage and

referred to as percent kinematics modulation (PKM, see Methods).

Overall, the results for the PKM were similar to the PVM, and are

stated only briefly for completeness.

PVM was significantly correlated with POM (p,10210), as

shown in Figure 9, with coefficients of correlation of 0.72, 0.68 and

0.79 for pole control, BCWH and BCWOH, respectively (0.72,

0.71 and 0.81, respectively for PKM versus POM). This strong

correlation implies that the activity of cortical neurons, which

exhibited larger rate modulations, was, in general, better

correlated with the velocity profile, and can thus contribute more

to its prediction. In contrast, there was no significant correlation

between POM, or the increase in POM, and the magnitude of the

decoding weights used in the BMI filter.

While PVM was strongly correlated with POM, the slope of

the linear relationship was only 0.31, 0.21 and 0.12, for pole control,

BCWH and BCWOH, respectively (0.35, 0.23 and 0.14, respec-

tively for PKM versus POM). The smaller than unit slopes indicate

that only a small fraction of the modulations was correlated with the

velocity profile. Most importantly, the slopes of the PVM-POM or

PKM-POM relationships were smaller in brain control compared to

pole control. This suggests that modulating signals, which were not

correlated with the kinematics of the movement, had a larger effect

on the POM during brain control than during pole control.

The mean-PVM in most cortical regions did not increase

significantly after switching to brain control, as indicated in

Figure 10. Thus the mean-PVM did not follow the significant and

large increase in the mean-POM shown in Figure 7. While the

mean-POM of M1 neurons, for example, increased from

17.560.7% in pole control to 20.061.1% in BCWH and

30.161.6 in BCWOH, the mean-PVM decreased from

7.260.5% to 6.460.5% and 5.161.1% (Table 2). The mean-

PKM (Table 2) was at the most 0.8% higher than the mean-PVM,

and decreased from 8.060.7% for M1 neurons during pole control

to 7.160.5% and 5.861.2%, during BCWH and BCWOH,

respectively. Since the increase in POM was not matched by

increasing PVM or PKM, the higher neuronal rate modulations

observed during brain control cannot be explained only by

increased modulations due to the kinematics of the movement.

Effect of training
In all the experimental sessions, with both monkeys, the POM was

always higher in brain control than in pole control, as

demonstrated in Figure 11 (top panel). Furthermore, in all the

control modes, the POM decreased gradually with training. These

trends were statistically significant in pole control and BCWH

(p,0.05). In contrast, the mean-PVM remained approximately the

same, and even increased, with training (Figure 11, middle panel).

The difference between the two, i.e., POM minus PVM, is depicted

in the bottom panel of Figure 11, and exhibited statistically

significant decreasing trends in all the control modes (p,0.02).

Similar results were obtained when considering the mean-PKM,

which accounts for modulations by the kinematics of the

movement. Thus, the changes in POM during BMI training seem

to reflect mainly changes in untagged modulations not correlated

with the kinematics of the movement.

Figure 9. Correlation between PVM and POM for all the Nsig = 160
significantly modulated neurons recorded in one session. Coloured
dashed lines mark the linear regression lines. Black dashed lines mark
the diagonal unit-slope lines.
doi:10.1371/journal.pone.0000619.g009

Figure 10. Mean-PVM of the Nsig significantly modulated units in
different cortical regions during different control modes in the same
sessions as Figure 7. Full bars mark the mean values across all the 2-
minute intervals in the same control mode, and error bars represent the
standard deviation. M1–primary motor cortex, PMd–dorsal premotor
cortex, S1–primary somatosensory cortex, SMA–supplementary motor
area, PP–posterior parietal cortex (medial intraparietal).
doi:10.1371/journal.pone.0000619.g010
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The observed trends in the mean-POM and in the percent

untagged modulations mirrored the trend in task performance [7].

Behavioral performance, quantified by either the time to reach the

target or the success-rate, deteriorated after switching to brain

control, but improved gradually with training. Thus, in general,

the POM and the percent untagged modulations increased as the

behavioral performance degraded and decreased as the behavioral

performance improved.

DISCUSSION
Our analyses indicate that cortical neurons that are used to control

a BMI modulate their activity more intensely during brain control

than during pole control. The enhanced modulations were evident

in increased variability of the binned spike-counts beyond the level

expected from homogeneous Poisson processes. We quantified this

excess variability using the POM, which described the overall

contribution of modulating signals to the variance of the binned

spike-counts of individual neurons. The method for estimating the

POM was based on the assumption that the spike trains were

realizations of inhomogeneous Poisson processes. Nevertheless, we

showed that the analysis is relevant for a broader class of spike-

trains with signal dependent additive noise. Thus, the observed

changes in the estimated-POM are indicative of changes in the

percent variance attributed to overall modulations in the un-

derlying rate under a wide range of assumptions.

The excess variance attributed to rate modulations was also

quantified using principal component analysis (PCA). The accumu-

lated excess variance in the initial principal neurons, above the

background noise level, was similar to the average POM.

Furthermore, the variance of the 1st principal neuron, which

represented the variance of the most correlated linear-component of

the neural activity, was higher in brain control than in pole control.

Thus, the PCA indicated that the neural activity during brain control

included a larger component of correlated activity compared to pole

control, in support of the conclusions from the POM analysis.

We also evaluated the percent variance of the binned spike-

counts that can be attributed to velocity or kinematics modula-

tions, and defined it as the PVM or PKM, respectively. Comparing

the changes in POM with the changes in PVM or PKM revealed

that the enhanced modulations cannot be attributed solely to

velocity or even kinematics modulations. Furthermore, as training

progressed, and the monkeys became more proficient in operating

the pole and the BMI, the POM decreased while the PVM and

PKM remained relatively constant. The observed trend in POM

during BMI operation paralleled the effect on behavioral

performance, which degraded during initial BMI operation and

improved with subsequent training.

The firing rate modulations were especially strong when the

monkeys controlled the cursor without moving their arms,

although the neural signals that would be related to the movement

of the arm were irrelevant in that mode. The exact source of these

extra firing modulations cannot be assessed using the current BMI

experiments, since only the movement kinematics was measured

directly. However, the results motivate some hypotheses, as

detailed below, which would be explored in future investigations.

The observed enhancement in neuronal rate-modulations may

result from internal representation and processing of prediction-

and execution-errors, which intensify when starting to operate the

BMI and weaken gradually with subsequent training. Prediction-

and execution-errors [29,30] are prevalent in novel behavioural

contexts, possibly due to lack of appropriate kinematics or

dynamic internal models [31–36]. The motor system may correct

the execution-errors on-line using feedback control [37,38] or

initiate explorative activity to learn the new environment. Thus,

the enhanced activity in different cortical areas may reflect the

larger prediction and execution errors during initial BMI

operation, and the resulting feedback and/or explorative activity.

During the BMI experiments, the internal models are expected

to adapt to improve BMI operation and capture its input/output

relationship. This may explain the changes in the tuning curves of

the recorded neurons [6,17], and the improvement in task

performance with training [7]. Regardless of the nature of the

adaptation mechanism, the improved task performance implies

that execution errors diminished with training. Thus, our

hypothesis is supported by the observed reduction in POM with

training, despite the relatively invariant PVM.

Our hypothesis can also explain the relatively moderate increase

in POM when switching to BCWH, compared with the higher

increase when switching to BCWOH. During BCWH, both the

visual and proprioceptive feedbacks were relevant but provided

conflicting error signals: the visual feedback indicated that the cursor

was deviating from the desired trajectory, while the proprioceptive

feedback indicated that the arm was following the desired trajectory.

Under these conflicting error signals, the response would be

attenuated and result in only moderately higher POM. During

BCWOH, only the visual feedback was relevant and could trigger

a full response, and thus an even higher POM.

Different cortical areas, including the ones studied here, have

been shown to be involved in the different computational aspects

of sensorimotor adaptation. Studies of prism adaptation demon-

strated that the dorsal premotor area (PMd) plays an important

role in on-line error corrections [39,40,41]. Remapping, which

facilitates adaptation, seems to occur in the posterior parietal (PP)

cortex [39]. The primary motor area (M1) is involved in both

motor performance and the acquisition of new motor skills

[42,43,44]. The supplementary motor area (SMA) is strongly

Figure 11. Effect of training: percent overall modulation POM,
percent velocity modulation PVM and percent untagged modulation
PUM of the Nsig significantly modulated neurons during all the 10
BMI sessions with monkey #1. Nsig = 156, 130, 142, 142, 150, 140, 160,
166, 174 and 165. Initial sessions included BCWH while later sessions
included only BCWOH.
doi:10.1371/journal.pone.0000619.g011
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involved in motor planning but is also involved in motor execution

and seems to represent mainly the dynamics of the movement [45].

Our results are consistent with the reported role of the different

cortical areas in on-line error-correction. In line with the role of

PMd neurons in error correction, the increased execution error

during initial BMI operation should increase the modulation of

their activity. Indeed our results indicate that the POM of PMd

neurons was significantly higher during brain control than during

pole control (Figure 5 and Figure 6 right columns, Figure 7). Thus,

the increased modulations of PMd neurons may reflect the

corrective response of an internal feedback controller. Increased

modulations in PMd are expected to result in increased

modulations in M1, in agreement with the observed change in

the POM of M1 neurons. Additionally, the increased modulations

in S1 neurons may result from proprioceptive prediction errors.

Depending on the nature of the motor response, the enhanced

neural modulations may encode only the magnitude or also the

direction of the errors. Explorative activity might be generated based

solely on the magnitude of the prediction or execution error. In

contrast, feedback-corrections require also the representation of the

direction of the error. In either case the enhanced modulations are

expected to carry viable information during initial BMI operation

that could be used for its improvement. Future experiments would be

directed at exploring whether and how the enhanced modulations

are tuned to prediction and execution errors.

Our hypothesis suggests that long-term use of a BMI would lead

to its incorporation into internal models that would facilitate the

accurate operation of the external actuator as if it was a natural

limb. Exploring the nature of the enhanced modulations would

facilitate the development of efficient BMIs and would provide

further insight into the mechanism of adaptive skill acquisition.

SUPPORTING INFORMATION

Text S1 Variance analysis: variance relationship in signal

dependent additive noise

Found at: doi:10.1371/journal.pone.0000619.s001 (0.03 MB

DOC)
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