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In patients with Huntington’s disease (HD), the proteolytic activity of the ubiquitin proteasome system (UPS) is reduced in the
brain and other tissues. The pathological hallmark of HD is the intraneuronal nuclear protein aggregates of mutant huntingtin.
We determined how to enhance UPS function and influence catalytic protein degradation and cell survival in HD. Proteasome
activators involved in either the ubiquitinated or the non-ubiquitinated proteolysis were overexpressed in HD patients’ skin
fibroblasts or mutant huntingtin-expressing striatal neurons. Following compromise of the UPS, overexpression of the
proteasome activator subunit PA28c, but not subunit S5a, recovered proteasome function in the HD cells. PA28c also improved
cell viability in mutant huntingtin-expressing striatal neurons exposed to pathological stressors, such as the excitotoxin
quinolinic acid and the reversible proteasome inhibitor MG132. These results demonstrate the specific functional
enhancements of the UPS that can provide neuroprotection in HD cells.
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INTRODUCTION
Huntington’s disease (HD) is an adult onset autosomal domi-

nant inherited disease, characterized clinically by a progressive

movement and psychiatric disorder. Neuropathologically, HD is

associated with neuronal dysfunction and cell death, especially in

the caudate-putamen (striatum) region of the brain [1]. HD is

caused by mutations increasing the number of CAG repeats in

exon 1 of the huntingtin gene (IT15), which is expressed in most

cells of the human body [2]. A hallmark of the disease

neuropathology is intracellular ubiquitin positive nuclear inclusion

bodies of mutated huntingtin [3–6]. One potential cause for such

abnormal protein aggregation is dysfunction or overloading of the

ubiquitin-proteasome system (UPS), which is essential for the

clearance of short-lived, mislocated, misfolded, mutated, and

damaged proteins in eukaryotic cells [7,8].

Previously, we discovered that proteasome activities are

inhibited in striatum, frontal cortex, cerebellum and substantia

nigra of HD patients’ brain, and also in non-brain cells such as

their skin fibroblasts [9]. In HD patients, we also found increased

ubiquitin expression levels, and confirmed decreased mitochon-

drial complex II–III (MCII–III) enzyme activities in the caudate

putamen region of the brain, and decreased brain derived

neurotrophic factor (BDNF) protein levels in several brain regions

of HD patients [9]. These data indicated that UPS dysfunction

may precipitate the critical pathology of the vulnerable medium

sized spiny neurons in the striatum [9]. It is therefore of interest

therapeutically to study whether improved UPS function can

reduce the abnormal protein degradation and increase cell survival

in HD.

How does the UPS degrade abnormal proteins? The UPS is

a large multisubunit protease assembly, where protein substrates

are enzymatically processed at the catalytic sites of the central

core chamber of the 20S proteasome [10,11]. Corresponding to

the function of the different subunits of the catalytic core,

the activities of the 20S proteasome include (1) chymotrypsin-

like (after hydrophobic residues), (2) trypsin-like (after basic

residues), or (3) peptidyl-glutamyl preferring hydrolytic

(PGPH, after basic residues) activities [12,13]. When the amounts

of intracellular abnormal proteins are increased, this catalytic

core can assemble with proteasome activators (PA). There are

two types of PA: PA28 subunits for non-ubiquitinated and

PA700 subunits for ubiquitinated proteolysis, which can facili-

tate protein substrate entry and activation of proteasome func-

tion [14,15]. In this report, we first describe the effect of the

mutant huntingtin protein on UPS function in different HD

relevant cellular systems, and then demonstrate that gene transfer

of the PA subunits of the UPS can enhance abnormal protein

degradation leading to improved function and survival of cells in

HD.

RESULTS

Experimental strategy for the modification of the

UPS in HD model cells
Since HD patients predominantly show selective cell death for

medium-sized spiny neurons in caudate-putamen (striatum) in late

disease stages, but not in other tissues such as skin fibroblasts, it is

interesting to compare the effects of proteasome activators in

HD fibroblasts with HD model striatal neurons. For the HD in

vitro model systems, we chose HD patients’ skin fibroblasts

Academic Editor: Mark Cookson, Laboratory of Neurogenetics, National Institutes
of Health, United States of America

Received November 29, 2006; Accepted January 24, 2007; Published February
28, 2007

Copyright: � 2007 Seo et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author
and source are credited.

Funding: This work was primarily supported by NIH NS-30064 (to OI), the
Vaughan Foundation (to OI), and in part by a KRF Grant funded by the Korean
Government (MOEHRD) (KRF-2005-202-C00230) (to HS), Hanyang University (HY-
2005) (to HS) and BK21 fellowship (to WK).

Competing Interests: The authors have declared that no competing interests
exist.

* To whom correspondence should be addressed. E-mail: hseo@hanyang.ac.kr
(HS); isacson@hms.harvard.edu (OI)

PLoS ONE | www.plosone.org 1 February 2007 | Issue 2 | e238



[9], which show UPS dysfunction but are not vulnerable to the

disease process. For modeling the most vulnerable cell type in

HD, we used rat embryo derived striatal neurons with inducible

mutant huntingtin expression [16]. These huntingtin-inducible

striatal neurons expressed mutant huntingtin based on the

Tet-ON-system [16] representing an early stage of targeted

vulnerable cells in HD. By comparing wild type with mutant

huntingtin overexpressing striatal neurons, we addressed the

question of the consequences of altered proteasome function.

Finally, we overexpressed proteasome activators in the HD model

cells using lentiviral gene transfer (Figure 1A), and determined

UPS function and cell viabilities after exposure to HD relevant

toxins.

Overexpression of PA28c but not S5a can up-

regulate proteasome activities in normal control

and HD patient skin fibroblasts
In a previous study, the overexpression of PA28a and b increased

chymotrypsin-like and PGPH activities in control, but not in HD

patient fibroblasts [9]. In contrast, overexpression of another

subunit, PA28c, was able to significantly increase chymotrypsin-

like and PGPH activities in both normal human control and HD

patients’ fibroblasts (Figure 1A and 1C). Nonetheless, the increase

of proteasome activities in HD patients’ fibroblasts was signifi-

cantly smaller than those seen in normal control fibroblasts after

PA28c gene-transfer (Figure 1B–1D). We next investigated the

overexpression of the S5a subunit of PA700, which is important

for the recruitment of ubiquitinated abnormal proteins into the

UPS [17,18] (see introduction). While lentiviral overexpression of

S5a increased chymotrypsin-like and PGPH activities in control

human skin fibroblasts, this did not occur in HD patient fibroblasts

(Figure 1E–1F). In fact, S5a expression increased trypsin-like

activity and marginally but significantly (p,0.05) reduced

chymotrypsin-like activity in HD fibroblasts. Notably, the effects

of the overexpression of PA28c and S5a had a larger impact on

chymotrypsin and PGPH-like activities than on trypsin activity in

both normal control and HD patients’ fibroblast cells (Figure 1B–

1G). In parallel experiments, gene-transfer of p58 (another subunit

for PA700) did not significantly alter proteasome activity in either

normal (109618% of control, p = 0.29) or HD patient fibroblasts

(112616% of control, p = 0.23).

Mutant huntingtin expressing striatal neurons show

reduced proteasome activities
To study UPS modification in the more vulnerable cells, such as

striatal neurons, we used inducible cell lines expressing the wild

type (26CAG, CTRL, control striatal neuron) or mutant N-terminal

548 amino acid fragment of huntingtin (105CAG, Htt, HD model

striatal neuron) [16]. As we showed in HD patients’ fibroblasts, we

also found that chymotrypsin-like, PGPH, and trypsin-like

proteasome activities were relatively decreasded in HD model

striatal neurons, compared to the control striatal neurons, at both

pre-differentiation (Seo and Isacson, unpublished data) and the

neuronal post-differentiation stage. Notably, control and HD

model striatal neurons showed significantly increased proteasome

activities [in control striatal neurons; chymotrypsin: 16166%

(p,0.05), PGPH-like: 14367% (p,0.05), trypsin: 13469%

(p,0.05); in HD striatal neurons; chymotrypsin: 12968%

(p,0.05), PGPH-like: 12367% (p,0.05), trypsin: 111610%

(p = 0.12)] compared to parental striatal cells (ST14A; without

exogenous huntingtin transfection). These results demonstrate that

overexpression of mutant huntingtin with expanded CAG repeats

produces a major UPS dysfunction in HD model striatal neurons

compared to control striatal neurons.

Overexpression of PA28c but not S5a increases

proteasome activities in wild type and mutant

huntingtin overexpressing striatal neurons
To provide functional and potentially therapeutic cellular

models, we next performed gene transfer of several proteasome

activator subunits including the PA28a, b and c subunits, for

the 20S proteasome, and the S5a and p58 subunits of PA700

for the 26S proteasome into the HD model striatal neurons.

After neuronal differentiation, we determined proteasome activ-

ities and also administered toxins that have been shown to elicit

HD-like pathology in control and HD model striatal neurons

(Figure 2).

Similar to the previous results in a systematic analysis in human

fibroblasts [9], the viral gene transduction of PA28a and b subunits

did not significantly alter the proteasome activities HD model

striatal neurons in this study (for example, chymotrypsin activity,

PA28a: 105612%, p = 0.11, PA28b: 115615%, p = 0.21),

compared to lenti-GFP transduction. The gene transduction of

PA p58 subunit also did not significantly alter the proteasome

activities in either control (112610% of control, p = 0.18) or HD

model striatal neurons (109612% of control, p = 0.15) compared

to lenti-GFP transduction. In contrast, PA28c subunit over-

expression produced a marked effect on proteasome activities

including trypsin-like, chymotrypsin-like and PGPH activities in

HD model striatal neurons (Figure 3A–3C). In addition, PA28c
overexpression slightly decreased huntingtin protein levels in HD

model striatal neurons after administration of doxycycline

(Figure 2B). In both control and HD model striatal neurons, S5a

overexpression caused only minor changes in the proteasome

activities tested, (Figure 3D–3F). In fact, S5a expression slightly

decreased chymotrypsin-like activity in HD model striatal neurons,

and PGPH activity in control striatal neurons. Nonetheless, S5a

slightly increased the trypsin-like activity in HD model striatal

neurons.

PA28c but not S5a improves cell survival of mutant

huntingtin expressing striatal neurons, which

showed increased vulnerability to

neuropathological toxins
We next evaluated if overexpression of PA28c and S5a lead to

improved cell function and increased cell survival in HD model

striatal neurons. We used three different HD relevant toxic stimuli:

MG132 (a reversible proteasome inhibitor), 3-NP (a mitochondrial

toxin) or QA (quinolinic acid, an excitotoxin). Cell viability of

differentiated control or HD model striatal neurons was examined

using the MTS assay, which reflects the number of viable cells

[19]. There was a dose-dependent toxicity for each toxin in control

and HD model striatal neurons. HD model striatal neurons (Htt,

105CAG) showed less cell viability after toxic exposure to MG132

(Figure 4A), 3-NP (data not shown) and QA (data not shown) than

control striatal neurons (CTRL, 26 CAG) in the same conditions.

Notably, PA28c expression significantly improved cell survival of

HD model striatal neurons (Htt, 105 CAG) compared to lenti-GFP

transduction after MG132 proteasome inhibitor treatment and

QA excitotoxicity (Figure 4A, 4B and 4D). However, PA28c
expression did not improve cell survival after mitochondrial toxin

HD Cell Survival by PA28c
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exposure (3-NP) (Figure 4C). Overexpression of the S5a subunit

did not enhance neuronal health in either control or HD model

striatal neurons (Figure 4E–4G). S5a exacerbated MG132 and QA

toxin effects, but did not alter the effects of 3-NP treatment

(Figure 4F). These data demonstrate that overexpression of the

proteasome activator subunit PA28c (but not S5a) can reduce HD

model neuronal cell damage (and death) associated with protea-

some dysfunction and excitotoxicity, but did not protect the

cellular dysfunction produced by direct mitochondrial complex II

toxicity.

Figure 1. Proteasome activities following lentiviral gene transfer of PA28c and S5a, in control and HD fibroblasts. (A) Expression levels of gene and
protein of S5a and PA28c were determined using RT-PCR and Western blot after viral gene transfer to HD fibroblasts (lane 1 and 3; lenti-GFP
transduced cells, lane 2; S5a transduced cells, and lane 4; PA28c transduced cells). (B–G) Proteasome activities were increased by lentiviral gene
transduction of PA28c. Chymotrypsin-like (B, E), PGPH (C, F) and trypsin-like (D, G) activities were detected in normal control (,36 CAG) and HD
patients’ skin fibroblasts, which overexpress PA28c (B–D) or S5a (E–G). The overexpression of PA28c increased chymotrypsin and PGPH-like, but not
trypsin proteasome activities in both normal control and HD fibroblasts compared to lenti-GFP transduction. Chymotrypsin activities and PGPH
activities were increased in control fibroblasts by overexpression of S5a. However, in HD patients’ fibroblasts, S5a did not increase PGPH activities and
slightly decreased chymotrypsin-like activities (1, p,0.05 between control and HD fibroblasts. *, p,0.05 between the gene transferred groups of
control protein GFP and PA28c or S5a). The experiments were repeated three times in triplicate.
doi:10.1371/journal.pone.0000238.g001
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DISCUSSION
In this study, we performed viral gene transduction of proteasome

activator (PA) subunits (a, b, c for PA28 and S5a and p58 for

PA700) to HD patients’ and control fibroblasts and to control and

HD model striatal neurons, to determine the functionality of the

UPS and potential therapeutics for this disease. HD model striatal

neurons with mutant huntingtin expression (105 CAG) showed

reduced proteasome activity and increased vulnerability to

proteasome inhibition, mitochondrial complex II inhibition, and

QA excitotoxicity compared to control striatal neurons expressing

wild type huntingtin (26 CAG). Specifically, PA28c enhanced

proteasome activities and improved cell survival after proteasome

inhibition (by MG132) and QA excitotoxicity, but not after

mitochondrial inhibition (by 3-NP).

In a related study, using a conditional transgenic mouse model

of HD, neuronal inclusions and HD-like symptoms were reversed

when mutant huntingtin protein expression was blocked [20].

These data indicate that continuous expression of mutant

huntingtin is required for the expression of HD pathology [20].

Such clearance of mutant huntingtin in neuronal cultures in HD

mice depended on proteasome function given that the irreversible

proteasome inhibitor lactacystin prevented the resolution of the

protein aggregate [21]. Previous studies have also demonstrated

that UPS inhibition decreases cell viability [22], increase

polyglutamine aggregation in Spinocerebellar ataxia type 3/

Machado-Joseph disease (SCA3/MJD) in vitro, and alter cell

morphology [23]. Mutant huntingtin overexpressing neuroblasto-

ma cells with ubiquitin cotransfection showed increased protein

aggregates and apoptic cell death, suggesting ubiquitin involve-

ment in HD pathological cell death [6]. Overexpression of

ubiquitin E3-ligase (Siah1) increased the nuclear translocation of

mutant huntingtin and cytotoxicity, indicating that ubiquitin

ligation is also critical in HD pathology [24]. A shorter half-life of

huntingtin delayed aggregate formation, but increased cellular

toxicity [25]. Therefore it appears that cell toxicity in part is

caused by unprocessed mutant huntingtin protein with the

extended CAG repeats. These data imply that aggregate

formation itself may not be a direct cause for the cell death, but

a cellular defense mechanism. In our study, the mutant huntingtin

overexpressing HD model striatal neurons did not show protein

Figure 2. Lentiviral gene transfer of PA28c and S5a, in control and HD model striatal neurons. (A) Schematic experimental outline of gene transfer and
differentiation of striatal neurons followed by exposure to HD model experimental toxins. HD model striatal cells were gene engineered with PA28c,
S5a. After verification of expression for the transferred genes, cells were grown in medium containing 1mg/ml of doxycyclin for 48h before toxin
treatment. After 24 h incubation in the toxic environment, medium was collected for the MTS assay and cells were harvested for proteasome activity
determination. (B) Semiquantitative Western blot of the huntingtin showing a slight decrease of protein levels by lenti-viral transduction of PA28c
gene into HD model striatal cells. Results are shown as percentage of levels of lenti-GFP control group (* p,0.05).
doi:10.1371/journal.pone.0000238.g002

HD Cell Survival by PA28c
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aggregates even though they demonstrated UPS dysfunc-

tion, which is similar to HD patients in early disease stages (grade

0–1)[9]. These results indicate that the mutant huntingtin itself (in

the pre-aggregation stage) can produce significant proteasome

dysfunction in HD. Generally, cytosolic mutant proteins may be

toxic[26] to cells, and so they need to be processed by the UPS or

other pathways such as lysosomes and autophagy [27]. However,

when the absolute amount of cytosolic mutant protein reaches

a certain limit, protein aggregations occur and consequently form

nuclear inclusion bodies [5,28]. In this scenario, aggregates are not

harmful per se but just by-products in the cell. Consequently,

simple aggregation inhibition may not be a proper solution for

abnormal protein handling in neurodegenerative diseases

[9,29,30].

Previously, we found significant proteasome dysfunction in the

several brain regions and skin fibroblasts from HD patients [9].

However, there are likely multiple interferences by mutant

huntingtin that can precipitate HD pathology in vulnerable brain

regions [9]. Impaired metabolic mitochondrial complex II–III

(MC II–III) energy production is also involved in the vulnerability

of the neurons in caudate-putamen area of HD patients [9,31].

Ruan et al. also found that striatal cells from mutant huntingtin

knock-in mice are selectively vulnerable to MC II–III inhibition

[32]. BDNF levels are down regulated in several brain regions of

HD patients [9]. Finally, by excitotoxicity, the N-methyl-D-

aspartate (NMDA) receptor agonist quinolinic acid (QA) destroy

medium sized spiny neuron in very similar pattern to that seen in

human HD pathology [33–35].

PA28c overexpression in this study caused improved UPS

function as assessed by known proteolytic activities of the

proteasome in both HD fibroblasts and HD model striatal

neurons. Critically, such PA28c gene transduction reduced the

HD relevant toxicity produced by proteasome inhibitor (MG132),

and/or excessive glutamate receptor (QA) mediated activity.

However, no neuroprotection was observed after mitochondrial

complex inhibition (3-NP). One potential explanation for this

result is that PA28c is a non-ATP dependent regulator of the UPS

[36], and therefore less connected to alterations of mitochondrial

metabolism. Given that QA and NMDA induced cell death is

preceeded by large increases in misfolded and ubiquitinated

Figure 3. Proteasome activities following lentiviral gene transfer of PA28c and S5a, in control and HD model striatal neurons. (A–F) Chymotrypsin-like
(A, D), PGPH (B, E) and trypsin-like (C, F) activities were detected. Both wild type (CTRL, 26 CAG, control striatal neurons) and mutant huntingtin
overexpressing HD model striatal neurons (Htt, 105 CAG, HD model striatal neurons) [16] were transduced with PA28c or S5a. Basal proteasome
activities were decreased in HD model striatal neurons compared to control cells with normal range of CAG repeats. However, the overexpression of
PA28c increased proteasome activities in both control and HD model striatal neurons. The overexpression of S5a decreased chymotrypsin-like
activities in HD model striatal neurons and decreased PGPH activities in control striatal neurons. In contrast, total trypsin-like activities were slightly
increased in both control and HD model striatal neurons after the gene transfer of S5a (1, p,0.05 between control and HD striatal neurons. *, p,0.05
between the gene transferred groups of control protein GFP and PA28c or S5a). The experiments were repeated three times in triplicate.
doi:10.1371/journal.pone.0000238.g003

HD Cell Survival by PA28c

PLoS ONE | www.plosone.org 5 February 2007 | Issue 2 | e238



proteins [37,38], the observed neuroprotection against both

MG132 and QA is understandable. Whereas mitocondrial toxicity

decreases the threshold for NMDA mediated toxicity to increase

calcium influx to the cells [39–41], there is no evidence that

NMDA receptor impairs mitochondrial function. The conse-

quence of such analysis is that PA28c could contribute to

reductions in both excitotoxicity and protein toxicity whereas

protection against the mitochondrial dysfunction would require an

additional type of intervention. Proteasome activators of the UPS

modulate different proteolytic enzyme activities by several

mechanisms. This is due to the different alterations of protein

structure by which the PA28 and PA700 regulators bind to the

20S proteasome core to help peptide substrates reach the catalytic

core beta subunits. For example, PA28g and S5a are participating

in two different major protein degradation pathways in the UPS:

PA28g is involved in non-ubiquitinated protein degradation, while

S5a is associated with ubiquitinated protein degradation [42].

PA28g is predominantly located in the nucleus, while S5a exists in

the cytosol [42,43]. Curiously, in our experiment, S5a over-

expression decreased cell survival in the response to MG132 and

QA in HD model striatal neurons. Perhaps the overexpression of

S5a (one out of nine subunits complex of PA700) is not sufficient to

accomplish functional effects. Alternatively, it could be a stoichio-

metric problem, in which there is unbalanced competition to form

the 26S proteasome complex [7]. Yet another problem with excess

amounts of free S5a may be the inhibition of proteasome

degradation by sequestering polyubiqutinated substrates from

reaching the proteasome [17,44].

It was recently reported that genetic reduction of PA28c (also

denoted REGc) did not alter the pathological phenotype or

inclusion body formation in the striatum of R6/2 HD mice [45].

We think this absence of neuroprotection by PA28c compared to

our positive findings can be explained by differences of

experimental approaches and HD models used. For example,

R6/2 mice always show increased proteasome activities in the

striatum [46], which therefore does not model the UPS

dysfunction seen in HD patients’ brains and HD fibroblasts [9].

However, HD transgenic mice with full-size mutant huntingtin

expression (YAC72 transgenic mice) do show UPS inhibition

resembling that seen in HD patients [46]. This at least indicates

that R6/2 transgenic mice do not model mature HD pathology

due to abnormal protein processing in the UPS. Moreover, the

HD R6/2 transgenic mice also completely lack QA-induced

striatal excitotoxicity in modeling HD pathology [47]. Conse-

quently, the lack of additional HD pathology by knock out of

PA28c function during development of R6/2 mice [45] may not

represent a challenge to our findings of neuroprotective effects by

PA28c enhanced UPS function.

In summary, these results demonstrate a role of mutant

huntingtin in protein toxicity and specifically provide therapeutic

targets and candidates for gene transfer to enhance proteasome

function. Although proteasome dysfunction is probably only one of

multiple factors involved in the dynamic and progressive disease

process of HD [9], our data at least demonstrate that proteasome

activators are relevant candidates for future comprehensive and

effective treatment approaches to HD.

Figure 4. Experimental exposure of PA28c (A–D) or S5a (E–G) overexpressing control and HD model striatal neurons to toxin modeling
pathophysiological processes observed in HD. (A) MG132 treated control (CTRL, 26 CAG) and HD model striatal neurons (Htt, 105 CAG) transduced
with PA28c. Shown are cell viabilities after 24 hours of exposure to MG132. (B–G) The reversible proteasome inhibitor, MG132 (B, E); the
mitochondrial inhibitor, 3-NP (C, F); and the excitotoxin, QA (D, G) were used at various concentrations to treat control and HD model striatal neurons.
HD model striatal neurons showed significantly decreased the resistance to those neuropathological toxins compared to control striatal neurons.
PA28c significantly improved cell survival, and S5a significantly decreased cell survival after exposure to MG132 and QA, but not 3-NP, respectively (1,
p,0.05 between wild-type and mutant huntingtin overexpressing striatal neurons. *, p,0.05 between the gene transferred groups of control protein
GFP and PA28c or S5a). The experiments were repeated three times in triplicate.
doi:10.1371/journal.pone.0000238.g004
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MATERIALS AND METHODS

Experimental Design
In the experiments, we performed gene transfer of several

proteasome activator subunits including PA28a, b and c, for the

20S proteasome, and S5a and p58 subunits of the PA700 for the

26S proteasome into normal and HD patient’s skin fibroblasts,

and control and HD model striatal cells. After determination of

the expression of the transduced genes using RT-PCR and

Western blot (Figure 1A), cells were differentiated as previously

described [16] (Figure 2). Cell cultured medium was collected for

MTS cytotoxicity test and cells were harvested for proteasome

activity determination. In addition, we administered HD relevant

toxins at various concentrations for 24 hours for cytotoxicity study.

Construction of Lentiviral Vectors and Lentiviral

Transduction of proteasome activators, PA28c and

S5a
The lentivirus vector system used in our studies was kindly

provided by Drs R. Zufferey and D. Trono, University of Geneva,

Switzerland [48]. The PA28a, b, c p58 and S5a cDNAs were

kindly provided by Dr. Rechsteiner (University of Utah [14,43])

and Dr. Tanaka [42], and cloned into pRRL.cPPT.PGK.

GFP.W.Sin-18 (Lenti-eGFP) replacing the eGFP with the PA28c
or S5a genes. Fibroblasts and striatal cells were transduced with

Lenti-eGFP as a transduction control, PA28c or S5a at a multi-

plicity of infection (MOI) of 5 to 20 as previously described [9].

Cell Culture
Normal and HD human fibroblasts used in this study were

obtained from the Coriell Cell Repository ([9] GM08399,

GM04689, GM04732). Fibroblasts were cultured in minimum

essential medium (MEM; Gibco, Carlsbad, CA) supplemented

with 15% fetal bovine serum (Hyclone, Logan, UT), 2 mM L-

glutamine (Gibco), 0.1 mM nonessential amino acids (Gibco),

penicillin and streptomycin. Huntingtin inducible striatal cells

were cultured at 37uC and 33uC in DMEM, supplemented as

described previously [16,49]. The expression levels of huntingtin

protein were determined after administration of doxycycline

(1 mg/ml) for 24 hours using Western blot analysis (Figure 2B).

MG132 (Calbiochem), 3-NP (Sigma), QA (Sigma) were used at

the indicated concentrations in the cell cultures. After 24 hours of

treatment, medium was collected to determine cell viability by

a quantitative colorimetric assay, the modified MTS assay

(Promega). Harvested cells were lysed in 50 mM Tris pH8.0,

150 mM NaCl, 5 mM EDTA, 1% Triton X-100, 10 mg/mL

aprotinin, 25 mg/mL Leupeptin, 10 mg/mL Pepstatin, 1 mM

PMSF; all protease inhibitors purchased from Sigma). Homo-

genates were centrifuged at 14,0006 g for 30 min at 4uC. The

protein levels were determined using the Bio-Rad Protein Assay

(BIO-RAD, Hercules, CA). Samples containing equal amounts of

total protein were used for the determination of proteasome

activities and Western blots.

Reverse-transcriptase (RT) PCR for transfered gene

validation
RNA samples were extracted from harvested cells using Tri

Reagent (Sigma, St. Louis) and were reverse transcribed into

cDNA using the SuperscriptTM reverse transcriptase kit (Invitro-

gen, Carlsbad, CA) and oligo(dT)20 as primers. Reverse transcrip-

tase reaction were carried out at 50uC, for 50 min. Synthesized

cDNA template were amplified with forward primers for S5a (59-

ATCTATGGAAGAGCAGCGG-39) and PA28 c (59-GGGTA-

CAGCTCCTGATTCC-39) and the virus backbone reverse

primer, WPRE (59-AGCAGCGTATCCACATAGC-39). Human

b-actin primers (forward: 59-GGCGGCAACACCATGTACCCT

-39; reverse: 59-AGGGGCCGGACTCGTCATACT-39) were

used to determine cellular RNA expression level. PCR was

performed with G-Taq DNA polymerase (Labopass, Seoul, Korea)

with a denaturing step for 2 min at 94uC, followed by 40 cycles of

1min at 94uC, 1 min at 58uC, and 2 min at 72uC, and terminated

by an elongation step at 72uC for 7 min. PCR products were

visualized in 1% agarose gel electrophoresis.

Determination of proteasomal function
Using synthetic peptides, three different proteolytic activities were

measured to detect proteasome activities: (1) chymotrypsin-like

(after hydrophobic residue), (2) trypsin-like (after basic residues), or

(3) PGPH (after basic residues) activities [13]. These different

catalytic activities are due to the function of different subunits of

the catalytic core. In this study, proteasome function was

determined by continuously measuring the fluorescence of 7-

amido-4-methylcoumarin (AMC) (excitation 380 nm, emission

460 nm) generated from peptide-AMC linked substrates [50].

Reactions were conducted in a final volume of 200 ml containing

50 mM Tris-HCl buffer (pH 7.5) and 1 mM EDTA. After adding

samples to the reaction mixtures, reactions were initiated by the

following substrates: Suc-Leu-Leu-Val-Try-AMC (65 mM) for

chymotrypsin activity, Z-Leu-Leu-Glu-AMC (75 mM) for PGPH

activity and Boc-Leu-Arg-Arg-AMC (71 mM) for trypsin-like

activity. Reactions were followed for 240 min at 25uC and

enzymatic activities were expressed as fluorescence units (FU)/

min/mg protein.

Western blot
The protein expression levels were determined from the cell

extract using specific antibodies as previously described [9]: PA28c
(Calbiochem 1:2,500), S5a (Calbiochem, 1:1,000), huntingtin

(Chemicon, 1:5,000). Quantification of immunoreactive bands

was performed using densitometry. The results were confirmed by

duplicate measurements of the same samples.

Statistical analysis
All statistical analyses were carried out using JMP (version 3.1.6,

SAS Institute). Data were objectively compared between different

groups at different stages of disease using unpaired Student’s t test

and 2-way ANOVA followed by Turkey-Kramer posthoc analysis.
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