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Background. Genome-wide association studies hold substantial promise for identifying common genetic variants that
regulate susceptibility to complex diseases. However, for the detection of small genetic effects, single studies may be
underpowered. Power may be improved by combining genome-wide datasets with meta-analytic techniques. Methodology/

Principal Findings. Both single and two-stage genome-wide data may be combined and there are several possible strategies.
In the two-stage framework, we considered the options of (1) enhancement of replication data and (2) enhancement of first-
stage data, and then, we also considered (3) joint meta-analyses including all first-stage and second-stage data. These
strategies were examined empirically using data from two genome-wide association studies (three datasets) on Parkinson
disease. In the three strategies, we derived 12, 5, and 49 single nucleotide polymorphisms that show significant associations at
conventional levels of statistical significance. None of these remained significant after conservative adjustment for the number
of performed analyses in each strategy. However, some may warrant further consideration: 6 SNPs were identified with at least
2 of the 3 strategies and 3 SNPs [rs1000291 on chromosome 3, rs2241743 on chromosome 4 and rs3018626 on chromosome 11]
were identified with all 3 strategies and had no or minimal between-dataset heterogeneity (I2 = 0, 0 and 15%, respectively).
Analyses were primarily limited by the suboptimal overlap of tested polymorphisms across different datasets (e.g., only 31,192
shared polymorphisms between the two tier 1 datasets). Conclusions/Significance. Meta-analysis may be used to improve
the power and examine the between-dataset heterogeneity of genome-wide association studies. Prospective designs may be
most efficient, if they try to maximize the overlap of genotyping platforms and anticipate the combination of data across many
genome-wide association studies.
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INTRODUCTION
Genome-wide association analyses are increasingly used to identify

common genetic variants that determine susceptibility to disease

[1,2]. Several early successes have generated enthusiasm that such

hypothesis-free massive-testing methods may succeed [3], whereas

many years of candidate gene approaches have yielded limited,

and largely irreproducible postulated associations [4]. However,

there are still considerable difficulties in discovering common

genetic variants of interest. We already have examples where

findings initially highlighted by genome-wide approaches have not

been replicated by large-scale studies. This situation has arisen for

example in Parkinson’s disease, where 13 polymorphisms were

originally identified as being potentially important for determining

the risk of the disease in a two-tier genome-wide association study

[5]. Nevertheless, all 13 proposed associations were not replicated

by a large-scale effort involving over 12,000 subjects [6]. For most

common diseases, the main genetic effects are expected to be small

and therefore would require very large studies to capture [7].

Genome-wide association studies published to-date have had

mostly modest sample sizes, and even the ongoing efforts sponsored

by Wellcome Trust and the GAIN initiative [8,9] may still be

underpowered to detect odds ratios in the range of 1.0–1.3,

especially if the genetic variants of interest are not very common.

It is important to maximally exploit the available data from

genome-wide association studies and combine information from

different such studies performed on the same disease. In the

candidate gene era, a very large number of teams independently

pursued studies on specific candidate gene variants. While the

technical and financial requirements for genome-wide association

studies are more demanding, several such studies may still be

conducted by independent teams of investigators working on the

same disease. This creates a challenge and an opportunity to

combine these data with meta-analytic techniques. Meta-analysis

has already been accepted as a prime method for examining the

consistency, replication, and credibility of proposed genetic

associations [10,11]. However, to our knowledge, no meta-analysis

has yet been performed combining data from different genome-

wide association studies on the same disease. Here, we have

performed such a meta-analysis for Parkinson’s disease. We aimed

to explore the different meta-analytic strategies that can be

pursued and to dissect the limitations that arise in combining such

datasets with meta-analytic methods.
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METHODS

Databases
We used publicly available data from two genome-wide associa-

tion studies of Parkinson’s disease (PD). Maraganore et al. [5] used

a two-tiered genotyping approach (which will be referred as Mayo

tier 1 and Mayo tier 2 for simplicity). In Mayo tier 1, 443 case-

unaffected sibling pairs that were discordant for PD were included.

Genotyping used the Perlegen platform. For the 205,031 single

nucleotide polymorphisms (SNPs) that were polymorphic within

the study sample the Hardy-Weinberg equilibrium (HWE) p-value

was .0.001 in controls for 198,345 SNPs. The investigators

performed a liberalization of the sibling transmission/disequilib-

rium test (sTDT) to identify SNPs that had significant allele-

frequency differences in cases versus unaffected siblings, adjusted

for age and sex. For each SNP, odds ratios (ORs), 95% confidence

intervals (CIs) and p-values were calculated. There were 1,862

SNPs associated with PD in tier 1 at p,0.01.

In Mayo tier 2a, genotypes and analyses for the 1,862 SNPS

selected in tier 1 and for 311 genomic controls were measured in

332 case-unrelated control pairs. Genotyping call rates.80% and

HWE p-values.0.001 were achieved for 1,793 SNPs. In Mayo

tier 2b, 975 SNPs were selected for further testing with biological

or other reasoning (e.g. significant effects on subgroup analyses)

regarding susceptibility to PD. Of these, genotyping call

rates.80% and HWE p-values.0.001 in controls were achieved

for 941 SNPs and ORs, 95% CIs and p-values were calculated.

The study is described in more details elsewhere [5]. SNPs, alleles,

case and control allele frequencies, ORs, 95% CIs and p-values

are available online.

Fung et al. [12] performed a genome-wide association study

sponsored by National Institute of Neurological Disorders and

Stroke (NINDS) where genotyping was performed on 408,803

unique SNPs combining the Illumina Infinium I and Human-

Hap300 platforms. The investigators undertook a one-stage

genome-wide association study in 276 patients with PD and 276

neurologically normal controls. The samples used for this study

were derived from the NINDS Neurogenetics repository hosted by

the Coriell Institute for Medical research. For the 408,803 SNPs

studied, the genotype call rate was greater that 99% for 395,275

SNPs and greater that 95% for 406,312 SNPs. The HWE p value

was .0.001 for 395,493 SNPs. The study is described in more

details elsewhere [12]. Raw data are publicly available online at

the Coriell Institute website.

Genetic models and effect sizes
For consistency, all ORs were computed based on the major vs.

minor allele contrast, and assignment of minor allele status is based

on the allele frequencies of the control samples in the NINDS

study.

The Mayo data were originally analyzed using a log-additive

model with trend adjusted for age and sex. The OR and 95% CIs

from this model were used in order to calculate the natural

logarithms of the OR and the standard error of the natural

logarithm of the OR for each gene variant. The standard error is

given by the difference of the natural logarithms of the upper and

lower boundary of the 95% CI, divided by 3.92. Both Mayo tier 1

and tier 2 used matched designs.

The NINDS study examined various types of genetic contrasts

including recessive, dominant, and additive models (linear

additive, as opposed to log-additive used in the Mayo study) and

also provided raw data on alleles for each examined SNP. We

calculated the natural logarithm of the allele-based OR and the

standard error of the natural logarithm of the OR from the counts

of alleles given in cases and controls in the NINDS database. The

allele-based OR is practically equivalent to the log-additive model

with consideration of trend.

Meta-analysis: statistical methods
The natural logarithms of the OR estimates were combined to

estimate a summary OR using fixed [13] and random effects

models[14] using inverse variance calculations. In fixed effects

models, the true effect of risk allele is assumed to be the same value

in each dataset, whereas in random effects models the risk allele

effects for the individual datasets are assumed to vary around some

overall average effect. If var(f) is the variance of each effect (here,

natural logarithm of odds ratio) in a study and var(r) is the random

effects variance, then in fixed effects calculations, each study is

weighted by 1/var(f), while in random effects calculations each

study is weighted by 1/[var(f)+var(r)]. Therefore, random effects

approach is generally considered more conservative, yielding

wider confidence intervals. Between-dataset heterogeneity was

quantified using the I2 metric for inconsistency [15] and its

statistical significance was tested with the chi-square distributed Q

statistic [16]. I2 is provided by the ratio of (Q-df)/Q, where

df = the number of degrees of freedom (one less than the number

of combined datasets); it is considered large for values above 50%

and Q is considered statistically significant for p,0.10 [15,16]. In

the absence of any between-dataset heterogeneity, fixed and

random effects estimates coincide.

Meta-analysis strategies and multiplicity

considerations
We considered the following strategies for combining the available

datasets. In the two-stage framework, options included enhance-

ment of replication (second-stage) data and enhancement of first-

stage data. We also performed joint meta-analyses including all

first-stage and second-stage data.

Enhancement of replication data: In this strategy, the Mayo tier

1 are still considered as the first-stage information and the meta-

analysis of the Mayo tier 2 and NINDS datasets represent their

second-stage independent replication. The number of tested SNPs

for which adjustment needs to be made represents those SNPs that

have data available in both the Mayo tier 2 and NINDS datasets.

Enhancement of first-stage data: In this strategy, the data from

Mayo tier 1 and NINDS datasets were combined by meta-analysis,

and a new first-stage with increased power was created. The

summary effects derived in the new first-stage that were statistically

significant at p,0.05 level (at least by fixed effects) were then

examined for replication in the Mayo tier 2 dataset. The number

of tested SNPs for which adjustment needs to be made in the

enhanced first-stage data is the common SNPs in both Mayo tier 1

and NINDS datasets; in the replication sample (Mayo tier 2), it is

those SNPs that have p,0.05 at least by fixed effects in the

combined Mayo tier 1 and NINDS datasets and have also been

assessed in the Mayo tier 2 dataset.

Joint analysis: In this strategy, we jointly meta-analyzed all three

databases (Mayo tier 1, Mayo tier 2, NINDS) to obtain summary

effects. This strategy may be applied to all SNPs where data are

available in all three datasets; however, it is improper to adjust the

results for the number of common SNPs across all three databases,

because the selection of SNPs in the Mayo tier 2 dataset is not

random. This strategy combines eventually all three databases, but

as a first step the Mayo tier 1 and NINDS data are meta-analyzed,

and then only those SNPs that still have p,0.05 at least with fixed

effects are then considered for inclusion of the Mayo tier 2 data. If

x SNPs have p,0.05 based on Mayo tier 1 and NINDS combined,
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and y of them are also tested in Mayo tier 2, the p-value may be

adjusted for the number of SNPs that have data available in both

Mayo tier 1 and NINDS multiplied by the fraction x/y. This is

approximately correct, if the x SNPs can be considered a random

sample of the y SNPs, an assumption which we tested by

comparing the distribution of p-values in the x selected versus the

y-x non-selected SNPs according to a Wilcoxon rank-sum test

(p = 0.34).

All the above corrections for multiplicity of comparisons are

conservative and assume that the tested SNPs are independent,

while this is an oversimplification. However, they provide a starting

point for considering the extent of multiple comparisons involved.

Analyses were performed in STATA 8.2 (College Station, TX).

P-values are two-tailed. For SNPs that were selected by more than

one strategy and that pertained to a specific gene, we perused

Entrez Gene (paying attention to the Process listed in Gene

Ontology) and also queried PubMed using the gene name and

Parkinson’s disease, in order to identify if there is any hint of

biological plausibility or evidence relating these genes specifically

to Parkinson’s disease.

RESULTS

Strategy of enhancement of the replication data
A total of 572 SNPs had data available both in the Mayo tier 2 and

NINDS datasets (including 45 that were simply used as genomic

controls in Mayo tier 2 without being tested at the Mayo tier 1

dataset). Meta-analysis of the Mayo tier 2 and NINDS datasets

showed that 38 SNPs were significant at p,0.05 with fixed effects

and 26 remained significant at p,0.05 using random effect models

(Table 1). Fourteen out of these 26 SNPs were also significant at

p,0.01 in Mayo tier 1, but 4 of the significant effects were in the

opposite direction compared to the summary ORs obtained by

the meta-analysis of the Mayo tier 2 and NINDS datasets; the

remaining 10 SNPs may warrant further consideration. There

were also 3 SNPs that were used as genomic controls in Mayo tier

2 and 9 SNPs that had not reached the p,0.01 level of

significance in Mayo tier 1, but they were included in Mayo tier

2b (biological or other reasoning). Two of these SNPs had genetic

effects in the same direction as in tier 1. These 2 SNPs may also

warrant further consideration. None of the associations seen in the

enhanced replication data would remain formally significant after

adjustment for 527 (572–45) comparisons, since the lowest p-value

was 0.005.

Strategy of enhancement of the first-stage data
The Mayo tier 1 and NINDS datasets shared 32,192 common

SNPs. Meta-analyses with fixed effects models for these SNPs,

gave 1,503 significant associations at p,0.05. Of these 1,503

SNPs, 173 had been tested also in Mayo tier 2. Eight of these SNPs

had also p,0.05 in the Mayo tier 2 dataset and five of them

(rs1000291 [chromosome 3], rs2241743 and rs2313982 [chromo-

some 4], rs3018626 [chromosome 11] and rs2282048 [chromo-

some13]) had the same direction of effect and they would warrant

further consideration based on this strategy (Table 2). Three of the

5 SNPs (rs1000291, rs2241743 and rs3018626) had also been

identified with the enhancement of replication data strategy. The

lowest p-value in the Mayo tier 2 dataset for an association with

the same direction of effect in both stages was 0.0015 (for

rs2313982), which would not be formally significant after adjusting

for 173 comparisons; this SNP was one that was identified as

a candidate SNP in the original Mayo genome-wide association

study [5], but was not replicated in the subsequent large-scale

replication effort [6]. The SNP rs6050372 in chromosome 20 had

a very low p-value (0.000014) in the Mayo tier 1 and NINDS

datasets combined, but the observed effect was significant

(p = 0.0148) in the opposite direction upon replication in Mayo

tier 2.

Joint analysis of all three datasets
There were 527 SNPs with data available in all three datasets. Of

those, 102 SNPs were statistically significant at p,0.05 using fixed

effects and 49 were significant also by random effects (Table 3).

The number of statistically significant results seems large, but this

is spurious. Mayo tier 2 testing was guided by the Mayo tier 1 data.

We limited further the joint analysis to those SNPs where not

only data were available in all three datasets, but also had

statistically significant results from a first-step meta-analysis of the

Mayo tier 1 and NINDS datasets (p,0.05 at least by fixed effects).

As stated above in the strategy of enhancement of first-stage data,

there were 173 such SNPs. Of those, 72 SNPs were found to be

statistically significant at p,0.05 by fixed effects when the three

databases were jointly analyzed. Thirty-nine of these SNPs had

p,0.05 by random effects models as well (Table 3). None of the

associations would remain significant after adjusting p-values by

a factor of 32,1926(173/1,503) = 3,705 (see methods). The SNPs

with the lowest p-values were rs1000291 and rs1865997

(p = 0.00010 and p = 0.00021 respectively, using random effects

calculations). Both SNPs were significant at p,0.05 in the

enhancement of replication strategy. Eight more SNPs were

among those that warranted further consideration based on the

strategy of enhancement of replication data. SNPs rs1000291 had

p,0.05 also in the strategy of enhancement of first-stage data.

SNPs selected in two or more strategies and other

evidence
Figure 1 shows the results of meta-analyses using the joint analysis

approach for 6 SNPs that had p,0.05 according to at least 2 of

the three strategies that we employed. Three SNPs (rs1000291 on

chromosome 3, rs2241743 on chromosome 4 and rs3018626 on

chromosome 11) were selected by all three strategies; the first two

had absolutely no between-dataset heterogeneity (I2 = 0) and the

third had minimal between-dataset heterogeneity (I2 = 15%).

There was larger, but still not formally statistically significant

heterogeneity for the other 3 SNPs that were selected by 2 of the 3

strategies (I2 ranging between 24% and 49%). No SNP had

p,0.05 and the same direction of effect separately in all 3 datasets.

According to Entrez Gene and PubMed, we found some hints

for potential biological plausibility for the UNC5C gene where the

rs2241743 polymorphism is located. The gene product belongs to

the UNC-5 family of netrin receptors. Netrins are secreted proteins

that direct axon extension and cell migration during neural

development. UNC5C maps to the alpha-synuclein locus of

chromosome 4 [17], where the SCNA gene is an already well-

known Parkinson’s disease susceptibility gene. It is tempting to

speculate whether the axon guidance pathway may have broader

pathogenetic implications for Parkinson’s disease, as netrin and

netrin receptors have important roles for nigral dopaminergic

neurons [18,19]. Parenthetically, the most significant finding from

the study of Maraganore et al. [5] was for a SNP within SEMA5A,

another axon guidance pathway gene (although that finding has

not been independently replicated thus far).

DISCUSSION
We show using empirical data how meta-analysis can be used to

combine information from genome-wide datasets. Meta-analysis is

a well-established method to synthesize results and draw conclu-
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Table 1. Significant summary ORs (p,0.05 at least with fixed effects analyses) and 95% confidence intervals in meta-analysis of
Mayo tier 2 and NINDS datasets.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Db SNP ID Gene name Fixed effects OR (95% CI)

p-value

(unadjusted) Random effects OR (95% CI) p-value (unadjusted) I2

Chromosome 1

rs2038379a 1.240 1.027 1.498 0.025 1.243 0.979 1.579 0.074 37.5

rs2488787a 0.824 0.694 0.978 0.027 0.824 0.694 0.978 0.027 0

rs7520966 0.763 0.635 0.916 0.004 0.752 0.512 1.105 0.187 77.7c

Chromosome 2

rs2372479 ABCA12 1.292 1.093 1.527 0.003 1.292 1.093 1.527 0.003 0

Chromosome 3

rs1000291a FAM79B 1.280 1.079 1.520 0.005 1.280 1.079 1.520 0.005 0

rs1515445b SPATA16 1.350 1.046 1.742 0.021 1.342 1.004 1.794 0.047 21.7

rs7038 1.190 1.008 1.405 0.040 1.190 1.008 1.405 0.040 0

Chromosome 4

rs1469259a 1.290 1.016 1.639 0.037 1.290 1.016 1.639 0.037 0

rs1836803 0.804 0.669 0.966 0.020 0.804 0.669 0.966 0.020 0

rs2241743a UNC5C 1.180 1.006 1.385 0.042 1.180 1.006 1.385 0.042 0

rs2302565(GC) 1.217 1.020 1.451 0.029 1.217 1.020 1.451 0.029 0

rs2313982a(M) 1.536 1.141 2.067 0.005 1.528 0.975 2.395 0.065 56.2

Chromosome 5

rs969518 CPEB4 1.202 1.018 1.419 0.030 1.202 1.018 1.419 0.030 0

Chromosome 6

rs10484586b 0.743 0.554 0.997 0.047 0.712 0.424 1.194 0.197 65.9c

rs3095352 1.282 1.088 1.512 0.003 1.273 0.938 1.726 0.121 70.7c

rs3130653b 1.262 1.070 1.490 0.006 1.254 0.899 1.749 0.183 75.2c

rs6910844 0.742 0.598 0.921 0.007 0.742 0.598 0.921 0.007 0

rs6929069 DSP 1.289 1.000 1.662 0.05 1.302 0.861 1.968 0.211 62.1

rs9328331a EXOC2 0.817 0.675 0.990 0.039 0.817 0.675 0.990 0.039 0

Chromosome 10

rs12219199b GPR120 1.282 1.088 1.512 0.037 1.282 1.088 1.512 0.037 0

rs4746308 0.739 0.567 0.964 0.026 0.739 0.567 0.964 0.026 0

Chromosome 11

rs3018626a 1.238 1.012 1.513 0.038 1.238 1.012 1.513 0.038 0

rs368911a 0.814 0.685 0.968 0.020 0.833 0.709 0.979 0.064 38.8

rs485642a MAML2 1.202 1.000 1.444 0.050 1.202 1.000 1.444 0.050 0

rs898309a 0.816 0.670 0.992 0.042 0.816 0.670 0.992 0.042 0

rs9332434(GC) 0.833 0.709 0.979 0.027 0.833 0.709 0.979 0.027 0

Chromosome 12

rs10492243 1.276 1.007 1.615 0.043 1.276 1.007 1.615 0.043 0

rs342169 PPM1 1.340 1.045 1.717 0.021 1.340 1.045 1.717 0.021 0

Chromosome 13

rs2057525b GPC6 0.784 0.641 0.959 0.018 0.782 0.567 1.079 0.135 60.9

Chromosome 14

rs1889720b 0.683 0.471 0.991 0.045 0.664 0.333 1.325 0.195 70.7c

rs8020291b 1.231 1.053 1.440 0.009 1.231 1.053 1.440 0.009 0

Chromosome 15

rs1865997a 0.786 0.664 0.930 0.005 0.786 0.657 0.940 0.008 11.5

rs2460641a 1.283 1.071 1.537 0.007 1.283 1.071 1.537 0.007 0

rs613479b 1.203 1.016 1.425 0.032 1.201 0.976 1.478 0.084 33.7

rs623941b CHRM5 1.266 1.060 1.513 0.009 1.265 0.994 1.609 0.056 45.3

Chromosome 19

rs4808631(GC) 1.205 1.024 1.418 0.025 1.205 1.024 1.418 0.025 0

Chromosome 20

rs6036107 1.423 1.038 1.950 0.028 1.423 1.038 1.950 0.028 0

Chromosome X

rs5928917b 1.192 1.026 1.386 0.022 1.192 1.026 1.386 0.022 0

Associations that are significant (p,0.05) with both fixed and random effects are in bold type.

Effect in the same direction in Mayo tier 1

Statistically significant at p,0.01 in Mayo tier 1

Statistically significant (p,0.10) Cochran’s Q

GC: SNP used simply as genomic controls in Mayo tier 2

(M): SNP that was originally proposed to be associated with Parkinson disease risk in the original publication of the Mayo data

doi:10.1371/journal.pone.0000196.t001..
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sions from different studies for a set of related research hypotheses

and it has the greater citation impact in the health sciences

literature compared to other study designs [20]. When performed

appropriately, meta-analysis may enhance the precision of the

estimates of the effects of risk alleles, leading to reduced probability

of false negative results. The increased availability of information

can also lead to rejection of null hypotheses at lower levels of type I

error, thus reducing the false discovery rate [21]. In the field of

Human Genome Epidemiology, meta-analyses of gene-disease

association studies to–date have addressed typically one or a few

postulated associations at a time and even large-scale overviews of

many meta-analyses have addressed a few dozens of associations at

the most [10,11,22]. Genome-wide association analyses provide an

opportunity to conduct many thousands of SNP-specific meta-

analyses concurrently. This may yield some interesting results that

are worth pursuing further, as in our datasets. However, the

multiplicity of comparisons has to be factored to avoid making

exaggerated claims about the promising SNPs that emerge from

such meta-analyses. The synthesis and interpretation of gene-

disease associations should be cautious, especially when weak

associations are considered. Misclassification, confounding (popu-

lation stratification) and selective reporting may lead to spurious

findings [23]. Biological plausibility and other external evidence

may be considered as well to interpret the results of the meta-

analysis. Here, the identification of a polymorphism is a axon

guidance pathway gene is intriguing, but certainly requires

independent corroboration and replication before any strong

claim can be made.

Our empirical evaluation also revealed several issues that need

to be considered in future efforts. First, when different genotyping

platforms are used, as in our datasets, the overlap of genetic

markers may be suboptimal. The Mayo and NINDS platforms

had only modest overlap (only approximately 16% of the Mayo

tier 1 dataset SNPs also had data in the NINDS dataset). This is

expected to result in large loss of genomic coverage, even if the

coverage of each platform is very good [24]. One may consider

also juxtaposing and combining data from SNPs that are in very

strong linkage disequilibrium or may even consider genic

approaches to the data [25].

Second, meta-analyses may lead to spurious or heterogeneous

results if the definitions of disease phenotypes and controls are

different across the combined datasets. For Parkinson disease, for

example, there are many different accepted clinical definitions, but

hopefully they do not lead to major discrepancies in diagnosis.

Population stratification may also lead to spurious or heteroge-

neous results in a meta-analysis, if some of the combined studies

are affected. In our application, population stratification had been

more thoroughly addressed in the Mayo data (family-based designs

and genomic controls) than in the NINDS dataset.

Third, given the vast number of analyses performed, the

threshold for claiming formal statistical significance needs careful

consideration. We have used conservative adjustments, but

these may be warranted so as to minimize undue emphasis on

potentially false-positive results. Nevertheless, a number of genetic

variants identified with either of the three strategies as potentially

important with unadjusted p-values may warrant further consid-

eration and replication efforts. This may be particularly enticing

for the variants proposed with 2 different strategies or even all 3

strategies.

Of the three strategies that we examined, the joint analysis has

the best power. This has been demonstrated already by Skol et al.

in the setting of comparing two-stage versus joint analyses for

genome-wide data for the typical fractions of SNPs being tested in

the second stage [26]. The gain in power has always been

considered the traditional advantage of meta-analysis in all

disciplines where this methodology has been adopted [27,28].

This is true however primarily when there is no large between-

study heterogeneity [27]. At the same time, heterogeneity testing

may also give us some useful insights and this may become more

important when many datasets are available [29]. In our empirical

evaluation, the SNPs that were proposed by each strategy typically

had no measurable or minimal between-dataset heterogeneity.

Traditionally, publication bias has been a major threat to the

validity of meta-analysis results. The public availability of

Table 2. Significant associations (at least with fixed effects) from meta-analysis of Mayo tier 1 and NINDS databases that were also
considered in Mayo tier 2.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Db SNP ID Gene
Fixed effects OR
(95% CI)

p-value
unadjusted

Random effects OR
(95% CI)

p-value
unadjusted I2

OR (p-value) in
Mayo tier 2

Chromosome 1

rs668556 0.804 (0.671–0.963) 0.018 0.796 (0.606–1.046) 0.101 55.6 1.43 (0.0015)

Chromosome 3

rs1000291 FAM79B 1.348 (1.122–1.620) 0.00144 1.351 (1.111–1.642) 0.003 10.9 1.32 (0.0237)

Chromosome 4

rs2241743 UNC5C 1.240 (1.030–1.492) 0.023 1.260 (0.930–1.707) 0.136 62 1.09 (0.034)

rs2313982 1.492 (1.062–2.096) 0.021 1.558 (0.899–2.701) 0.114 59.6 1.21 (0.0015)

Chromosome 11

rs3018626 1.306 (1.043–1.634) 0.020 1.334 (0.941–1.890) 0.105 56.9 1.34 (0.0365)

Chromosome 13

rs2282048 FARP1 0.822 (0.683–0.990) 0.038 0.806 (0.558–1.166) 0.253 25.3 0.79 (0.0482)

rs8002725 0.744 (0.576–0.961) 0.024 0.734 (0.520–1.036) 0.079 43.5 1.53 (0.0089)

Chromosome 20

rs6050372 0.644 (0.527–0.786) 0.000014 0.644 (0.527–0.786) 0.000014 0 1.38 (0.0148)

Associations that reach p,0.05 in the meta-analysis by both fixed and random effects are in bold type.
doi:10.1371/journal.pone.0000196.t002..
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Table 3. Significant summary ORs (both in fixed and random effects analyses) and 95% confidence intervals computed from meta-
analysis of Mayo tier 1, Mayo tier 2 and NINDS datasets.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Db SNP ID Gene Fixed effects OR (95% CI) p-value (unadjusted) Random effects OR (95% CI) p-value (unadjusted) I2

Chromosome 1

rs2038379 DAB1 1.324 1.124 1.559 0.00076 1.337 1.078 1.659 0.008 41.5

rs2488787 0.764 0.659 0.887 0.00041 0.756 0.621 0.920 0.005 41.3

rs3748841 FLJ20972 1.375 1.118 1.689 0.002 1.383 1.100 1.739 0.006 18.2

rs7520966a 0.752 0.644 0.880 0.00036 0.755 0.595 0.957 0.020 56.2

Chromosome 2

rs1427547 0.795 0.691 0.915 0.00141 0.790 0.666 0.937 0.007 31.6

rs4666255 ALK 0.807 0.684 0.952 0.011 0.799 0.652 0.978 0.030 32.1

rs838709 DGKD 0.843 0.723 0.983 0.029 0.843 0.723 0.983 0.029 0

Chromosome 3

rs1000291 FAM79B 1.339 1.156 1.551 0.00010 1.339 1.156 1.551 0.00010 0

rs1669215 0.757 0.641 0.894 0.00101 0.754 0.619 0.919 0.005 28.7

rs2243115 IL12A 1.324 1.066 1.645 0.011 1.324 1.066 1.645 0.011 0

rs500097a LOC389142 0.798 0.684 0.930 0.004 0.777 0.604 1.001 0.050 61.7

rs6445726 1.178 1.027 1.351 0.020 1.183 1.000 1.400 0.049 32.1

Chromosome 4

rs1469259 1.392 1.131 1.713 0.002 1.392 1.131 1.713 0.002 0

rs2241743 UNC5C 1.247 1.084 1.434 0.002 1.250 1.063 1.470 0.007 24.2

rs2313982(M) 1.650 1.270 2.145 0.00018 1.666 1.184 2.346 0.003 39.5

rs6819953 0.715 0.558 0.916 0.008 0.715 0.558 0.916 0.008 0

rs7694392a BANK1 1.472 1.158 1.872 0.002 1.627 1.016 2.604 0.043 71.1c

Chromosome 5

rs3213837a ERBB2IP 0.813 0.671 0.984 0.033 0.812 0.659 1.000 0.050 16.1

Chromosome 6

rs1906966 1.201 1.034 1.394 0.016 1.211 1.006 1.457 0.043 33.7

rs9328331 EXOC2 0.767 0.648 0.907 0.002 0.767 0.648 0.907 0.002 0

Chromosome 7

rs10499882a HMG17P1 0.812 0.692 0.954 0.011 0.812 0.692 0.954 0.011 0

rs1866571 1.233 1.065 1.427 0.005 1.245 1.028 1.509 0.025 40.7

Chromosome 8

None

Chromosome 9

rs10115467 LOC648385 0.828 0.719 0.954 0.009 0.817 0.673 0.992 0.041 45.8

rs3761672a 1.202 1.039 1.391 0.013 1.202 1.039 1.391 0.013 0

Chromosome 10

rs4746308 0.703 0.557 0.887 0.003 0.703 0.557 0.887 0.003 0

rs7079524 0.780 0.646 0.942 0.010 0.770 0.594 0.998 0.048 46.4

Chromosome 11

rs2282658a CASP5 1.253 1.079 1.456 0.003 1.256 1.064 1.483 0.007 18.4

rs3018626 1.320 1.108 1.573 0.002 1.324 1.094 1.602 0.004 14.8

rs368911 0.776 0.669 0.899 0.00075 0.772 0.649 0.918 0.003 27.1

rs485642 MAML2 1.288 1.098 1.511 0.002 1.292 1.088 1.534 0.004 12.9

rs651861 ODZ4 1.191 1.038 1.366 0.013 1.197 1.023 1.400 0.025 22.3

Chromosome 12

rs1317852 1.184 1.024 1.368 0.022 1.189 1.003 1.409 0.046 27.5

Chromosome 13

rs2282048 FARP1 0.810 0.701 0.937 0.004 0.805 0.656 0.988 0.038 49.3

rs9316335a ZDHHC20 0.851 0.734 0.988 0.034 0.851 0.732 0.990 0.037 3.1

Chromosome 14

rs175990 1.283 1.088 1.513 0.003 1.297 1.036 1.625 0.024 45.5

rs4280164a C14orf21 1.214 1.023 1.439 0.026 1.214 1.023 1.439 0.026 0
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Db SNP ID Gene Fixed effects OR (95% CI) p-value (unadjusted) Random effects OR (95% CI) p-value (unadjusted) I2

Chromosome 15

rs1865997 0.757 0.653 0.877 0.00021 0.757 0.653 0.877 0.00021 0

Chromosome 16

rs8047091 ABCC11 0.757 0.624 0.919 0.005 0.733 0.542 0.991 0.043 57.3

rs9938490 0.741 0.609 0.901 0.003 0.709 0.507 0.992 0.045 64.6b

Chromosome 17

rs2215290 1.321 1.049 1.664 0.018 1.336 1.015 1.760 0.039 28.5

rs8066468a 0.830 0.716 0.961 0.013 0.829 0.714 0.963 0.014 3.3

rs8176318 BRCA1 0.815 0.701 0.946 0.007 0.815 0.701 0.946 0.007 0

Chromosome 18

rs1893963 DSC2 0.723 0.557 0.939 0.015 0.717 0.538 0.955 0.023 15.2

Chromosome 19

rs1363938 FLJ35784 1.329 1.022 1.729 0.034 1.330 1.015 1.743 0.038 5.1

rs2387137 SYT3 0.812 0.679 0.971 0.023 0.812 0.679 0.971 0.023 0

Chromosome 20

rs1135961 PSMA7 0.784 0.642 0.957 0.017 0.779 0.630 0.965 0.022 11.1

rs6036107 1.473 1.136 1.910 0.003 1.473 1.136 1.910 0.003 0

Chromosome 21

None

Chromosome 22

None

Chromosome X

rs5907306 1.167 1.026 1.327 0.019 1.167 1.026 1.327 0.019 0

rs7064448 0.775 0.653 0.920 0.004 0.775 0.653 0.920 0.004 0

aDid not reach p,0.05 by fixed effects in meta-analysis of Mayo tier 1 and NINDS data
bStatistically significant (p,0.10) Cochran’s Q for heterogeneity
M: SNP that was originally proposed to be associated with Parkinson disease risk in the original publication of the Mayo data
doi:10.1371/journal.pone.0000196.t003

Figure 1. Meta-analyses of the three datasets for the 6 single nucleotide polymorphisms that were selected (p,0.05 unadjusted for multiple
comparisons) with at least two of the three strategies. For each polymorphism the forest plot shows the odds ratio and 95% confidence interval for
each dataset as well as the summary odds ratio and 95% confidence intervals by random effects calculations. Also shown is the p-value for the
summary effect and the I-squared statistic for between-dataset heterogeneity.
doi:10.1371/journal.pone.0000196.g001
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databases from genome-wide association studies provides an

excellent setting where the problem of publication bias can be

minimized or even extinguished [8,9]. This provides an additional

argument in favor of making these data-rich experiments publicly

available.

Some genetic effects for common variants may be small and

readily detectable with genome-wide association studies of very

small sample size. Age-related macular degeneration provides one

such successful example [30,31]. However, other genetic variants

currently emerging from massive-testing approaches seem to have

small or even very small genetic effects [32,33]. This latter scenario

may be far more frequent and even small ORs would still be

important to identify for variants that have a considerable

frequency in the population. This suggests that there should be

an a priori consideration that meta-analysis should be performed

on all genome-wide association studies conducted on the same

disease. Investigators in the field of type 2 diabetes have already

anticipated such a prospective meta-analysis through the

IGWANA project [34]. This concept needs to be extended across

diverse fields of human genome epidemiology. Meta-analyses may

be updated also in a cumulative fashion, when new data appear

[35,36]. Ideally, different teams of investigators should also discuss

in advance the plans for a meta-analysis. This may entail agreeing

on using common genotyping platforms and/or creating plans for

enhancing the consistency of the databases across different studies.
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