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Abstract

In the prefrontal cortex, parvalbumin-positive inhibitory neurons play a prominent role in the neural circuitry that subserves
working memory, and alterations in these neurons contribute to the pathophysiology of schizophrenia. Two
morphologically distinct classes of parvalbumin neurons that target the perisomatic region of pyramidal neurons,
chandelier cells (ChCs) and basket cells (BCs), are generally thought to have the same ‘‘fast-spiking’’ phenotype, which is
characterized by a short action potential and high frequency firing without adaptation. However, findings from studies in
different species suggest that certain electrophysiological membrane properties might differ between these two cell classes.
In this study, we assessed the physiological heterogeneity of fast-spiking interneurons as a function of two factors: species
(macaque monkey vs. rat) and morphology (chandelier vs. basket). We showed previously that electrophysiological
membrane properties of BCs differ between these two species. Here, for the first time, we report differences in ChCs
membrane properties between monkey and rat. We also found that a number of membrane properties differentiate ChCs
from BCs. Some of these differences were species-independent (e.g., fast and medium afterhyperpolarization, firing
frequency, and depolarizing sag), whereas the differences in the first spike latency between ChCs and BCs were species-
specific. Our findings indicate that different combinations of electrophysiological membrane properties distinguish ChCs
from BCs in rodents and primates. Such electrophysiological differences between ChCs and BCs likely contribute to their
distinctive roles in cortical circuitry in each species.
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Introduction

Several, often alternative, approaches have been used to classify

cortical inhibitory neurons, or interneurons. These approaches

have generally emphasized qualitative differences in features such

as morphology, intrinsic physiological properties, neurochemical

content, or sources and targets of synaptic inputs and outputs,

respectively [1]. Measures of intrinsic physiological properties have

discriminated a fast-spiking (FS) type of interneuron based on an

unmistakably short action potential, or ‘‘fast spike’’ [2–4]. These

neurons also have the characteristic properties of high frequency

firing without adaptation in firing rate, short membrane time

constant and large amplitude of hyperpolarization following action

potential firing (‘‘afterhyperpolarization’’). The majority of FS

interneurons express the Ca2+-binding protein parvalbumin (PV)

[5–7].

Yet, FS interneurons do not constitute a homogeneous group,

and include two morphologically distinct cell types: basket cells

(BCs) and chandelier cells (ChCs). These morphological differ-

ences are truly striking and easily recognizable. BCs have large

axonal arbors that spread predominantly parallel to the pial

surface, whereas ChCs have a more variable spread of axons

which furnish vertically organized boutons that form axonal

cartridges. Both cell types target the perisomatic region of

pyramidal cells, although BCs innervate the soma and proximal

dendrites whereas ChCs innervate the axon initial segment [8].

In addition, recent reports have highlighted important func-

tional differences between BCs and ChCs. In contrast to the BCs

which consistently provide inhibitory hyperpolarizing outputs to

pyramidal cells, GABA neurotransmission from ChCs may have

an excitatory depolarizing effect on pyramidal cells in quiescent

circuits [9–11], but see [12,13]. ChCs and BCs also differ in the

sources of their excitatory inputs; in layer 2/3 of the rodent

neocortex, FS BCs receive strong excitatory inputs from layer 2/3

and 4, whereas ChCs receive strong excitatory inputs from layers

2/3 and 5A [14].

In addition to these differences in their functional roles, BCs and

ChCs have been reported to exhibit different membrane

properties in studies involving mice [10], ferrets [15], or monkeys

[16–18]. However, the reported differences are inconsistent and

seem to vary across species. In order to clarify these issues, here,

we compared the intrinsic membrane properties of ChCs and BCs
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in the rat and macaque monkey prefrontal cortex (PFC), the

cortical region that differs most substantially between these two

species [19]. In our previous studies, we examined the electro-

physiological classification of interneurons in monkey PFC [6,16–

18], and compared BCs in rat and monkey PFC [20]. Here, for

the first time, we compared properties of ChCs from monkey and

rat and report interspecies differences for a number of these

properties. Next, using the two-way ANOVA and tree classifier

statistical approaches we assessed the physiological heterogeneity

of FS interneurons as a function of cell type (ChCs vs. BCs) and

species (monkey vs. rat). A number of ChCs-BCs differences

(including both those previously reported and some newly revealed

in this study) were conserved across species (including fast and

medium afterhyperpolarization, firing frequency, and depolarizing

sag), whereas the first spike latency was found to be a species-

specific property. We conclude that certain intrinsic membrane

properties can be used for the electrophysiological identification of

ChCs and BCs in different species and that the contribution of

each cell type to cortical network functions may differ across

species.

Methods

Slice preparation
Brain slices were obtained from adult (56–135 days, 350–550 g;

n = 20) male Wistar rats and young adult (4–5 yr old; 3.5–6.0 kg;

n = 15) male long-tailed macaque monkeys (Macaca fascicularis). All

animals were treated in accordance with the guidelines outlined in

the National Institutes of Health Guide for the Care and Use of

Laboratory Animals and approved by the University of Pittsburgh

Institutional Animal Care and Use Committee (protocols ##
0207751A-1, 0507655, 0504220). Rats were deeply anesthetized

with halothane and decapitated. The brain was quickly removed

and immersed in ice-cold pre-oxygenated artificial cerebrospinal

fluid (ACSF). Tissue blocks containing the prelimbic cortex in rats

were excised for slicing. The protocol used to obtain brain tissue

blocks from monkey PFC was described previously [16]. Prior to

any surgical manipulations, the monkeys were either cage-housed

or pen-housed, alone or as a pair depending on availability and

compatibility of cage-mates. Following surgery animals were single

housed in cages. Animals were fed a standard diet of dry biscuits

(Lab Diet Monkey Diet, PMI Nutrition International, Brentwood,

MO), and a variety of fresh fruit or vegetables daily. They are also

provided a foraging mixture of seeds, nuts and corn in their

bedding each morning. All animals are provided with a rotation of

novel toys and manipulanda both inside and outside their pens or

cages and every room has either a DVD player or radio with

changing programming throughout the week. Monkeys requiring

single housing were put on an enhanced enrichment schedule with

increased foraging opportunities, human interactions, stimulation

of all five senses, and means to control their environment though

manipulations and cognitive stimulating activities. For the surgery,

monkeys were treated with ketamine hydrochloride (25 mg/kg

im), dexamethasone phosphate (0.5 mg/kg im), and atropine

sulfate (0.05 mg/kg sc). Endotracheal anesthesia was maintained

with 1% halothane in 28% O2-air. For the terminal anesthesia,

animal were given an overdose of pentobarbital (30 mg/kg) and

were perfused through the heart with ice-cold modified ACSF. All

efforts were made to minimize suffering in both rats and monkeys.

Coronal slices (350 mm thick) were cut with a vibratome (Model

VT1000S, Leica, Nussloch, Germany). Slices were incubated at

37uC for 0.5–1 h and further stored at room temperature until

transfer to a recording chamber perfused with ACSF at 31–32uC.

The recording temperatures were identical for both species.

Through all steps of the experiments, ACSF of the following

composition was used (in mM): 126 NaCl, 2.5 KCl, 1.25

NaH2PO4, 1 MgSO4, 2 CaCl2, 24 NaHCO3, and 10–20

dextrose. ACSF was perfused with 95% O2-5% CO2 gas mixture.

Some of the electrophysiological parameters from all monkey

and rat FS BCs and from all monkey ChCs were published

previously [18,20]. Here, in addition, a new critical electrophys-

iological parameter, medium afterhyperpolarization (mAHP)

amplitude, was measured in the recordings from the interneurons.

Also, in this study, for the first time, we compared electrophys-

iological parameters using the two-way ANOVA and tree classifier

analyses in order to delineate significant species-specific and

species-independent differences between BCs and ChCs. None of

the data from the rat ChCs have been reported previously.

Electrophysiological recordings
Whole cell voltage recordings were made from layer 2/3

neurons visualized by infrared differential interference contrast

videomicroscopy using a Zeiss Axioskop 2 FS microscope,

equipped with a 40 water-immersion objective and a Dage-MTI

NC-70 video camera (Dage-MTI Television, Michigan City,

IN). Interneurons were identified based on their round or oval

cell body and lack of apical dendrite. Patch electrodes were

filled with an internal solution containing (in mM): 114 K-

gluconate, 6 KCl, 10 HEPES, 4 ATP-Mg, and 0.3 GTP; pH

was adjusted to 7.25 with KOH. Biocytin (0.5%; Molecular

Probes, Eugene, OR) was added to the solution for later

morphological identification of the recorded neurons. Elec-

trodes had 5- to 12-MV open-tip resistance. Voltages were

amplified with an IE-210 electrometer (Warner Instruments,

Hamden, CT) or a Multi-Clamp 700A amplifier (Axon

Instruments, Union City, CA) operating in bridge-balance

mode. Signals were filtered at 5 or 4 kHz in the IE-210 and

the MultiClamp, respectively, and acquired at a sampling rate of

20 kHz using a 16-bit-resolution Power 1401 interface and

Signal software (CED, Cambridge, UK). Access resistance and

capacitance were compensated on-line. Access resistance typi-

cally was 15–30 MV and remained relatively stable during

experiments (630% increase) for the cells included in the

analysis. Membrane potential was not corrected for the liquid

junction potential. Recordings of the electrophysiological

membrane properties were performed in the absence of synaptic

blockers.

Electrophysiological data analysis
To characterize the membrane properties of neurons, hyper-

and depolarizing current steps were applied for 500 ms in 5- to 10-

pA increments at 0.5 Hz. Input resistance (Rin) was measured

from the slope of a linear regression fit to the voltage-current

relation in a hyperpolarizing range relative to the resting

membrane potential (RMP). The membrane time constant was

determined by single-exponential fitting to the average voltage

responses activated by hyperpolarizing current steps (5–15 pA).

Sag was estimated at the hyperpolarizing current steps as the

difference between the most negative membrane potential and the

membrane potential at the end of the step as the percentage

relative to the voltage deflection from the RMP at the end of the

sweep. Importantly, the sag can be affected by the RMP as well as

by the magnitude of the voltage deflection produced by the

hyperpolarizing current pulses. To make the measures of sag

comparable across groups, only the cells with similar RMP values

were included in the analysis of the sag. The average RMP in the

four groups after selection was: in monkey ChCs 26765.3 mV;

BSs 26763.5 mV; in rat ChCs 26764.3 mV; BSs

Heterogeneity of Fast-Spiking Interneurons
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26763.8 mV. In addition, the sag was measured on the sweeps

with the maximum voltage deflection within the range of

2114212 mV.

A series of depolarizing current steps of gradually increasing

amplitude were used to evoke action potentials (AP). All AP

measures were taken from the first AP of the first sweep that

reached the spike threshold. Peak amplitudes of the AP and the

fast afterhyperpolarization (fAHP) amplitude were measured

relative to the AP threshold (level of voltage deflection exceeding

10 mV/1 ms). Duration of the AP was measured at its half-

amplitude. mAHP amplitude was measured after the depolarizing

responses as the most negative voltage deflection relative to the

RMP. Frequency was estimated at the level of 60 pA above

rheobase as a reciprocal of average interspike interval within the

last 250 ms of depolarizing response. Adaptation ratio (AR)

coefficient was used to describe spike frequency adaptation in spike

trains. First, the ratio between the first and the last interspike

interval was calculated for the each stimulation current intensity.

Then, the AR coefficient was estimated from the linear regression

of AR versus current at 60 pA above rheobase. The level of 60 pA

above rheobase was chosen for estimation of frequency and AR

coefficient since it was the lowest stimulation current intensity to

produce relatively regular firing in rat FS BCs with very few

quiescent periods [20].

Cells were identified as FS based on the results of the previously

performed cluster analysis, ANOVA, and Fisher’s least significant

difference post hoc test [17]. The parameters with the most

discriminative values, action potential duration (AP duration;

average value 0.3760.09 ms), and AR coefficient (average value

0.8260.21) were used as criteria for FS interneurons: ‘‘AP

duration +1.5 SD’’ as the high limit and ‘‘AR coefficient – SD’’

as the low limit. Accordingly, only cells with the spike half-

duration ,0.51 ms and AR coefficient .0.61 were included in the

analysis. The aforementioned criteria correspond to those

previously used in the neocortex of young rats [4] and adult rats

[21].

Morphological data analysis
To identify cell morphology after the electrophysiological

experiments, neurons were filled with biocytin (0.5%) added to

the pipette solution. After recordings, slices were immersed in

4% paraformaldehyde in 0.1 M phosphate-buffered saline

(PBS) and then were kept in storing solution (equal parts of

glycerol, ethylene glycol, and 0.1 M PBS) at 280uC. In some

cells biocytin was visualized with streptavidin-Alexa Fluor 633

conjugate (for details see Zaitsev et al., 2009). Briefly, slices

were incubated with streptavidin-Alexa Fluor 633 conjugate

(dilution 1:500; Invitrogen) for 24–48 h at 4uC in in PBS

containing 0.4% Triton X-100). After this, cells were

confocally reconstructed for morphological identification using

an Olympus FluoviewTM 500 confocal laser scanning

microscope (Olympus America, Melville, NY). Slices from

other experiments were resectioned at 40–50 mm. The sections

were treated with 1% H2O2 for 2–3 h at room temperature,

rinsed, and incubated with the avidin-biotin-peroxidase

complex (1:100; Vector Laboratories, Burlingame, CA) in

PBS for 4 h. Sections were rinsed, stained with Ni-3,3-

diaminobenzidine (DAB), mounted on gelatin coated glass

slides, dehydrated, and coverslipped. Cells were morphologi-

cally identified as BCs or ChCs based on the confocal

reconstructions or/and development of biocytin. Some cells

were three-dimensionally reconstructed using the Neurolucida

neuron tracing system with NeuroExplorer software (MBF

Bioscience, Williston, VT).

Statistical analysis
Two-tailed t-tests were used for group comparisons in most

cases. Unless otherwise noted, values are presented as means 6

SD. To examine cell type-specific and species-specific differences

in membrane properties, two-way ANOVAs were performed. To

delineate the electrophysiological membrane properties that could

predict the morphology of FS interneurons (either ‘‘basket’’ or

‘‘chandelier’’), the tree classifier analysis was performed with

estimation of global cross validity (CV) cost (Breiman, 1984). In

global cross-validation, the entire analysis was replicated a

specified number of times (usually 3 times) holding out a fraction

of the learning sample equal to 1 over the specified number of

times, and using each hold-out sample in turn as a test sample to

cross-validate the selected classification tree. The CV costs

computed for each of the test samples was then averaged to give

the estimation of the global CV costs. The more correctly the test

samples were classified the lower the global CV cost was.

Statistical tests were performed using Excel (Microsoft, Redmond,

WA) or Statistica 8 (Statsoft, Tulsa, OK).

Results

Identification of ChCs and BCs with FS phenotype
In our previous publications, we successfully employed different

approaches to delineate groups of interneurons in monkey PFC,

including morphological features [18,22], electrophysiological

membrane properties [16,17], or neurochemical content [6,23].

In the present study, we addressed the physiological heterogeneity

of interneurons with a FS phenotype in rat and monkey PFC. We

predicted that this heterogeneity is accounted for, at least in part,

by differences between BCs and ChCs. To test this prediction, we

selected from our library of recordings all of the cells that satisfied

electrophysiological criteria for the FS phenotype and that were

clearly identified morphologically as either ChCs or BCs.

Cells were identified as FS based on the results of previously

performed cluster analysis, ANOVA, and Fisher least significant

difference post hoc test [17]. Only BCs with spike half-duration

,0.51 ms (averaged AP duration plus 1.5 SD) and AR coefficient

.0.61 (averaged AR coefficient minus SD) were included in the

analysis (See Methods). These FS cells were identified either as

ChCs, or BCs based on their morphological features. The

morphology of ChCs have been described in various studies from

rat [4] and monkey [18,22] neocortex. In this study, both rat and

monkey ChCs had characteristic vertical arrays of axonal boutons

(cartridges) and smooth multipolar dendrites (Figure 1A). Their

dendritic and axonal trees were confined mostly to layers 2–3. FS

interneurons from monkey and rat PFC were classified as ‘‘basket’’

based on previously described morphological features [4,22]. BCs

somata had a round or vertical oval shape and were located in

layers 2/3. The cells possessed smooth and multipolar dendrites

(Figure 1B). The axon of the cells originated from the cell body or

one of the primary dendrites. Axons spread either in all directions

or predominantly horizontally and located predominantly within

layers 2–3.

Physiological heterogeneity of FS interneurons across
species

We first addressed the contribution of species identity (monkey

vs. rat) to the physiological variability of FS interneurons.

Previously, we reported a number of differences in electrophys-

iological membrane properties of BCs from rat and monkey PFC

[20]; the present analyses mostly confirmed these findings and also

revealed an important difference in mAHP amplitude between rat

and monkey BCs (Table 1).

Heterogeneity of Fast-Spiking Interneurons
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Membrane properties of ChCs in monkey and rat

PFC. Comparison of electrophysiological membrane properties

of ChCs from monkey and rat PFC revealed species differences.

The ChCs membrane properties that differed between the two

species included Rin, rheobase, frequency, 1st AP latency, AP

threshold, sag and mAHP amplitude (Table 1). Rin was

substantially higher in monkey than in rat ChCs (3216114 vs.

167658 mV, p,0.001) (Figure 2), whereas the rheobase was

lower in the former (40627 vs. 108623 pA, p,0.001). Firing

frequency was considerably higher in monkey ChCs (105638 Hz)

than in rat (8266 Hz, p,0.01) (Figure 3). Monkey ChCs fired the

first AP with a longer latency (1456174 ms) than rat ChCs

(37617 ms, p,0.05) (Figure 4). Surprisingly, this difference was

the opposite of the species difference observed for BCs where the

1st AP latency was longer in rat than in monkey [20]. AP threshold

was more negative in monkey ChCs than in rat. Sag and mAHP

amplitude were more pronounced in monkey as compared to rat

ChCs (Figure 2C, 5C, Table 1).

Interaction between ‘‘species’’ and ‘‘cell type’’ through a

two-way ANOVA. In order to determine, first, how species

differences contribute to the physiological heterogeneity of FS

interneurons and, second, how they interact with the morpho-

logical cell-type factor, we used a two-way ANOVA. The

results of this analysis suggest that species had a major effect on

the properties of FS interneurons. Indeed, according to

ANOVA analysis the species factor had significant F1,88 values

(ranging from 5.4 to 117) for 8 out of 13 electrophysiological

parameters including Rin, rheobase, time constant, sag, AP

threshold, mAHP amplitude, firing frequency and AR coeffi-

cient, although the differences in time constant between

monkey and rat ChCs as well as between monkey and rat

AR coefficient for both cell types did not achieve statistical

significance.

Interestingly, the 1st AP latency was different between monkey

and rat for both ChCs and BCs. Also, for this variable, there was

significant interaction between species and cell-type factors

(F1,88 = 19, p,0.00; Table 1). Indeed, this parameter showed

species differences in the opposite directions: the 1st AP latency

was longer in monkey ChCs than in those from rat, whereas in

monkey BCs it was shorter than in rat.

Figure 1. Morphological features of ChCs and BCs in monkey and rat. A. Representative examples of monkey and rat ChCs (note vertical
axonal branches that contain arrays of cartridges). B. Representative examples of monkey and rat BCs (note axonal branches going both horizontally
and vertically) (scale bar 100 mm).
doi:10.1371/journal.pone.0070553.g001
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Therefore, these analyses demonstrated an overall difference

between monkey and rat FS interneurons, and that the ‘‘species

differences’’ for 8 out of 13 electrophysiological membrane

properties were similar for both morphological cell types, whereas

for 1 out of 13 properties, these differences were in the opposite

direction for ChCs and BCs.

Physiological heterogeneity of FS interneurons defined
by morphological cell type

Next we addressed how the morphological cell type factor

defines physiological variability of FS interneurons. Differences in

electrophysiological membrane properties between ChCs and BCs

were assessed by the t-test separately for monkey and rat and by

the two-way ANOVA analysis for the whole population of cells.

Thus, we were able to define whether these ‘‘cell-type differences’’

were similar in monkey and rat. Interestingly, although some

ChCs-BCs differences were similar in both species (species–

independent), others were species-specific.

Species-independent ChCs-BCs differences. We found

that sag, mAHP amplitude, fAHP amplitude and firing

frequency differed substantially between ChCs and BCs in both

monkey and rat (Table 1, Figure 2, 3, 5, 6). Each of these

characteristics also showed cell-type specificity in the ANOVA

for the pooled cell population. For example, firing frequency

was substantially higher in ChCs than in BCs in both monkey

(105638 Hz vs. 58618 Hz, p,0.001) and rat (8266 vs.

49615, p,0.001) with ‘‘cell-type’’ factor of F1,88 = 62.6,

p.0.001 in ANOVA (Table 1, Figure 3). Importantly, although

firing frequency, sag and mAHP amplitude also demonstrated

interspecies differences, there was no interaction between the

two factors (p.0.05 for ‘‘species*cell type’’), indicating that cell-

type differences for those properties exist independently of their

species identity. For example, for frequency, ‘‘species*cell type’’

F1,88 was 1.9, p = 0.17. Indeed, firing frequency was higher in

ChCs than in BCs in both monkey and rat, i.e. this difference

was species-independent.

According to the two-way ANOVA analysis, mAHP amplitude

had the largest F-value (F1,88 = 65, p,0.001) for the ‘‘cell type’’

factor relative to the all other properties. Indeed, in rat PFC, the

most striking ChCs-BCs difference was in the amplitude of the

mAHP that followed responses to rectangular depolarizing current

pulses. This AHP could be observed when the responses were still

subthreshold and increased with the increase in the stimulation

current (Figure 5). With high stimulation currents exceeding

rheobase, this mAHP followed the trains of action potentials.

While ChCs demonstrated a pronounced mAHP with the average

amplitude of 4.160.7 mV with the stimulation current of 60 pA

above rheobase, BCs had a barely visible mAHP with average

amplitude that never exceeded 0.7 mV (Figure 5A and B). Unlike

ChCs, BCs did not show a substantial increase in the mAHP

amplitude with increasing stimulation current. Individual ChCs

and BCs never had overlapping values of the mAHP amplitude for

the stimulation current intensities that exceeded the level of 10 pA

below rheobase. All the aforementioned differences between ChCs

and BCs in the depolarization-induced mAHP amplitude makes it

a reliable criterion to distinguish the two cell types in rat PFC. In

monkey PFC, the mAHP showed a substantial increase in

amplitude with the increase in stimulation current (Figure 5).

Although it was well pronounced in both ChCs and BCs, its

amplitude was larger in ChCs than in BCs for stimulation currents

above rheobase (Figure 5B).

Sag measured on the responses to the hyperpolarizing current

pulses had the third largest two-way ANOVA F-value

(F1,54 = 23, p,0.001), which indicates its importance for the

electrophysiological classification. Sag was more pronounced in

ChCs as compared to BCs in both monkey and rat (Figure 2,

Table 1).

Amplitude of fAHP was larger in BCs as compared to ChCs in

both monkey and rat (Figure 6, Table 1). Two-way ANOVA

revealed that ChCs-BCs differences in fAHP amplitude were

defined by the ‘‘cell type’’ factor (F1,88 = 7.7, p,0.01), but not by

the ‘‘species’’ factor, unlike mAHP amplitude, sag and firing

Table 1. Membrane properties of ChCs and BCs in rat and monkey PFC.

t-test ANOVA analysis

Monkey Rat species cell type species* cell type

ChCs (n = 13) BCs (n = 39) ChCs (n = 9) BCs (n = 31) F1,88 p F1,88 p F1,88 p

RMP, mV 26568 26868 26865 26766 0.04 0.85 0.17 0.68 2.0 0.16

Rin, MV 3216114‘‘‘ 2516130‘ 167658 182683 18 0.00 1.1 0.31 2.6 0.11

Time constant, ms 1063 963‘‘ 862 763 8.1 0.01 1.4 0.25 0.05 0.83

Sag, % 2467**‘‘‘ (n = 8) 16610‘‘‘ (n = 19) 1062*** (n = 8) 061 (n = 23) 63 (F1,54) 0.00 23 (F1,54) 0.00 0.34 (F1,54) 0.56

Rheobase, pA 40627**‘‘‘ 75648‘‘‘ 108623 123658 23 0.00 5.2 0.03 0.14 0.71

1st AP latency, ms 1456174‘ 74668‘‘‘ 37617*** 2236152 0.49 0.48 3.8 0.05 19 0.00

AP threshold, mV 24365‘‘ 24165‘‘‘ 23863** 23462 34 0.00 8.1 0.01 0.61 0.44

AP amplitude, mV 53612 55611 6067* 5368 1.1 0.29 1.1 0.30 2.9 0.09

AP duration, ms 0.3260.06 0.3460.06‘ 0.3260.02*** 0.3860.08 0.64 0.42 6.5 0.01 0.16 0.69

fAHP amplitude, mV 1962* 2368 1961*** 2365 0.00 1.0 7.7 0.01 0.04 0.85

mAHP amplitude, mV 7.162.0**‘‘‘ 5.061.6‘‘‘ 4.160.7*** 0.760.6 117 0.00 65 0.00 3.6 0.06

Frequency, Hz 105638***‘‘ 58618‘ 8266*** 49615 11 0.00 62.6 0.00 1.90 0.17

AR coefficient 0.8660.19 0.9060.13 0.7560.150 0.8560.12 5.4 0.02 4.1 0.05 0.92 0.34

*/**/***Significantly different between ChCs and BCs within the same species (p,0.05/0.01/0.001).
‘/‘‘/‘‘‘Significantly different between monkey and rat ChCs or between monkey and rat BCs (p,0.05/0.01/0.001).
Bold font: Significantly different at p,0.05.
doi:10.1371/journal.pone.0070553.t001
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frequency that show not only cell-type differences but also species

differences.

Three electrophysiological membrane properties: AP threshold,

AP duration and rheobase demonstrated significant values for the

‘‘cell type’’ factor according to the two-way ANOVA (Table 1).

Separate comparison of AP threshold and AP duration revealed

cell type difference in rat, while only similar tendencies were

observed in monkey (AP threshold had a tendency to be lower

(p = 0.17) and AP duration had a tendency is to be shorter

(p = 0.08) in ChCs than in BCs). The rheobase was significantly

lower in ChCs than in BCs in monkey with the similar tendency in

rat (Table 1). AP threshold and rheobase were also influenced by

the species factor.

Although firing in FS interneurons is generally considered

non-adapting, some adaptation can take place making the

last interspike interval slightly longer than the first one,

especially with longer current pulses [24]. Interestingly, t-test

comparisons between cell types for both species did not

reach the level of significance (Table 1), and yet, according

to the two-way ANOVA, the AR had a significant values of

‘‘cell type’’ factor (Table 1) since in both monkey and rat,

ChCs tend to have more adaptation of firing frequency as

compared to BCs.

Species-specific ChCs-BCs differences. One of the spe-

cies-specific ChCs-BCs differences was the 1st AP latency.

According to the two-way ANOVA, this parameter had the

strongest interaction between cell-type and species factors,

indicating that the cell type differences in the 1st AP latency are

dependent on species. In monkey PFC, many ChCs started firing

with a substantial delay: 6 out of 13 cells had the latency of the 1st

AP.100 ms (Figure 4). In contrast, the majority of BCs had a

short latency of the 1st AP. Surprisingly, in rat PFC, ChCs and

BCs differed in their 1st AP latency in the opposite direction. While

all the ChCs always fired the first spike with a relatively short

latency, the majority of the BCs demonstrated a substantially

delayed first spike: about 70% of BCs had the 1st AP latency

.100 ms (Figure 4A and B).

Interestingly, in rat, ChCs exhibited a subthreshold membrane

potential response to depolarizing current pulses with a slight

hump, whereas BCs had a depolarizing response that looked either

flat, or had a slight ramp (Figure 4A). Curvy response (‘‘hump’’)

prior to the AP onset was described previously in ChCs, but not in

Figure 2. Differences in responses to hyperpolarizing current pulses in ChCs and BCs from monkey and rat. A. Voltage responses to the
hyperpolarizing current steps in ChCs and BCs from monkey and rat. Both monkey ChCs and BCs as well as rat ChCs showed time-independent
inward rectification (‘‘sag’’; arrows). B. Current-voltage plots for traces shown in A. Comparison of average values of sag (C) and Rin (D) in monkey and
rat ChCs and BCs. Error bars represent SE.
doi:10.1371/journal.pone.0070553.g002
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BCs in mouse neocortex [10]. In contrast, in monkey PFC, the

majority of BCs (31 out of 39) demonstrated a hump of more than

15% (see Methods) on the sweep that was followed by the sweeps

with APs. At the same time, the majority of ChCs (11 out of 13)

did not show a hump on the depolarizing sweep produced by the

current just below the rheobase. Moreover, some of them (n = 4)

generated a depolarizing ramp (Figure 4A). Lack of a hump on the

subthreshold depolarizing responses, and the appearance of a

ramp-like structure would lessen the probability of generating a

spike at the beginning of the sweep with a short latency, and lead

to generation of a delayed spike.

Membrane properties for electrophysiological
identification of ChCs and BCs

To delineate the electrophysiological membrane properties that

can be effectively used to identify ChCs and BCs, the tree classifier

method was used [25]. Classification trees are used to predict

membership of cases or objects in the classes of a categorical

Figure 3. Firing frequency in ChCs and BCs from monkey and rat. A. Representative firing patterns produced by the 60 pA above threshold
stimulation current intensity in monkey and rat ChCs and BCs. B. Quantification of population data for firing frequency at different stimulation current
intensities in ChCs and BCs from rat and monkey. ChCs fired at higher frequency than BCs at all current intensities. C. Firing frequency was higher in
ChCs vs. BCs in both species, as well as in monkey vs. rat in both ChCs and BCs. Error bars represent SE.
doi:10.1371/journal.pone.0070553.g003
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dependent variable from their measurements on one or more

predictor variables. Here, electrophysiological membrane proper-

ties have been used as such predictor variables to make

hierarchical decisions whether a cell can be identified as ChC or

BC. Since substantial interspecies differences were detected for 8

of 13 parameters used for ChCs-BCs comparison, classification

trees were built separately for the cells from rat and monkey PFC.

In rat, the classification tree analysis defined the mAHP

amplitude as the most important property for ChCs-BCs

differences. It was followed by the 1st AP latency and fAHP

amplitude (Figure 7). However, during the classification tree

construction process we found that the mAHP amplitude was

overwhelmingly dominant and could be used by itself to construct

an accurate classification tree: all rat FS interneurons with mAHP

amplitude $2.65 mV are ChCs, whereas the remaining FS cells

are BCs (Figure 7A). The two trees classifiers constructed for rat

FS interneurons had global cross-validity cost of 0 and 0.2 (see

Methods) meaning that the classification tree based on mAHP

amplitude was the most effective in dividing our population into

ChCs and BCs. Indeed, it classified our population into the ChCs

and BCs types without mistakes. And the estimated CV cost that

equals ‘‘0’’, predicts ‘‘0’’ misclassifications for the other FS cell

populations as well. The second tree based on the 1st AP latency

and fAHP amplitude misclassified 5 out of 39 cells in the learning

sample (2 ChCs and 3 BCs) and predicts 20% of misclassifications

(Figure 7B).

In monkey, the tree classifier with the lowest cross-validity

(global cross-validity cost = 0.167) included frequency, 1st AP

latency and fAHP amplitude (Figure 7C). First, all monkey FS

interneurons were classified based on the values of firing

frequency: cells with higher frequency (.102 Hz) were identified

as ChCs, while cells with the lower frequency were divided based

on the 1st AP latency into ChCs (1st AP latency .358 ms) and

BCs. The latter group was then divided into ChCs and BCs based

on the fAHP amplitude: cell with the fAHP amplitude less than

17 mV were identified as ChCs. This tree misclassified 2 out of 48

monkey FS cells in the learning sample (1 BC was classified as

‘‘ChCs’’ and 1 ChC was classified as ‘‘BCs’’), and predicts 16.7%

mistakes for any other monkey FS cell populations.

Discussion

In this study, we addressed physiological heterogeneity of FS

interneurons as a function of species (monkey vs. rat) and

morphology (ChCs vs. BCs). We demonstrated differences

between monkey and rat ChCs electrophysiological membrane

properties that have not been previously reported, and confirmed

our previously reported differences in BCs between monkey and

rat BCs [20]. We showed an overall difference between FS

neurons of monkey versus rat, and that the species differences for

the most of the properties are similar for ChCs and BCs. Next, we

assessed morphological cell-type-associated differences in electro-

physiological membrane properties. The majority of these

properties were different between ChCs and BCs either in one

or in both species. Some of these ChCs-BCs differences were

‘‘species-independent’’ while others were ‘‘species-specific’’. Here,

for the first time, we reported a striking difference in mAHP

amplitude that was substantially larger in ChC than BCs in both

monkey and rat. For rat interneurons, a classification tree built

based on mAHP amplitude unequivocally divided interneurons on

ChCs and BCs. Another tree was built based the 1st AP latency

and fAHP amplitude. In monkey, the classification tree with the

lowest cross-validity global cost was built based on frequency, 1st

AP latency and fAHP amplitude.

Species differences in electrophysiological membrane
properties of ChCs and BCs

In this study, for the first time, we demonstrated differences in

membrane properties between rat and monkey ChCs. The ChCs

properties that differed between the two species included Rin,

Figure 4. ChCs and BCs differences in the 1st AP latency. A. Representative traces with the first AP in in monkey and rat ChCs and BCs. ChCs
but not BCs showed delayed 1st AP/depolarizing ramp at near-threshold levels of stimulation currents in monkey PFC. On the contrary, in rat, BCs but
not ChCs showed delayed 1st AP/depolarizing ramp at the near-threshold levels of stimulation currents. Insets: BCs but not ChCs demonstrate hump
(arrow) at the sweeps just below firing threshold in monkey PFC. Ramp (arrowhead) is observed in a number of chandelier cells. On the contrary, in
rat PFC, ChCs but not BCs demonstrate hump at the subthreshold sweeps. Flattened response (arrowhead) is observed in BCs but not ChCs from rat.
B. Quantification of population data for the 1st AP latency. Note different direction of ChCs-BCs differences in monkey and rat. Error bars represent SE.
doi:10.1371/journal.pone.0070553.g004
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Figure 5. ChCs and BCs differences in mAHP amplitude in rat and monkey. A. Representative traces with sub-and suprathreshold responses
to depolarizing current pulses in monkey and rat ChCs and BCs. Arrowheads mark mAHP in monkey ChCs and BCs, as well as in rat ChCs. Note that in
rat, mAHP was observed in ChCs, and was almost absent in BCs, while in monkey, mAHP could be observed in both cell types, but was more
pronounced in ChCs than in BCs for the same current intensities above rheobase. B. Quantification of population data for mAHP amplitude at
different stimulation current intensities. X-axis values: ‘‘0 pA’’ = rheobase, ‘‘210 pA’’ = current intensity 10 pA below rheobase, all positive
values = current above rheobase. C. mAHP amplitude at the stimulation level of 60 pA above rheobase was larger in ChCs than BCs in both species, as
well as in monkey than in rat for both ChCs and BCs. Error bars represent SE.
doi:10.1371/journal.pone.0070553.g005
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rheobase, sag, AP threshold, 1st AP latency, mAHP amplitude and

frequency (Table 1). Also, for the first time, we reported here the

important difference in mAHP amplitude between rat and

monkey BCs (Table 1).

Here we demonstrated that there is a general difference

between FS neurons from rat and monkey PFC, and that the

differences for the 8 out of 13 electrophysiological membrane

properties are similar for ChCs and BCs, while 1 out of 13

properties is different in rat and monkey in the opposite directions.

Interspecies differences in electrophysiological membrane proper-

ties for both BCs and ChCs reported here and elsewhere [20],

could underlie different spiking behavior of FS units during

performance of working memory tasks in monkey and rat [26,27].

Indeed, in monkey PFC, FS units (putative FS interneurons) fire at

a frequency of 40–60 Hz during the delay period of oculomotor

delayed response task [27,28], whereas in rat PFC, prefrontal FS

units fire with a lower frequency of around 12 Hz when rats

perform a delayed spatial alternation task [26]. These differences

in the spiking behavior of putative FS interneurons between

monkey and rat PFC can be explained by the differences in their

intrinsic membrane properties reported in this study.

It should be noted, that in this study, all recordings of the

electrophysiological membrane properties were performed in the

absence of synaptic blockers. Previously, it was shown that in vivo,

spontaneous synaptic activity can increase cellular Rin [29]. Our

previous study demonstrated that in rat BCs frequency of

miniature postsynaptic potentials is higher than in monkey [20],

which could be responsible for possible overestimation of Rin in

rat in the absence of synaptic blockers. And yet synaptic blockers

did not produce any significant changes in Rin in both monkey

and rat BCs [20].

In addition, one of our findings reported here is that ChCs-BCs

differences can be species-specific. Thus, we showed that the

electrophysiological membrane property such as the 1st AP

latency, as well as the shape of the subthreshold responses to the

depolarizing current pulse were species-specific (Figure 4). One of

the recent studies of ChCs-BCs differences was made in a different

species (mouse) from the ones used in this study [10]. In Woodruff

et al., the most striking ChCs-BCs differences were differences in

Rin, rheobase, time to the 1st AP and membrane time constant

[10]. Moreover, the intrinsic electrophysiological properties that

separate ChCs and BCs in mouse cortex layer 2 have been

proposed to be used to predict the morphology of individual FS

neurons [10]. Interestingly, the ChCs-BCs differences in the 1st AP

latency reported in Woodruff et al. coincide with those observed in

rat but not in monkey in the present study, while the ChCs-BCs

differences in rheobase are similar to those reported in monkey. All

these data indicate that species identity contributes substantially to

physiological heterogeneity of FS interneurons.

Currently, rodents are the dominant animal model for

understanding human cortex function and dysfunction in mental

illnesses, yet the validity of the rodent model has not been fully

established. Although it is generally believed that a canonical

cortical circuit is conserved across different mammalian species

[30], a number of cellular level differences between rodents and

primates have been reported. For example, in the rat frontal

cortex PV-positive interneurons are the largest population of

inhibitory neurons [31], whereas calretinin-positive interneurons

predominate in the PFC of monkeys [23]. In addition, Ca2+-

binding proteins and neuropeptides are extensively colocalized in

interneurons of the rat frontal cortex [5], but not in the monkey

dorsolateral PFC [23]. Furthermore, as described here and in our

Figure 6. ChCs and BCs differences in fAHP amplitude in both species. A. Action potential (truncated) produced by depolarizing current
pulses are followed by fAHP in monkey and rat ChCs (gray) and BCs (black). B. Quantification of population data for fAHP amplitude in monkey and
rat ChCs (gray) and BCs (black). In both monkey and rat, ChCs have smaller fAHP amplitude than BCs. Error bars represent SE.
doi:10.1371/journal.pone.0070553.g006
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previous study [20], interspecies differences are also present in the

electrophysiological properties in ChCs and BCs. In concert, these

findings indicate that findings in rodent model systems have to be

interpreted with appropriate care regarding their relevance for the

role of GABA neurons in human brain function and dysfunction.

ChCs and BCs differences in physiological properties
Beginning with the first description of the membrane properties

of ChCs and BCs in rat neocortex [4,32], it has been generally

believed that ChCs have a FS phenotype that is indistinguishable

from FS basket cells. In this study we demonstrated differences

Figure 7. Classification trees for monkey and rat FS interneurons. A. Classification tree for rat FS interneurons based on mAHP amplitude. B.
Classification tree for rat FS interneurons based on 1st AP latency and fAHP amplitude. C. Classification tree for monkey FS interneurons based on
frequency, 1st AP latency and fAHP amplitude. Arrow indicates the box to follow if the condition is ‘‘True’’.
doi:10.1371/journal.pone.0070553.g007
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between ChCs and BCs for a number of electrophysiological

membrane properties.

One of the membrane properties that showed a striking ChCs-

BCs difference in the present study was the amplitude of the

mAHP generated at the end of depolarizing responses, both

subthreshold and suprathreshold. Such ChCs-BCs difference in

mAHP amplitude was never reported before. In rat, the mAHP

amplitude allowed for unequivocal ChCs and BCs differentiation.

The channels that might be responsible for the mAHP are Ca2+-

dependent K+ channels, mostly small conductance apamin-

sensitive K+ channels [33]. These channels could also define

firing pattern adaptation. In addition, it was demonstrated that

this hyperpolarization was due to the activation of a K+ current

activated by Na+ [34]. In this study, we also report differences in

fAHP amplitude between ChCs and BCs in both rat and monkey,

which can potentially reflect differences in delayed rectifier Kv3

channels with very fast deactivating kinetic [35].

Previously, we demonstrated differences in hyperpolarizing

‘‘sag’’, or time-dependent inward rectification between ChCs and

arbor cells (presumably, FS BCs) from monkey PFC [18]. In this

study, sag was different between ChCs and BCs in both species

(Figure 2). Hyperpolarizing sag is most likely produced by the Ih

channels [36,37]. Their presence in FS interneurons was

previously demonstrated in the neocortex of rats [38] and

monkeys [20]. Ih currents are also shown to contribute to neuronal

excitability [36,37]. In accordance with potentially higher

expression of Ih channels in ChCs than in BCs, the former have

more negative voltage threshold for action potential initiation in

rat.

AP threshold also scored high for the ‘‘cell type’’ factor in

ANOVA test (Table 1). Differences in voltage AP threshold can be

produced by the differences in fast and slow K+ currents that can

shunt Na+ currents and increase firing threshold [39], including

Kv1 channels [40,41]. In our previous publication, we showed that

Kv1 channel blocker decreased AP threshold in rat FS BCs [20].

In addition, the observed ChCs-BCs differences in AP threshold

can be defined by the inward Na+ and low-threshold T-type Ca2+

currents [39]. Differences in excitability between ChCs and BCs

were also associated with lower rheobase values in ChCs than in

BCs in monkey and for a combined population of cells (Table 1). A

similar difference between ChCs and BCs in rheobase was

demonstrated in mouse neocortex [10].

In this study, ChCs fired at a substantially higher frequency

than BCs in both rat and monkey, similar to previous findings in

ferret [15] and monkey PFC [18] where the same difference was

shown for ChCs and linear arbor cells (that, presumably, largely

correspond to FS BCs from this study). It is known that FS PV-

positive interneurons are involved in the generation of gamma

oscillations [42,43]. A differential role of ChCs and BCs in

generation of gamma oscillations which was demonstrated in

rodent brain studies utilizing in vivo [44] and in vitro [45]

approaches could potentially be explained by the differences in

firing frequency between ChCs and BCs demonstrated in this

study (Figure 3).

ChCs and BCs differential role in the cortical circuitry
The unique role of ChCs in cortical circuitry stems from at least

two important features of this cell type: 1) the subcellular location

of their inputs to the axon initial segment of pyramidal cells, and 2)

the evidence that their effects on pyramidal cells can be either

hyperpolarizing or depolarizing depending on the level of circuit

activity [9,11]. Thus, while BCs control inputs of pyramidal cells,

ChCs, with their presynaptic terminals strategically placed near

the location where APs are initiated, more closely control output.

In this study, we showed that ChCs and BCs have different firing

patterns, including differences in firing frequency, first spike

latency, and more pronounced adaptation of firing (Table 1).

These differences in firing behavior could potentially be translated

into differential contribution of ChCs and BCs to rhythmic cortical

activity. Indeed, Klausberger et al. demonstrated that in rat

prefrontal cortex in vivo ChCs but not BCs regulate pyramidal cell

activity in response to incoming excitation during transition from

slow to theta oscillations [44]. Alternatively, BCs demonstrated

more intense firing during the gamma-frequency dominated

phases of the UP-states, which indicates their notable role in

control of prefrontal gamma oscillations [44]. Another study

performed in vitro showed that ChCs but not BCs maintain

functional polarization of pyramidal cells during high-frequency

gamma oscillations through separation of axonal and somatoden-

dritic compartments that discharge at high-and low-frequency

respectively [45]. It was suggested that high frequency firing of

ChCs is necessary to provide tonic inhibition of pyramidal cell

axon initial segment that maintains this separation [45].

In conclusion, the differences in electrophysiological membrane

properties between the two types of FS interneurons, ChCs and

BCs, from monkey and rat PFC described here can contribute to

their differential behavior in normal cortical circuitry, e.g.

generation of rhythmic brain activity [44,45], as well as to their

differential role in diseased brain. Thus, comparisons of postmor-

tem brains from schizophrenia and control subjects indicate

different disease-related alterations in ChCs and BCs; pre- and

postsynaptic changes in ChCs-pyramidal synapses suggest their

increased efficacy, whereas pre- and postsynaptic changes in BCs-

pyramidal synapses suggest decreased input from BCs [46].
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