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Abstract

Objective

Epilepsy and intellectual/developmental disabilities (ID/DD) have a high rate of co-occur-
rence. Here, we investigated gene mutations in Chinese children with unexplained epilepsy
and ID/DD.

Methods

We used targeted next-generation sequencing to detect mutations within 300 genes related
to epilepsy and ID/DD in 253 Chinese children with unexplained epilepsy and ID/DD. A
series of filtering criteria was used to find the possible pathogenic variations. Validation and
parental origin analyses were performed by Sanger sequencing. We reviewed the pheno-
types of patients with each mutated gene.

Results

We identified 32 novel and 16 reported mutations within 24 genes in 46 patients. The detec-
tion rate was 18% (46/253) in the whole group and 26% (17/65) in the early-onset (before
three months after birth) epilepsy group. To our knowledge, we are the first to report
KCNABT is a disease-causing gene of epilepsy by identifying a novel de novo mutation
(c.1062dupCA p.Leu355HisfsTer5) within this gene in one patient with early infantile epilep-
tic encephalopathy (EIEE). Patients with an SCN71A mutation accounted for the largest pro-
portion, 17% (8/46). A total of 38% (9/24) of the mutated genes re-occurred at least 2 times
and 63% (15/24) occurred only one time. lon channel genes are the most common (8/24)
and genes related to synapse are the next most common to occur (5/24).
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Significance

We have established genetic diagnosis for 46 patients of our cohort. Early-onset epilepsy
had the highest detection rate. KCNABT mutation was first identified in EIEE patient. We
expanded the phenotype and mutation spectrum of the genes we identified. The mutated
genes in this cohort are mostly isolated. This suggests that epilepsy and ID/DD phenotypes
occur as a consequence of brain dysfunction caused by a highly diverse population of
mutated genes. lon channel genes and genes related to synapse were more common
mutated in this patient cohort.

Introduction

Epilepsy and intellectual/developmental disabilities (ID/DD) are both common pediatric neu-
rological disorders. ID/DD is one of the main comorbidities of epilepsy [1] with about a quarter
of epileptic children having ID/DD. The prevalence is much higher in children presenting with
early-onset (before three months after birth) epilepsy [2-4]. Although frequent and refractory
seizures may cause cognitive and motor regression, common pathophysiological mechanisms
may be responsible for the high rate of co-occurrence of epilepsy and ID/DD [5].

The etiologies of these two disorders are complex and diverse with the majority being
unknown. Genetic factors play a major role in the etiologies of epilepsy and ID/DD, especially
in pediatric patients, who are highly heterogeneous. Defects in many genes have been reported
as shared underlying mechanisms of epilepsy and ID/DD [6-9]. These genes are involved in
different pathways. Ion channel genes, which are particularly relevant to epilepsy, account for a
significant proportion [10]. However, the phenotypes related to these genes are difficult to dif-
ferentiate clinically, and the detection of mutations in suspected genes is always a challenge.
Seizures were always intractable and indicated a poor prognosis when co-occurring with ID/
DD. Therefore, knowing the genetic background and pathogenesis of epilepsy and ID/DD is
valuable not only for diagnosis and prognosis, but also for genetic counseling and treatment.

Many genes related to epilepsy and ID/DD have been reported. However, for individual
patients with non-syndromic epilepsy, it has been difficult to isolate the causative gene muta-
tions from a large number of possible candidate genes using conventional Sanger sequencing.
The rapidly developing targeted next-generation sequencing (NGS) has been proved to be a
fast, economic and accurate approach for screening gene mutations in disorders with both
genetic and phenotypic heterogeneity, including epilepsy and ID/DD [11]. In this study, we
used targeted NGS to investigate 300 candidate genes related to epilepsy and ID/DD in 253
Chinese children with unexplained epilepsy and ID/DD. We aim to make genetic diagnosis for
these patients and find clues to help us explain the common genetic background of epilepsy
and ID/DD.

Methods
Ethics statement

Written informed consent was obtained from the parents of all the patients. This study was
approved by the Institutional Review Boards of Peking University First Hospital. All data of
this study were analyzed anonymously.
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Patients

A total of 253 Chinese children with unexplained epilepsy and ID/DD were recruited from the
Department of Pediatrics, Peking University First Hospital from 2006 to 2014. All patients
were clinically diagnosed as having epilepsy and ID/DD of unknown origin, including 65
patients diagnosed as early-onset (before three months after birth) epilepsy. Nevertheless, it
was strongly suspected that the etiology of these patients’ diseases was genetic, owing to the fol-
lowing evidences: (1) no definite perinatal brain injury; (2) no hypoxia, ischemia, infection of
the central nervous system or cranial trauma; (3) no evidence of typical inherited metabolic
disorders or specific neurodegenerative disorders based on clinical features, neuroimaging or
blood/urinary metabolic diseases screening; (4) normal routine karyotyping and (5) the detec-
tion of chromosome sub-telomeric rearrangements with multiplex ligation-dependent probe
amplification (MLPA) showing no abnormalities [12]. 253 cases of our cohort included cases
from 246 trios, of which father or mother of four trios (1649, 5165, 5168, and 5237) had epi-
lepsy history, and parents of all the other 242 trios had no epilepsy and any related history.
Other seven cases were probands of seven families with more than one patient, of which six
families (3604, 5750, 6047, 6364, 6526, and 6636) consisted of two affected children and their
unaffected parents, and one family (5240) with five affected patients (proband, father, uncle,
aunt and grandfather) accorded with autosomal dominant inheritance. All genomic DNA used
in experiments were extracted from peripheral leukocytes.

Targeted next-generation sequencing

In accordance with the literatures searched within online databases, a total of 300 candidate
genes associated with epilepsy and ID/DD were selected as the genes of interest. We used a cus-
tom-designed gene panel, synthesized using the Agilent Sure-Select Target Enrichment tech-
nique (Zhongguancun Huakang Gene Institute, China), to capture the coding regions from the
300 genes, including their exons and exon-intron boundaries (1.285M bp in total). The follow-
ing NGS was performed on an Illumina GAIIx platform (Illumina, San Diego, CA, U.S.A.)
using paired-end sequencing of 110 bp. Bioinformatics analysis of the raw data included the
following steps: (1) image analysis using RTA software (real-time analysis, Illumina); (2) base
calling using CASAVA software v1.8.2 (Illumina); (3) filtered out duplicate and low base qual-
ity score reads using the Genome Analysis Tool kit (GATK); (4) aligned clean paired-end reads
to the human reference genome build hg19 using BWA software (Pittsburgh Supercomputing
Center, Pittsburgh, PA, U.S.A.); (5) identified insertion-deletions (indels) and single-nucleotide
polymorphisms (SNPs) using the GATK and annotated using ANNOVAR; (6) performed in
silico pathogenicity prediction of novel missense variations using Polyphen2 [12, 13].

The sequencing depth was more than 5X (range of 5X-185X; average of 136X), and the
mean coverage was 98.56%. On average, 423 variations within the 300 genes were found in
each patient. We then formulated the following filtering criteria to determine every possible
pathogenic variation from the large amount of initial variations: (1) insertion/deletion varia-
tions; (2) premature/delayed termination codon variations; (3) splice site variations including
substitution at nucleotide +1/-1 of intron; (4) missense variations predicted by polyphen2 as
probably/possibly damaged or benign. The variation meeting any one of the above criteria was
considered to be a candidate for pathogenic variations and was selected for further analysis
[12].

According to the HGMD Professional database, the 1000 Genomes Browser, PubMed and
the UCSC database, we marked the reported pathogenic mutations and excluded known poly-
morphisms. Finally, on average 17 possible pathogenic variations were identified in each
patient (range 5-27). We chose variations which to validate according to the known
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inheritance pattern of the involved genes. Heterozygous variations of genes with autosomal or
X-linked dominant heredity, homozygous or compound heterozygous variations of genes with
autosomal recessive heredity, and hemizygous variations of genes with X-linked recessive
heredity were regarded as likely causative variations. We performed validation and parental
origin analyses for these variations by conventional Sanger sequencing, and confirmed causa-
tive mutations according to parental origin of the variations and clinical features of the patients
[12].

Protein structure modelling

The homology modelling server SWISS-MODEL [14-16] was used to predict the tertiary struc-
ture of KCNABI protein. We chose the protein crystal structure 3EAU [17] of KCNAB2 from
Protein Data Bank (PDB) [18] as the template. For the homology of KCNABI and KCNAB2,
the structure from 89 to 413 amino acids of KCNABI protein (UniProtKB ID: Q14722) were
predicted.

Results

We identified causative mutations within 24 genes in 46 patients of our cohort, including two
likely pathogenic mutated genes in two patients. The total detection rate of our study was 18%
(46/253) in the whole group and 26% (17/65) in the early-onset epilepsy group. The detected
mutations included 32 novel and 16 reported mutations. Nineteen of the mutations were
severe, including eight premature/delayed termination codon mutations, ten insertion/deletion
mutations and one splicing site mutation. The remaining 29 mutations were non-synonymous,
including 27 mutations predicted to be “probably damaging” and two mutations (AFF2 p.
Gly547Asp and RELN p.Val3426lle) that were predicted to be “possibly damaging” by Poly-
phen2. In two patients (5240 and 6189) with distinct epilepsy and ID/DD phenotypes, two
mutated genes were regarded as likely pathogenic due to the unmatched phenotype or the
unavailability of segregation analysis in the family. An overview of the clinical features of
patients and their mutations is described in Table 1.

Among the 46 cases with a causative mutation, patients with an SCN1A mutation accounted
for the largest proportion of 17% (8/46), followed by SCN8A, KCNQ2 and IQSEC2 of 13% (6/
46), 9% (4/46) and 7% (3/46) respectively. A total of 38% (9/24) of the mutated genes (SCNIA,
SCN8A, KCNQ2, IQSEC2, CDKL5, DYRKIA, GABRB3, PCDH19, and STXBPI) reoccurred at
least two times in this study, and 63% (15/24) of the mutated genes (ALDH7A1, AFF2,
ATPI1A2, CASK, FOXGI, GRIN2A, GRIN2B, KCNABI, PRRT2, RELN, SHANK3, SLC2A1,
SYNGAPI1, UPF3B and ZEB2) occurred only one time. All mutated genes detected in this study
along with the number of patients in whom each gene was detected were shown in Fig 1.

Notably, we detected a novel de novo heterozygous mutation (c.1062dupCA p.Leu355Hisf-
sTer5) within KCNABI in one patient with EIEE. This mutation led to a premature termina-
tion codon. The patient with the mutation was a four-year-old girl with early-onset seizures
(onset at ten days after birth). The frequent partial seizures were followed by intractable gener-
alized tonic-clonic seizures (GTCS). Until now, she has used seven antiepileptic drugs (AEDs).
Sodium Valproate, Levetiracetam, Topiramate and Clonazepam had no obvious effect, while
Oxcarbazepine, Lamotrigine and Zonisamide reduced the seizures; among them Zonisamide
add-on had the best effect with a 75% reduction of the seizures. Her parents are planning to
consent for her to receive vagal nerve stimulation (VNS) to treat her intractable epilepsy. She
also has severe ID/DD now (non-verbal, limited interaction with her parents, but can walk
independent from 2 years 3 months), with occasional panic attacks. Her prenatal history was
normal and neurological examination was unremarkable. One of her electroencephalograph
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Table 1. Overview of clinical features of the patients and the mutations.

Gene Case Sex Study Seizures ID/DD Nucleotide substitution Amino acid Parental Novel/ Final
age (onset age) substitution origin reported diagnosis
)
SCN1A 152 M 8 GTCS, FS Severe c.4547C>A p.Ser1516Ter De novo Reported DS
(6 m)
2038 M 10 GTCS, PS Severe c.2134C>T p.Arg712Ter De novo Reported DS
(4 m)
5791 M 3 PS, GTCS  Severe c.4942C>T p.Arg1648Cys De novo Reported DS
(3m)
6047 M 3 PS, FS, Severe €.2589+3A>T - De novo Reported DS
Myoclonus,
Absences
(8m)
6207 F 15 PS. GTCS, Severe c.3733C>T p.Arg1245Ter De novo Reported DS
FS (3 m)
6222 F 0.5 PS, SE (16  Severe C.659T>A p.Val220Asp De novo Novel MMPSI
d)
6300 F 3 PS, Severe c.3372delT p. De novo Novel DS
Myoclonus, Phe1124LeufsTer4
GTCS, SE,
FS (6 m)
6492 M 4 PS, FS (7 Severe c.2488G>T p.Glu830Ter De novo Novel DS
m)
SCN8A 3129* M 9.5 GTCS, FS Severe €.2668G>A p.Ala890Thr De novo Novel
(11 m)
5487* M 3.5 GS (6 m) Severe c.4850G>A p.Arg1617GIn De novo Reported EE
6219* F 1.5 PS, GTCS, Severe c.1221G>C p.Leu407Phe De novo Novel EIEE
Myoclonus,
IS (3d)
6325* F 1 PS, GTCS  Moderate ¢.2549G>A p.Arg850Gin De novo Novel EIEE
(2.5 m) to severe
6908* M 1.5 GTCS (4 Moderate ¢.4787C>G p.Ser1596Cys De novo Novel EE
m) to severe
YL F 3 PS (6 m) Severe c.4935G>A p.Met1645lle De novo Novel
KCNQ2 597 M 3 GS (3d) Severe c.365C>T p.Ser122Leu De novo Reported EIEE
2202 M 2 PS, GTCS, Severe c.956A>C p.Lys319Thr De novo Novel EIEE
FS (3 d)
2312 M 1.5 PS, FS (4 Severe c.830C>T p.Thr277lle De novo Novel EIEE
h)
5630 M 1 PS, IS (3d) Severe c.1655A>C p.Lys552Thr De novo Reported EIEE
IQSEC2 3481 M 9 PS(3y6 Severe €.88_90delATC p.lle30del De novo Novel
m)
3604 M 7 PS, FS (6 Severe c.1049C>A p.Ala350Asp Mother Novel
m)
5292 M 2 PS, IS, Severe €.2846_2852delCCCAGGT p.Ser949CysfsTer7 De novo Novel
Myoclonus
(1y4m)
CDKL5 1613 F 1 PS (40 d) Severe c.2314delA p. De novo Novel EIEE
Lys772ArgfsTer12
5057 F 1.5 PS (1 m) Severe c.528G>A p.Trp176Ter De novo Novel EIEE
DYRK1A 2091 M 7 GTCS, FS, Severe c.859G>T p.Asp287Tyr De novo Novel
SE(1y6
m)
2959 F 3 GS (2y) Severe c.946C>T p.GIn316Ter De novo Novel
(Continued)
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Table 1. (Continued)

Gene Case Sex Study Seizures ID/DD Nucleotide substitution Amino acid Parental Novel/ Final
age (onset age) substitution origin reported diagnosis
)
GABRB3 1538 M 1 PS, GTCS Severe c.914C>T p.Ala305Val De novo Novel
(6 m)
SYH M 1.5 PS (9 m) Severe ¢.509T>G p.Leu170Arg De novo Novel
PCDH19 6526 F 9 PS (5 m) Severe c.1091delC p.Pro364ArgfsTer4  Father Reported
LXX F PS, FS (9 Moderate  ¢.370G>A p.Asp124Asn Father Novel
m)
STXBP1 527 M 2 IS (7 d) Severe c.568C>T p.Arg190Trp De novo Reported EIEE
MYS M 2 IS (3d) Severe c.568C>T p.Arg190Trp De novo Reported EIEE
AFF2 6636 M 11 PS (6y) Moderate ¢.1640G>A p.Gly547Asp Mother Novel
ALDH7A1 5921 M 4 PS (3 m) Moderate ¢.1553G>C p.Arg518Thr p. FatherMother Novel PDE
to severe c.1061A>G Tyr354Cys Reported
ATP1A2 5871 M 15 PS, FS (1 Mild c.2563G>A p.Gly855Arg De novo Reported
m)
CASK 2584 F 6 IS(1y) Severe c.2141delC p. De novo Novel MICPCH
Ala714GlufsTer13
FOXG1 2539 M 2 GTCS, PS, Severe C.738C>A p.Tyr246Ter De novo Novel
Laugh
attack (6 m)
GRIN2A 6245 F 6 PS, ESES Severe c.2191G>A p.Asp731Asn De novo Reported
6vy)
GRIN2B 1503 M 2 PS, IS, Severe c.1985A>C p.GIn662Pro De novo Novel
Myoclonus,
Tonic,
Startle (6
m)
KCNAB1  HY F 4 PS, GTCS  Severe c.1062dupCA p.Leu355HisfsTer5 De novo Novel EIEE
(10d)
PRRT2 5240 F 1 GS, IS (3 Severe €.649dupC p.Arg217ProfsTer8 Father Reported
m)
RELN 6235 F 7 Myoclonus  Severe c.10276G>A p.Val3426lle p. Father Novel
(3y) c.2252A>C Lys751Thr Mother Novel
SHANK3  ZXT M 3 IS(1y10 Severe ¢.3598G>C p.Ala1200Pro De novo Novel
m)
SLC2A1 1649 M 5.5 GTCS (4y Mild c.1477T>C p. Mother Novel
8 m) Ter493ArgextTer56
SYNGAP1 5828 F 5 Atypical Severe €.829dupC p.Pro277ProfsTer7  De novo Novel
absences,
Myoclonus,
Atonic,
GTCS, FS
(10 m)
UPF3B 6189 M 2 IS (8 m) Severe C.883T>A p.Leu295Met Mother Novel
ZEB2 4620 M 3 PS (?) Severe c.1426_1427insA p. De novo Reported
Met476AsnfsTer6

M, male; F, female; y, years; m, months; d, days; h, hours; PS, partial seizures; FS, febrile seizures; SE, status epilepticus; DS, Dravet syndrome; EIEE,
early infantile epileptic encephalopathy; EE, epileptic encephalopathy; IS, infantile spasms; GS, generalized seizures; PDE, pyridoxine-dependent epilepsy;
MMPSI, malignant migrating partial seizures in infancy; ESES, electrical status epilepticus in sleep; MICPCH, mental retardation and microcephaly with
pontine and cerebellar hypoplasia

*have been reported in [12].

doi:10.1371/journal.pone.0141782.t001
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Fig 1. Pathogenic (red) and likely pathogenic (green) mutated genes identified in 253 patients with unexplained epilepsy and intellectual/
developmental disabilities.

doi:10.1371/journal.pone.0141782.g001

(EEG) recordings showed a slow spike-wave in the left frontotemporal region, while another
EEG recorded frequent sharp waves in the left temporooccipital region. Her cranial magnetic
resonance imaging (MRI) was normal.

KCNABI encodes the beta-1 member of the shaker-related family of voltage-gated potas-
sium channels. This member includes three isoforms (Kvp1.1- Kv1.3) of the KCNABI gene
[19-23]. KvB1.1, the longest isoform, is restricted expressed in brain [24]. The shaker-related
voltage-gated K+ (Kv) channels consist of alpha and beta subunits [25]. The beta subunits
modulate the gating properties of the alpha-subunit potassium channels. Voltage-dependent
potassium channel proteins are responsible for the electrical properties of excitable cells and
play physiological roles in non-excitable cells [26]. To further study the pathogenicity of p.
Leu355HisfsTer5 mutation, protein tertiary structures of wild type and p.Leu355HisfsTer5
mutation of KCNABI were predicted using the SWISS-MODEL. Because the template 3EAU
was a homotetramers crystal structure, we predicted both monomer and tetramer of KCNABI
protein. According to the monomer prediction (Fig 2A), the mutated KCNABI protein lost
C-terminal helices when compared to wild type. According to the tetramer prediction (Fig 2B),
the wild type was able to bind to NADP™ by sharing the same binding domains of KCNAB2
protein (data from: http://www.uniprot.org/uniprot/Q14722). But the mutated KCNABI pro-
tein was not able to bind to NADP™ for losing a NADP™ binding domain (375-381 amino
acids), though might still be able to form a tetramer. Previous study of experimental point
mutation within NADP™ binding domain of KCNABI protein showed significant effects on
Kvl channel trafficking and axonal targeting [27]. Therefore, the p.Leu355HisfsTer5 mutation
that we identified is probably pathogenic.

To understand a possible common genetic mechanism of epilepsy and ID/DD, we classified
24 mutated genes identified in our study into groups according to gene function. We found
that ion channel genes had the largest percentage of occurrence, 33% (8/24) with genes related
to synapse coming second at 21% (5/24). Other genes also identified were classified as having
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Fig 2. Structure modeling of wild type and p.Leu355HisfsTer5 mutation of KCNAB1 with
SWISS-MODEL. A: Monomer view: comparing with wild type, the mutant lost C-terminal structure of the
protein; B: Tetramer view: comparing with wild type, the mutant might lose the ability of binding NADP™.

doi:10.1371/journal.pone.0141782.9002

functions in transcriptional regulation, protein kinase modulation, cell metabolism and cell-
cell interaction. The classification and the number of genes of each group were shown in
Table 2.

Discussion

In this study, we discovered 32 novel and 16 reported mutations within 24 genes in 46 patients
of our cohort, including two likely pathogenic mutated genes in two patients. The total detec-
tion rate of our study was 18% (46/253) in the whole group and 26% (17/65) in the early-onset
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Table 2. The classification of mutated genes.

Gene Function Gene Mutated Genes
(n)
lon channel 8 SCN1A, SCN8A, KCNQ2, GABRB3, ATP1A2, GRIN2A, GRIN2B,
KCNAB1
Synapse 5 IQSEC2, STXBP1, PRRT2, SHANK3, SYNGAP1
Transcription 4 AFF2, FOXG1, UPF3B, ZEB2
regulation

Protein kinase 3 CDKL5, DYRK1A, CASK

Cell metabolism 2 ALDH7A1, SLC2A1
Cell-cell interaction 2 PCDH19, RELN

doi:10.1371/journal.pone.0141782.t002

epilepsy group. Early-onset epilepsy had the relatively higher detection rate. We made genetic
diagnosis for these 46 patients. This was critical for them to improve further management and
genetic counseling for their epilepsy. We expanded the phenotype and mutation spectrum of
the 24 genes identified in our study. This provided more information for further understanding
of these disease-causing genes. Patients with an SCN1A mutation accounted for the largest pro-
portion, 17% (8/46), of which seven patients were diagnosed as Dravet syndrome and one
patient was diagnosed as MMPSI. MMPSI cases with a SCNIA mutation have been reported
and MMPSI is regarded as the most severe phenotype of SCNIA to date [28, 29]. Our MMPSI
patient with a novel SCNIA mutation provided further evidence that SCN1A defects play an
important role in MMPSI. A total of 63% (15/24) of the mutated genes occurred only one time
in our study; therefore, it seems that epilepsy and ID/DD are phenotypes that occur as a conse-
quence of brain dysfunction caused by highly diverse mutated genes, most of which are isolated
and fit the rule of common disease rare variations. In addition, the spectrum of mutated genes
in our study is rather different from those reported in other similar studies [11, 30]. Population
diversity and different inclusion criteria (both for patients and candidate genes) may account
for this inconsistency.

In this study, we identified a novel de novo heterozygous mutation (c.1062dupCA p.Leu355-
HisfsTer5) within KCNABI in one patient with EIEE. KCNABI has been reported as a suscepti-
bility gene for epilepsy, particularly temporal lobe epilepsy (TLE), but no pathogenic mutation
has been reported. An association study of 2717 epileptic patients reported that numerous
SNPs located within KCNABI contributed to the susceptibility to epilepsy. These patients man-
ifested various forms of epilepsy [31]. Furthermore, KCNABI was regarded as a candidate gene
for lateral temporal epilepsy (LTE) because of its functional interaction with LGI1 [32], the dis-
ease-causing gene of autosomal dominant LTE (ADLTE). However, sequencing of KCNABI in
ADLTE families without LGII mutations failed to identify any mutations. This suggested that
KCNABI does not act as a major disease-causing gene in ADLTE [33]. Nevertheless, another
association study of 142 LTE patients suggested that KCNABI may be a susceptibility gene of
LTE [34]. In addition; a genome-wide scan study was conducted on a TLE family. Linkage
analysis identified a locus on chromosome 3q25-q26. KCNABI was one of the highest priority
genes in this region, but sequencing of KCNABI was unable to identify any mutations [35]. In
summary, although several previous studies have supported the association of KCNABI with
epilepsy, no KCNABI mutations have been reported in patients with this disease previously.
However, a mouse model of KCNABI disruption showed significant alterations in hippocam-
pal learning and memory functions [36], supporting a possible relationship between KCNABI
defects and brain dysfunction. Here we reported an epileptic patient with a KCNABI mutation,
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which supports the relationship between KCNABI dysfunction and epilepsy, and interestingly,
the epileptic discharges of this patient located mostly at temporal region.

We also found four patients with a KCNQ2 mutation. Because KCNQ?2 [37] and KCNT!
[38] have already been reported to be common and important genes for epileptic encephalopa-
thy, adding the recently reported KCNA2 [39], KCNH1 [40], KCNCI [41] genes and now the
KCNABI gene, this led us to pay more attention to the potassium channel genes as a group in
epilepsy, especially epileptic encephalopathy.

Two mutated genes were regarded as likely having pathogenic mutation in our study. First,
we detected a heterozygous mutation (p.Arg217ProfsTer8) within PRRT2 in one family (5240).
The proband had severe ID/DD and infantile spasms, but other individuals with the same
mutation in this family had benign epilepsy during infancy and normal intelligence during
adulthood. We hypothesized that the PRRT2 mutation in the proband may only increase the
risk of epilepsy, while another undiscovered mutated gene may instead contribute to the severe
phenotype. In addition, we discovered a hemizygous mutation (p.Leu295Met) in UPF3B which
have been reported as a causative gene of X-linked recessive mental retardation. The previously
reported cases with mutation in UPF3B had no seizures. The mutation we found is novel, but
probably damaging predicted by Polyphen2. Unfortunately, DNA samples of other male
maternal family members were unavailable to make sure the pathogenicity of this mutation.

To understand a possible common genetic mechanism of epilepsy and ID/DD, we classified
the mutated genes identified in our cohort according to gene function. We have found that ion
channel genes had the largest percentage of occurrence. This suggests that ion channels play a
vital role in the pathogenesis of epilepsy and ID/DD. Activation of neurotransmitter receptor
ion channels at synapses promotes synaptic plasticity during brain development. Therefore,
abnormal ion transport may affect neural excitability and brain development, resulting in epi-
lepsy and ID/DD [42]. Further, synapse formation and normal function are essential in the sig-
naling and the formation of neural networks. Genes related to synapse formation and function
were also closely related to epilepsy and ID/DD. In addition, some factors in transcriptional
regulation, protein kinase modulation, cell metabolism and cell-cell interaction may also par-
ticipate in the common pathogenesis of epilepsy and ID/DD. However, relevant details remain
unclear. We believe further study of the common pathogenesis of epilepsy and ID/DD are
urgently needed.

In our study, with the detection rate of 18%, the targeted NGS is certainly supposed to be an
efficient and precise approach to screen monogenic mutations in patients with highly heteroge-
neous disorders such as epilepsy and ID/DD. However, according to our experience, some limi-
tations of this approach and tips for best performance should be discussed here. First, owing to
false positive results, conventional Sanger sequencing is definitely required for the validation of
the variations supposed to be significant, especially when the targeted regions have insufficient
coverage. Second, on the other hand, false negative results may also occur and may lead to the
loss of crucial data. This might be one of the reasons that our study failed to detect gene muta-
tions in the other 207 patients. Third, DNA samples of the parents and other affected or even
unaffected members of families are essential to analyze the pathogenicity of the variations.
Availability of almost all parental DNA samples in our study played a significant role in data
analysis. However, the unavailability of other members in a few families hampered further con-
firmation of their etiology. Finally, precise clinical data is a prerequisite, without which the
genetic diagnosis cannot be made. For example, patient 5871 who carried a de novo mutation
in ATP1A2 also had an inherited homozygous mutation (p.Ile105Val) in CLN3. Although the
CLN3 nonsynonymous mutation was predicted to be “probably damaging”, we still excluded
its pathogenicity according to his phenotype, not like neuronal ceroid lipofuscinoses clinically.
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In summary, we used targeted NGS to investigate causative gene mutations in Chinese chil-
dren with unexplained epilepsy and ID/DD. We established genetic diagnosis for 46 patients of
our cohort and expanded the phenotype and mutation spectrum of 24 genes associated with
epilepsy and ID/DD. This study is the first to identify a KCNABI mutation in a patient with
EIEE. More cases with mutations in this gene are needed to confirm and clarify its role in

epilepsy.
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