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Abstract

The endothermic state of mammals and birds requires high heart rates to accommodate the high rates of oxygen
consumption. These high heart rates are driven by very similar conduction systems consisting of an atrioventricular node
that slows the electrical impulse and a His-Purkinje system that efficiently activates the ventricular chambers. While
ectothermic vertebrates have similar contraction patterns, they do not possess anatomical evidence for a conduction
system. This lack amongst extant ectotherms is surprising because mammals and birds evolved independently from reptile-
like ancestors. Using conserved genetic markers, we found that the conduction system design of lizard (Anolis carolinensis
and A. sagrei), frog (Xenopus laevis) and zebrafish (Danio rerio) adults is strikingly similar to that of embryos of mammals
(mouse Mus musculus, and man) and chicken (Gallus gallus). Thus, in ectothermic adults, the slow conducting
atrioventricular canal muscle is present, no fibrous insulating plane is formed, and the spongy ventricle serves the dual
purpose of conduction and contraction. Optical mapping showed base-to-apex activation of the ventricles of the
ectothermic animals, similar to the activation pattern of mammalian and avian embryonic ventricles and to the His-Purkinje
systems of the formed hearts. Mammalian and avian ventricles uniquely develop thick compact walls and septum and,
hence, form a discrete ventricular conduction system from the embryonic spongy ventricle. Our study uncovers the
evolutionary building plan of heart and indicates that the building blocks of the conduction system of adult ectothermic
vertebrates and embryos of endotherms are similar.
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Introduction

The hearts of mammals and birds maintain high rates of

contraction [1] that in concert with high systemic blood pressures

accommodate their high rates of oxygen consumption due to their

endothermic state [2]. The high heart rates, the timing of

sequential atrial and ventricular contractions and the rapid spread

of the activating impulse over the avian and mammalian ventricles

are possible because of a specialized cardiac conduction system

[3]. However, while the sequential activation of the cardiac

chambers and appropriate matching of the atrial and ventricular

contractions are similar across all vertebrate groups, there is no

anatomical evidence for a specialized conduction system in hearts

of reptiles or other ectothermic vertebrates [4,5]. Because

mammals and birds evolved independently from reptilian ances-

tors, the evolutionary origin of their specialized conduction

systems has remained unclear; either their conduction systems

evolved independently or primordial components of the system

were already present in the ancestral reptiles (Fig. 1).

Like the hearts of ectothermic vertebrates, embryonic mamma-

lian and avian hearts also exhibit regulated sequential activation

patterns in the absence of a morphological conduction system

[2,6,7]. This suggests that the functional components for

Figure 1. Background and hypothesis. (A) Anatomical works
concluded that the specialized cardiac conduction system evolved
independently in mammals and birds because similar structures could
not be found in ectothermic vertebrates. (B) We are testing the
hypothesis that a primordial version of the specialized cardiac
conduction system can be found in ectothermic vertebrates.
doi:10.1371/journal.pone.0044231.g001
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conduction system are established early in development and in

evolution, but are not represented by anatomically distinguishable

components as in the mature hearts of endothermic vertebrates.

Instead, the components may reflect an intrinsic part of the

building plan of the heart.

Tbx2 and Tbx3 belong to an ancient family of transcription

factors [8] expressed in the embryonic atrioventricular canal from

human to primitive fish [3,9]. In the embryo, the atrioventricular

canal delays the impulse from atrium to ventricle. Tbx2/3

suppresses chamber genes including Nppa and Gja5, encodes for

connexin40 that is required for fast conduction [10], and hence

inhibits differentiation of the atrioventricular canal to fast-

conducting chamber myocardium [3,11]. Tbx3 remains expressed

in the mature conduction system components of mammals,

including the atrioventricular node that derives from the

atrioventricular canal [12]. Bmp2/4 are expressed in the atrioven-

tricular canal of early embryonic mammals, birds and fish, and are

crucial for activation of Tbx2/3 (Fig. S1) [13–17]. Hence, Tbx2/3,

Bmp2/4 and Gja5/Nppa represent evolutionary conserved positive

and negative markers, respectively, that discriminate the embry-

onic slow-conducting atrioventricular myocardium and fast-

conducting chamber myocardium. The ventricular His-Purkinje

system of mammals and birds is specifically marked by expression

of Gja5 (and Nppa in mammals) [3,10].

Here, we carried out in situ hybridization analysis using

evolutionary conserved genetic markers and provide a three-

dimensional reconstruction of the key components of the

conduction system. The ventricular conduction pattern was

visualized using optical imaging of activation. The cardiac

expression and conduction patterns of a reptile were then

compared to those of mammals, chicken, and other ectothermic

vertebrates, frog and fish. We find an anatomic, genetic and

physiologic conserved building plan where hearts of adult

ectothermic vertebrates are similar to embryos of the endothermic

mammals and birds. This indicates that primordial components of

the cardiac conduction system were present in the ancestral

reptiles.

Figure 2. The atrioventricular junction in ectotherms is not interrupted by an insulating plane. Picro-sirius red stain for collagen (red) on
10 mm sections of hearts of adult ectotherms showing the atrioventricular canal to be in full communication (+) with the ventricle. l(r)a, left(right)
atrium.
doi:10.1371/journal.pone.0044231.g002
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Materials and Methods

All experimental procedures on adult material complied with

national and institutional guidelines and were approved by

Institutional Animal Care and Use Committee of the University

of Amsterdam. The approval is registered as ‘‘DAE101617’’ for

optical mapping of the ectotherms and ‘‘DAE101532’’ for optical

mapping of developing mice. In The Netherlands experiments

Figure 3. The phenotype of the slow propagating atrioventricular canal is evolutionary conserved. Numbers in the phylogenetic tree
indicate time in millions of years since major splits in tetrapod evolution. (A–E) The hearts of mature ectotherms (blue) and embryonic endotherms
(red) maintain complete muscular connection in the atrioventricular canal (avc). (F–J) Markers of fast propagating chamber myocardium (Nppa and
Gja5) are absent from the atrioventricular canal (arrowheads). Note that the specimen in H is contracted, obscuring the spongy design otherwise
visible. Scale bars in (A–E), 300 mm; (F–J), 100 mm.
doi:10.1371/journal.pone.0044231.g003
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with non-mammalian embryos (that are not autonomously viable)

do not require approval from the Institutional Animal Care and

Use Committee.

Animals
Adult zebrafish were provided by the Hubrecht Laboratory,

Utrecht, the Netherlands, and adult Xenopus laevis from Leiden

University, the Netherlands. Mice and Xenopus laevis embryos were

raised in the AMC. Green and brown anole (Anolis carolinensis and

A. sagrei) eggs and adults and fertilized chicken eggs, were bought

commercially in the Netherlands. Xenopus embryos were staged

according to Nieuwkoop [18], Anolis embryos according to Sanger

et al. [19], chicken according to Hamburger and Hamilton [20]

and mice from days post coitus.

Optical Mapping
Optical mapping was performed at 25uC in the ectothermic

vertebrates and we used specific ringer solutions for zebrafish and

Xenopus (in mmol/l: NaCl 115, Tris 5, NaH2PO4 1, KCl 2.5,

MgSO4 1, CaCl2 1.5, Glucose 5, pH adjusted to 7.2 with HCl) and

Anolis (adopted from [21]; in mmol/l: NaCl 95, Tris 5, NaH2PO4

1, KCl 2.5, MgSO4 1, CaCl2 1.5, Glucose 5, pH adjusted to 7.5

with HCl). For embryonic mouse hearts we used Tyrode’s solution

at 37uC (in mmol/l: NaCl 128, KCl 4.7, CaCl2 1.45, MgCl2 0.6,

NaHCO3 27, NaH2PO4 0.4, Glucose 11[pH maintained at 7.4 by

equilibration with a mixture of 95% O2 and 5% CO2]). Excised

hearts from sedated animals were incubated in the specific solution

containing 15 mmol/l di-4-ANEPPS (voltage sensitive). Excitation

light was provided by a 5-watt power LED (filtered 510620 nm).

Fluorescence (filtered .610 nm) was transmitted through a

tandem lens system on CMOS sensor (1006100 elements;

MICAM Ultima). Activation patterns were measured during sinus

rhythm. Optical action potentials were analyzed with custom

software.

In situ Hybridization
All embryos and hearts were fixed in 4% paraformaldehyde

for one day and then kept in 70% ethanol until imbedding in

paraffin and then sectioned at 7–12 mm for in situ hybridization.

Methodology of the non-radioactive in situ hybridization analysis

has been described previously [22,23] and so has probes for

Zebrafish [16], Xenopus [24,25], chicken [26–30] and mouse

[26]. Probes for Anolis were made in house based on the

following coordinates using UCSC Genome Browser on Lizard

May 2010 (Broad AnoCar2.0/anoCar2) Assembly; Tnnt2

(chr4:131,362,830–131,375,015), Bmp2 (chr1:136,434,179–

136,445,741), Gja5 (chr3:162,064,640–162,065,729), Tbx3

(chrUn_GL343338:1,255,354–1,255,812), Tbx2 (regarded as

Tbx3, chrLGb:3,261,791–3,267,757), Tbx5

(chrUn_GL343338:1,127,724–1,145,671). Briefly, we generated

Figure 4. The developmental gene programme of amniotes is maintained in the mature heart of Anolis. (A–D) Stage 17/19 Anolis hearts
show complementary expressions of Bmp2 and Tbx3 to Gja5 in the developing myocardial atrioventricular canal (arrowheads). (E–H) The
developmental expression of Bmp2, Tbx3 and Gja5 is maintained in the mature myocardial atrioventricular canal (left side shown). la, left atrium; ra,
right atrium; ven, ventricle. Scale bars are 100 mm.
doi:10.1371/journal.pone.0044231.g004
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a cDNA library with standard TRIzol RNA extractions [31]

from freeze-fixed specimens of developmental stages 5–9 and

GOI cDNA were obtained by PCR amplification and cloned

into pBluescript SK_ (Stratagene, La Jolla, CA). Digoxigenine-

labeled antisense mRNA were then produced by in vitro

transcription according to the manufacturer’s instructions

(Roche, Mannheim, Germany).

3D-reconstruction Protocol
7, 10 and 12 mm serial sections were stained by in situ

hybridization and 3D reconstructions were performed as described

previously using AmiraH version 5.2 software [32]. The interactive

3D pdfs were created using Adobe Acrobat Pro ExtendedH version

9.3. The 3D pdf can be viewed with the freeware version: Adobe

ReaderH (version 9.3 or higher) with JavascriptH enabled.

Results and Discussion

In adult lizards, the sequential chamber contractions and an

atrioventricular delay are well-established [33], but we found no

insulating plane or insulated atrioventricular node in Anolis (Fig. 2).

Instead, the atrioventricular canal was entirely myocardial (Fig. 3).

This differs from the adult hearts of mammals and birds, where the

atrioventricular myocardium has largely disappeared and an

insulating plane of fibrous-fatty tissue has ingressed between the

atria and ventricles except at the atrioventricular node and His

bundle, which provide the sole electrical communication between

the atria and the ventricles [12,34,35]. To explain the atrioven-

tricular delay in reptiles, we hypothesized, therefore, that the

atrioventricular canal of Anolis has a molecular phenotype that

differs from that of the chambers.

In embryos of mammals, birds, frog and fish, Nppa and/or Gja5

mark the rapid propagating atrial and ventricular chamber

myocardium, whereas the atrioventricular canal is negative for

these markers [3,15] (Nppa is lost in birds and all reptiles except

turtles [36,37]). Focusing on the atrioventricular gene programme

during Anolis development, we found Tbx3 and Bmp2 to be

expressed in the developing atrioventricular canal myocardium,

exactly complementary to Gja5 in the adjacent chambers (Fig. 4A–

D). Tbx5, known to promote differentiation into Nppa- and Gja5-

expressing chamber myocardium [38], was also present in the

atrioventricular canal and the chambers (Fig. S2) [39].

We then examined the adult atrioventricular region in Anolis,

and observed that Bmp2, which in mammals and birds is expressed

in the atrioventricular canal only at embryonic stages, remained

expressed throughout ontogeny (Fig. 4B,F). Tbx3, which marks the

cardiac conduction system in mature mammals [12], was found

within the same Bmp2-positive atrioventricular domain (Fig. 4C,G).

Three-dimensional reconstructions of the expression patterns of

Tbx3 in early developing hearts of Anolis, chicken and mammals

revealed a striking resemblance (Fig. 5, Fig. S3). In all species, a

similarly-shaped atrioventricular ring was observed. The Tbx3

expression domain extended into the sinus venosus, marking the

sinus node primordium. This expression pattern did not substan-

tially change in lizards just prior to hatching, whereas in mammals

and birds, it became more complex with further development as

the morphology of the heart, and particularly the sinu-atrial

region, changed (Fig. 5).

We then pursued this building plan of the atrioventricular canal

to older vertebrate classes, represented by Xenopus, an amphibian

and thus a non-amniotic member of tetrapods, as well as zebrafish.

In both species, the atrioventricular canal is composed of

myocardium in continuity with the atrium and ventricle (Fig. 3).

An insulating plane and an insulated atrioventricular node were

not found (Fig. 2). In adult zebrafish and stage 48 Xenopus, we

found Tbx2 in the atrioventricular canal and Nppa (whose spatio-

temporal pattern strongly resembles that of Gja5 in mammals) in

the atria and ventricles, the patterns resembling those of Tbx3 and

Gja5, respectively, in the amniotic vertebrates (Figs. 6, 7). No

cardiac Tbx3 expression was found (Fig. S4).

Next, we examined the His-Purkinje system in Anolis. Gja5 was

used as marker for the mature His-Purkinje system conserved in

mammals and chicken [10]. The developing His bundle does not

express Gja5 until late stages in mammals [40] and birds [41], but

can nonetheless be identified very early by the expression of Tbx3

[26]. In mouse [40] and chicken, the Tbx3-positive and Gja5-

negative myocardium of the developing His bundle extends from

the atrioventricular canal ventrally and dorsally into the ventric-

ular myocardium and unto the crest of the ventricular septum

(Fig. 5). The region formed by the dorsal and ventral extension

Figure 5. Three-dimensional reconstructions of Tbx3 (yellow) expression in amniotes reveal a shared design. Reconstructions are
based on in-situ hybridizations of serial sections, except in human (based on immunohistochemistry, modified from [57,58]). The Tbx3 domains are
strikingly similar in the early phases of chamber formation (upper panel). The Tbx3 expression of the Anolis ventricle is very similar to that associated
with ventricular septation (black arrows) in the other amniotes (lower panel).
doi:10.1371/journal.pone.0044231.g005

Figure 6. Tbx2 expression in the atrioventricular canal of the formed heart of the zebrafish (in-situ hybridization). Nppa is expressed in
a complementary pattern. a, atrium; ven, ventricle.
doi:10.1371/journal.pone.0044231.g006
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and the crest is referred to as the primary ring [7]. The Anolis

ventricle is not septated, but shows Tbx3 expression into the

ventricle ventrally and dorsally, indicating the presence of a

primordial, but incomplete, primary ring that lacks the septal crest

component (Fig. 5).

The ventricular wall in mammalian and avian embryos is

composed of a trabecular inner layer and a thin compact outer

layer. Initially, both of these layers express natriuretic peptides

(Nppa and Nppb) and Gja5 [27,42], but halfway through develop-

ment, Nppa and Gja5 expression ceases in the strongly expanding

compact layer. After birth (or hatching in birds) the expression of

Nppa and Gja5 is limited to the His-Purkinje network that

eventually constitutes only a small fraction of the ventricular mass

(Fig. 8) [10,43]. The ventricular wall of fish, amphibian and

reptilian hearts does not display such an overt distinction in

expression pattern between an inner trabecular wall and a

compact outer layer. Their ventricular wall typically is composed

of a spongy or trabecular type of myocardium (Figs. 2, 3). In adult

Anolis hearts, Gja5 was homogenously expressed throughout the

trabecular ventricular wall. This suggests an absence of tracts of

preferential conduction leading to the ventricular apex and such

condition resembles that of early mammalian and avian embryos

(Fig. 9). Further back in evolution, as represented by Xenopus and

zebrafish, we observed homogenous Nppa expression in their

trabecular ventricular wall (Fig. 9A,D), while Tbx3 did not identify

a primordial atrioventricular bundle (Fig. S4).

Mammalian and avian hearts have an elaborate Gja5/Nppa-

expressing ventricular conduction system that activates the

ventricles from apex to base [42,44,45]. The homogenous Gja5/

Nppa expression patterns in Anolis, Xenopus and zebrafish trabecular

ventricles suggest that the electrical activation front may spread

from the vicinity of the atrioventricular canal, i.e. the ventricular

base, and reach the apex later. Such an activation pattern would

be reminiscent of early embryonic mammalian and avian

ventricles [45]. We used optical mapping to measure epicardial

activation patterns in Anolis. The first point of activation always

occurred in the cranial third of the ventricle, i.e. the base, and later

at the apex (Fig. 9H). This activation pattern is consistent with

most previous ECG and electrode investigations on reptiles and

very similar to the activation patterns of chamber-forming hearts

of mouse (E8–10) and chicken (E2–5) (Table 1) [45–47]. At these

stages in mammals and birds, a morphologically distinct conduc-

tion system has yet to form and ventricular septation is only

starting to take place [48,49]. Assuming that the dorsal and ventral

activation patterns share the same time point of activation at the

apex, we could synchronize the activation patterns and infer that

the dorsal base is activated prior to the ventral base in the

ectothermic vertebrates (Fig. 9B,E). Dorsal activation of the

ventricular base has been reported in chicken hearts prior to

septation and seemingly occurs in embryonic mouse as well

[42,45–49]. In Xenopus and zebrafish, the activation front travels

from the dorsal base to the apex. In Anolis, Xenopus and zebrafish

the location of the first point of activation varied within the dorso-

Figure 7. Tbx2 expression (in-situ hybridization) in developing Xenopus (st 48). Tbx2 is expressed in the atrioventricular canal and base of
the myocardial outflow tract and complementary to Nppa, marker of chamber myocardium. In ectotherms primitive myocardium (p), remnants of the
embryonic heart tube, can be recognized by its smooth surface as opposed to the trabeculated myocardium (t) formed during chamber formation.
The primitive myocardium of the ventricular base of st 48 Xenopus hearts already has the adult configuration. The trabecular component is far from
fully developed. a, atrium; avc, atrioventricular canal; c, conus arteriosus (myocardial outflow tract); p, primitive (atrabecular) myocardium; t,
ventricular trabeculated myocardium; ven, ventricle.
doi:10.1371/journal.pone.0044231.g007
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basal region (Fig. S5). The activation maps and expression data

indicate that the trabeculated ventricular wall of the ectothermic

vertebrates function essentially as an isotropic conduction network.

Consistently, conduction on the luminal surface of the adult

mammalian and avian ventricles through the Gja5-positive His-

Purkinje system also proceeds from base-to-apex [49,50]. On the

epicardial side, however, the activation front reaches the apex first

and then the base (Fig. 9J–L) [51]. In mammals and birds, the

developmental change in activation pattern to apex-to-base

observed at the epicardial side coincides with the development

of the Gja5-negative compact ventricular wall, which therefore

may contribute to this developmental change in activation pattern.

Hearts of ectothermic species and of embryos of endothermic

species do not have anatomically marked conduction system

components. In this study we used expression patterns of

conserved genetic markers and identified molecular conduction

system components in developing and adult lizards. We found

them to be similar to the components in embryonic mammals and

birds, indicating they constitute an integral part of the building

plan of the heart. Therefore, the conduction systems found in

mature mammals and birds most likely evolved from the

components of this shared building plan, and did not evolved

independently.

In mature birds and mammals, left-over traces of the

atrioventricular canal muscle in addition to the atrioventricular

node can be found. Birds have a well-developed right-sided

atrioventricular ring bundle that communicates with the ventricle

anteriorly through the so-called recurrent branch [4,52]. The

mammalian heart also maintains a molecularly distinct atrioven-

tricular ring bundle above the insulating plane [12]. Interestingly,

in congenital corrected transposition of the human heart, the

insulating plane disrupts the normal posterior atrioventricular

communication, whereas the anterior communication is abnor-

mally maintained [53,54]. The anterior part, then, resembles the

recurrent branch of the bird heart.

The adult lizards and ectothermic vertebrates in general

maintain important aspects of the embryonic vertebrate building

plan. The Bmp2/4-Tbx2/3-positive, Gja5/Nppa-negative atrioven-

tricular canal myocardium is maintained in adult ectothermic

vertebrates. This provides an electrical insulation between atrium

and ventricle in these hearts that lack an insulating plane of

connective tissue. The developing hearts of mammals and birds

have great tolerance to ischemia and regenerative potential, which

Figure 8. Development of compact walls. The development of the compact walls (Nppa and Gja5 negative) of mammals and birds leaves the
trabeculated myocardium (Nppa and Gja5 positive) as a thin inner lining of the ventricular lumina in the fully formed hearts. Nppa is not expressed
birds[36]. Scalebars, 100 mm. ivs, interventricular septum; lv, left ventricle.
doi:10.1371/journal.pone.0044231.g008
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Figure 9. Trabeculated ventricles are activated from base to apex. (A, D, G, J) Markers of fast propagating myocardium (Nppa and Gja5) are
homogenously expressed in the ventricular trabeculated myocardium from base to apex (ap). (B, E, H) Ventricular activation occurs from base to apex.
Early activation is red, late activation is blue. Note that the time-colour coding in panel E is different from that in panels B and H. (K) In species with
thick compact myocardium, surface breakthrough of the activation front is earlier in the apical region than in the base. (C, F, I, L) Graphs show the
average activation time of the apex and base and the total ventricular activation time. Note that in zebrafish, Xenopus and Anolis, the ventricular base
is activated earlier than the apex whereas in mice the ventricular base is activated later than the apex (* Significantly different (one-way ANOVA
P,0.05)). n is 3, 6, 9 and 2, respectively. Scale bars in (B, E, H, K) indicate respectively 0.2, 1, 0.5 and 0.1 millimetre. avc, atrioventricular canal; ven,
ventricle.
doi:10.1371/journal.pone.0044231.g009
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is lost around birth [55,56]. Interestingly, many ectothermic

vertebrates (e.g. newts and zebrafish) retain the regenerative

capacity and ischemia tolerance throughout life [6]. It is therefore

tempting to speculate that the maintenance of important aspects of

the embryonic programme in adult ectothermic vertebrates may

be involved in the retention of these capacities.

Our study provides a plausible scenario of the evolution of the

hearts of mammals and birds. The spongy myocardium of

ectothermic adult vertebrates, as well embryonic mammals and

birds allows for high ejection fractions and also serves to conduct

the ventricular depolarization (Fig. 10). However, a transition to

compact myocardium was necessary when pressure and heart rate

Table 1. Ventricular activation pattern in ectothermic vertebrates investigated by optical mapping(OP), ECG(ECG), electrodes(E) or
markers (M).

FISH Base-to-apex Left-to-right1 Apex-to-base

Acipenser sturio Noseda et al, 1962 E

Ameiurus nebulosus Noseda et al, 1962 E

Anguilla anguilla Noseda et al, 1962 E, 1963 ECG

Cyprinus carpio Noseda et al, 1962 E

Danio rerio This study OP Chi et al., 2008 OP

Sedmera et al 2003 OP

Esox lucius Vaykshnorayt et al, 2011 E

Protopterus ethiopicus (Arbel et al 1977 E, ECG)2 (Arbel et al 1977 E, ECG) 2

Salmo irideus Noseda et al, 1962 E

Scyliorhinus canicula Noseda et al, 1962 E

Scyliorhinus stellare Noseda et al, 1962 E

AMPHIBIA

Bufo marinus Mullen 1974 ECG

Bufo typhonius Mullen 1974 ECG

Bufo vulgaris major Lewis 1916 E

Caecilia guntheri Peters and Mullen 1966

Eleutherodactylus buergeri Mullen 1974 ECG

Pleurodeles waltii Noseda et la, 1963 ECG

Rana catesbeiana* Dillon and Morad 1981 OP Dillon and Morad 1981 OP

Rana esculenta Vaykshnorayt et al 2008 E

Rana temporaria Azarov et al 2007 E

Vaykshnorayt et al 2008 E, 2011 E

Telmatobius montanus Mullen 1974 ECG

Xenopus laevis Furman 1960 ECG

This study OP
Sedmera et al 2003 OP

REPTILIA

Squamata (50 sp) Mullen, 1967 ECG

Alligator mississippiensis Heaton-Jones and King 1994 ECG Syme et al 2002 E

Alligator sinensis Zhao-Xian et al 1991 ECG

Anolis caroliniensis This study OP

Boa constrictor Valentinuzzi et al 1969 ECG

Chrysemis sp Meek and Eyster, 1912 E

Crocodylus johnstoni* Christian and Grigg 1999 E Christian and Grigg 1999 E

Graptemys pseudogeographica Gray 1950 M

Pseudemys elegans Harris 1941 E

Pseudemys scripta Burggren 1978 E

Pseudemys troosti Gray 1950 M

Testudo graeca Lewis 1916 E Burggren 1978 E

Sphenodon punctatus McDonald and Heath 1971 ECG

In the formed hearts of mammals and birds, epicardial ventricular activation is from apex to base.
1Left-to-right activation is only reported in broad-hearted turtles.
2Arbel et al (1977) using ventrally placed electrodes find that as the apex becomes activated the current spreads towards the base. As they could not evaluate if the
base was activated earlier, and since the zebrafish outflow region is indeed activated later than the apex their results may be in agreement with the present study.
*Species where first point of activation definitely was neither base nor apex. From [33,59–81].
doi:10.1371/journal.pone.0044231.t001
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increased. This rendered the early trabecules secondary on force

generation, but available to differentiate into fibres of poor

contractility and high propagation speeds. Furthermore, mammals

and birds develop a compact ventricular septum whereby the early

trabecules come to drape the septal surfaces and thus form the

characteristic bundle branches of the His bundle (Fig. 10). Our

study, therefore, suggests that the parallel evolution of virtually

identical conduction systems and cardiac designs in birds and

mammals can be traced back to the existence of a primordial

conduction system of the ancestral reptile heart.

Supporting Information

Figure S1 Gene program of the developing atrioventric-
ular canal in chicken. Tbx5, known to induce Gja5, is present in

the atrioventricular canal but Gja5 is absent where Bmp2 and Tbx3

are expressed. la, left atrium; lv, left ventricle; ra, right atrium; rv,

right ventricle.

(TIF)

Figure S2 Gene program of the developing atrioventric-
ular canal in Anolis. Despite expression of Tbx5 the

atrioventricular canal does not initiate chamber program and

expresses the transcription repressor Tbx3 along with Bmp2. avv,

atrioventricular valves; la, left atrium; ra, right atrium; t, trachea

(positive for Tbx3).

(TIF)

Figure S3 Tbx3 expression shown in interactive 3D pdfs.

Tbx3 expression (yellow) and lumen cast (red) of all models used in

Figure 5.

( )

Figure S4 Tbx3 expression (in-situ hybridization) in
developing and adult Xenopus. Tbx3 was only found outside

the heart (e.g. developing trachea, t) of stage 40 embryos (top row).

No Tbx3 was only found in the heart of adults (lower row). a,

atrium; avc, atrioventricular canal; c, conus; ven, ventricle; t,

developing trachea (positive for Tbx3).

(TIF)

Figure S5 Summary of individual ventricular activation
maps. Red marks the earliest epicardial breakthrough of the

activation front which was consistently at the ventricular base.

Earliest and latest activation (red and white dots respectively) from

each specimen is projected onto one specimen.

(TIF)
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