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Abstract
Metabolic syndrome (MetS) is prevalent in type 2 diabetes (T2D) patients. The comorbidity of

MetS and T2D increases the risk of cardiovascular complications. The aim of the present

study was to determine the T2D-related genetic variants that contribute to MetS-related com-

ponents in T2D patients of Chinese ancestry. We successfully genotyped 25 genome wide

association study validated T2D-related single nucleotide polymorphisms (SNPs) among

5,169 T2D individuals and 4,560 normal glycemic controls recruited from the Chinese

National Diabetes and Metabolic Disorders Study (DMS). We defined MetS in this population

using the harmonized criteria (2009) combined with the Chinese criteria for abdominal obe-

sity. The associations between SNPs and MetS-related components, as well as the associa-

tions between SNPs and risk for T2D with or without MetS, were subjected to logistic

regression analysis adjusted for age and sex. Results showed that the T2D risk alleles of

rs243021 located nearBCL11A, rs10830963 inMTNR1B, and rs2237895 in KCNQ1were

related to a lower risk for abdominal obesity in T2D patients (rs243021: 0.92 (0.84, 1.00),

P = 4.42 × 10−2; rs10830963: 0.92 (0.85, 1.00), P = 4.07 × 10−2; rs2237895: 0.89 (0.82, 0.98),

P = 1.29 × 10−2). The T2D risk alleles of rs972283 near KLF14 contributed to a higher risk of

elevated blood pressure (1.10 (1.00, 1.22), P = 4.48 × 10−2), while the T2D risk allele of

rs7903146 in TCF7L2was related to a lower risk for elevated blood pressure (0.74 (0.61,

0.90), P = 2.56 × 10−3). The T2D risk alleles of rs972283 near KLF14 and rs11634397 near

ZFAND6were associated with a higher risk for elevated triglycerides (rs972283: 1.11 (1.02,

1.24), P = 1.46 × 10−2; rs11634397: 1.14 (1.00, 1.29), P = 4.66 × 10−2), while the T2D risk

alleles of rs780094 inGCKR and rs7903146 in TCF7L2were related to a lower risk of ele-

vated triglycerides (rs780094: 0.86 (0.80, 0.93), P = 1.35 × 10−4; rs7903146: 0.82 (0.69,

0.98), P = 3.18 × 10−2). The genotype risk score of the 25 T2D-related SNPs was related to a

lower risk for abdominal obesity (Ptrend = 1.29 × 10−2) and lower waist circumference

(P = 2.20 × 10−3). Genetic variants ofWFS1,CDKAL1,CDKN2BAS, TCF7L2,HHEX,
KCNQ1, TSPAN8/LGR5, FTO, and TCF2were associated with the risk for T2D with MetS, as

well as the risk for development of T2D with at least one of the MetS components (P < 0.05).
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In addition, genetic variants of BCL11A,GCKR, ADAMTS9,CDKAL1, KLF14,CDKN2BAS,
TCF7L2,CDC123/CAMK1D,HHEX,MTNR1B, and KCNQ1 contributed to the risk for T2D

without MetS (P < 0.05). In conclusion, these findings highlight the contribution of T2D-related

genetic loci to MetS in a Chinese Han population. The study also provides insight into the

pleotropic effects of genome-wide association loci of diabetes onmetabolic regulation.

Introduction
The pathogenesis of type 2 diabetes (T2D) is mediated by insulin resistance and abnormal insulin
secretion. Metabolic syndrome (MetS), which is defined as a cluster of metabolic disturbances
related to insulin resistance, including abdominal obesity, hyperglycemia, hypertension, and dys-
lipidemia, is common in people with T2D. Epidemiologic studies suggested that patients with
MetS have a greater risk for cardiovascular disease (CVD) regardless of a previous history of car-
diovascular events [1]. Further, concomitant T2D andMetS contribute to a higher prevalence of
CVD in T2D population [2]. Therefore, the identification of risk factors for MetS as well as
MetS-related components is important for the management and prevention of CVD in T2D.

MetS, along with the associated metabolic traits, is known to be partly hereditary [3,4,5].
For example, in Europe, the heritability of MetS was 23% to 27% in a Dutch isolate [4], and
27% among Italians [3]. It’s shown that MetS has 51% to 60% heritability in Koreans [5]. High-
throughput technologies have revealed numerous susceptible genomic loci of both T2D and
MetS [6,7,8,9,10,11], mostly in Caucasians. For example, our previous study confirmed the
associations between single nucleotide polymorphisms (SNPs) in or nearWFS1, CDKAL1,
CDKN2A/2B, CDC123/CAMK1D,HHEX, TCF7L2, KCNQ1,MTNR1B and the risk for T2D in
a Chinese Han population as well as the associations between T2D-related SNPs and glycemic
traits [12]. On the other hand, candidate genetic approaches found that several T2D-related
genetic variants in TCF7L2 [13,14,15,16], PPARG [17,18], and FTO [19,20,21] were associated
with MetS in the general population. A recently study in Chinese elderly population examined
the association between a group of T2D-related genetic variants and MetS, which was not sig-
nificant [22]. However, finding the genetic contributors of the individual components of MetS
is of greater biological interest than the identification of susceptible genomic loci for MetS as a
binary trait, since the definition of MetS is based on a constellation of clinical features [9]. In
fact, the T2D-related genetic variants showed pleiotropic effects to multiple MetS-related traits
other than blood glucose, which included blood pressure, obesity and lipids profiles
[23,24,25,26]. Consequently, we speculated that T2D-related genetic variants could contribute
substantially to MetS-related components in Chinese population afflicted with T2D.

The aim of the present study was to examine the relationship between genome-wide associa-
tion study (GWAS)-validated T2D-related genomic loci with the risk for MetS-related compo-
nents, as well as T2D with MetS and without MetS in a large Chinese Han population
comprising of 5,169 T2D patients and 4,560 normal glycemic controls from the Chinese
National Diabetes and Metabolic Disorders Study (DMS) [27].

Methods

Ethics statement
The study protocol was approved by the Ethics Committee of the China-Japan Friendship Hos-
pital in Beijing and was in accordance with the Helsinki Declaration II. Written informed con-
sents were obtained from all the participants before data collection.
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Study participants and definition of MetS-related components
All the study participants were recruited from the DMS [27]. T2D cases were identified using
the 1999 WHO criteria, as fasting plasma glucose (FPG)� 7.0 mmol/l, 2-h oral glucose toler-
ance test (OGTT) plasma glucose� 11.1 mmol/l, or a self-reported history of T2D. Our analy-
sis included 5,169 T2D patients and 4,560 normal glycemic individuals in DMS, with complete
availability of all data pertaining to MetS-related traits.

The diabetic subjects were grouped into 3,651 T2D patients with MetS (MetS T2D) and
1,518 T2D patients without MetS (non-MetS T2D), based on their metabolic phenotypes
according to the latest harmonized criteria proposed by the International Diabetes Federation
(IDF) and the American Heart Association (AHA) / National Heart, Lung and Blood Institute
(NHLBI) in 2009 [28] combined with an amended definition of abdominal obesity for Chinese
Hans [29]. MetS was defined as the presence of three or more of the following features: (a)
waist circumference (WC)� 90 cm for men or� 85 cm for women [29]; (b) elevated fasting
blood glucose� 5.6 mmol/l (100 mg/dl), or drug treatment for hyperglycemia; (c) elevated
blood pressure� 130/85 mmHg, or antihypertensive drug treatment with a history of hyperten-
sion; (d) elevated triglycerides (TG)� 1.70 mmol/l (150 mg/dl), or drug treatment for hypertri-
glyceridemia; and (e) reduced high density lipoprotein-cholesterol (HDL-C)< 1.03 mmol/l
(40 mg/dl) for men, or< 1.29 mmol/l (50 mg/dl) for women. In addition, 4,373 out of 4,560
normal glycemic individuals in DMS without MetS were recruited as controls for appropriate
comparisons (non-MetS controls), among which 1,956 of them had none of the five MetS com-
ponents (non-MetS super controls).

Body measurements and laboratory methods
Body weight, height, and WC were measured using standard methods. Body mass index (BMI)
was calculated as weight (kg) divided by squared height (m2). The resting blood pressure were
measured twice and averaged following standard protocol.

Each participant completed a standard 75 g OGTT after overnight fasting. Blood samples
were drawn at 0 min, 30 min, and 2 h after OGTT to measure the plasma glucose and serum
insulin concentrations. Serum insulin was measured by double-antibody radioimmunoassay.
The homeostasis model assessment for β-cell function (HOMA-B) and insulinogenic index
were calculated to estimate β-cell function, and the homeostasis model assessment for insulin
resistance (HOMA-IR) and Matsuda index (ISIm) were used to assess insulin resistance using
the following formulae:

HOMA-B = fasting serum insulin × 20 / (FPG– 3.5) (with serum insulin in mU/l and
plasma glucose in mmol/l) [30]

Insulinogenic index = (serum insulin at 30 min–fasting serum insulin) / (plasma glucose at
30 min–FPG) (with serum insulin in mU/l and plasma glucose in mmol/l) [31]

HOMA-IR = fasting serum insulin × FPG / 22.5 (with serum insulin in mU/l and plasma
glucose in mmol/l) [30]

ISIm = 10,000 / (FPG × fasting serum insulin × mean OGTT glucose × mean OGTT
insulin)1/2 (with serum insulin in mU/l and plasma glucose in mg/dl) [32]

Serum concentrations of fasting TG and HDL-C in plasma were assessed using an auto-
mated biochemical analyzer (Olympus, Tokyo, Japan) according to the manufacturer’s
instructions.

Genotyping
Genomic DNA samples were isolated from the peripheral blood using a DNA extraction kit.
We selected 31 T2D-related SNPs validated by GWAS previously
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[33,34,35,36,37,38,39,40,41,42,43,44,45]. Genotyping was accomplished using Illumina Gold-
enGate Indexing assay (Illumina Inc., San Diego, USA) according to the manufacturer’s
instructions. Six of 31 SNPs were excluded because of genotyping success rate lower than 90%
(rs231362, rs1531343, rs5945326, and rs13266634) or minor allele frequency (MAF) was less
than 0.01 (rs7578597, rs7957197). The overall mean calling rate of remaining 25 SNPs was
97.71%. The concordance rate based on 229 genotyping duplication was 100%. Information of
the genotyped SNPs is listed in S1 Table.

Statistical analysis
The Hardy-Weinberg equilibrium test was tested using a χ2 test in the study population (S1
Table). Under an additive genetic assumption, logistic regression analysis was used to test the
associations of SNPs with MetS-related components in T2D patients, and was applied in the
other analyses as appropriate. Non-Gaussian distributed quantitative traits were natural loga-
rithmically transformed to normal distributions. A linear regression model was used to test the
associations between SNPs and quantitative traits. Two multivariable models were tested:
model 1, age and sex were adjusted as co-variables; and model 2, age, sex, and BMI were
adjusted. A genetic risk score (GRS) of the 25 T2D-related SNPs was constructed using the
sum of alleles which were reported as T2D risk alleles in each individual without missing data.
The risks for MetS-related components were compared among quartiles of GRS in T2D
patients as well as the quantitative traits. Bonferroni correction was used to correct multiple
testing. Statistical analyses were performed using SAS (version 9.3; SAS Institute, Cary, NC)
and PLINK software (v1.05).

Results

Clinical demographics of the study population
The clinical demographics of MetS T2D and non-MetS T2D patients, along with non-MetS
controls from DMS, are shown in Table 1. The non-MetS control group and the MetS T2D
group included more women than the non-MetS T2D group (P< 0.0001). As expected, both
T2D groups, regardless of MetS status, manifested significant disorders of adiposity, glucose,
blood pressure, and lipids (except for HDL-C) compared with non-MetS control individuals
(P< 0.0001). Only MetS T2D showed lower fasting HDL-C than controls. Notably, compared
with the non-MetS T2D, the MetS T2D group showed significantly increased weight, BMI and
WC, elevated glucose and insulin levels during fasting and OGTT, greater insulin resistance
and β-cell dysfunction, elevated blood pressure as well as higher concentration of fasting TG,
and lower HDL-C levels (all P values< 0.0001).

Associations of SNPs with MetS-related components among T2D
patients
As shown in Table 2, the reported T2D risk alleles of rs243021 near BCL11A, rs10830963 in
MTNR1B, and rs2237895 in KCNQ1 were associated with a lower risk for abdominal obesity
in T2D patients (rs243021: 0.92 (0.84, 1.00), P = 4.42 × 10−2; rs10830963: 0.92 (0.85, 1.00),
P = 4.07 × 10−2; rs2237895: 0.89 (0.82, 0.98), P = 1.29 × 10−2). The T2D risk alleles of rs972283
near KLF14 contributed to elevated blood pressure (1.10 (1.00, 1.22), P = 4.48 × 10−2), while
the T2D risk allele of rs7903146 in TCF7L2 was related to a lower risk for elevated blood pres-
sure (0.74 (0.61, 0.90), P = 2.56 × 10−3). The T2D risk alleles of rs972283 near KLF14 and
rs11634397 near ZFAND6 were associated with a higher risk for elevated TG level (rs972283:
1.11 (1.02, 1.24), P = 1.46 × 10−2; rs11634397: 1.14 (1.00, 1.29), P = 4.66 × 10−2), while the T2D
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risk alleles of rs780094 in GCKR and rs7903146 in TCF7L2 were related to lower risk for ele-
vated TG (rs780094: 0.86 (0.80, 0.93), P = 1.35 × 10−4; rs7903146: 0.82 (0.69, 0.98),
P = 3.18 × 10−2). The association between rs780094 and elevated TG remained significant after
Bonferroni correction for multiple testing (P< 5.00 × 10−4). Similar results were achieved
when further adjusted for BMI, except that the associations between rs10830963, rs2237895
and abdominal obesity were attenuated (P> 0.05). In addition, the associations between single
SNPs and the MetS-related components were examined in the entire population of T2D cases
and normal glycemic controls with additional adjustment of diabetes status (S2 Table).

GRS of 25 T2D-related SNPs on the risk for MetS-related components
among T2D patients
The GRS for 25 T2D-related SNPs showed nominal association with a lower risk for abdominal
obesity (WC� 90 cm for men or� 85 cm for women), as well as decreased WC (Table 3).
Compared with the lowest quartile of GRS, the ORs (95% CIs) for the risk of abdominal obesity
were 0.89 (0.75,1.06), 0.84 (0.71,1.00), and 0.76 (0.63,0.90) for the other three quartiles (P for
trend = 1.29×10−2).Individuals with additional T2D risk alleles showed a decreased WC
(Q1~Q4: 89.00 (82.00, 96.00) cm, 88.00 (82.00, 95.00) cm, 88.00 (81.00, 94.00) cm, and 87.00
(80.00, 94.00) cm; P = 2.20×10−3), and the association remained significant after Bonferroni
correction (P< 1.25×10−2). The associations were no longer significant after additional

Table 1. Clinical demographics of study population. Abbreviations: BMI, body mass index; HDL-C, high density lipoprotein-cholesterol; HOMA-B, the
homeostasis model assessment for β-cell function; HOMA-IR, the homeostasis model assessment for insulin resistance; ISIm, Matsuda index; MetS, meta-
bolic syndrome; OGTT, oral glucose tolerance test; T2D, type 2 diabetes. Data are shown as median (interquartile range) or %. All non-Gaussian distributed
quantitative traits were natural logarithmically transformed to normalize distributions. P values were calculated to assess the intergroup differences using χ2

test or one-way ANOVA.

Non-MetS Control Non-MetS T2D MetS T2D P

n 4,373 1,518 3,651

Male, n(%) 1,393 (31.85) 730 (48.09) 1,506 (41.25) < 0.0001

Age, year 49.00 (44.00, 56.00) 54.00 (45.00, 63.00)a 57.00 (48.00, 65.00)ab < 0.0001

BMI, kg/m2 22.96 (21.21, 24.67) 23.40 (21.62, 25.03)a 26.70 (24.56, 29.03)ab < 0.0001

Weight, kg 59.00 (53.50, 65.00) 60.80 (54.50, 67.00)a 69.40 (61.50, 77.20)ab < 0.0001

Waist circumference, cm 78.50 (73.00, 84.00) 81.00 (76.00, 85.00)a 91.00 (85.60, 97.00)ab < 0.0001

Fasting plasma glucose, mmol/l 5.00 (4.66, 5.35) 7.16 (5.95, 8.68)a 7.41 (6.34, 9.07)ab < 0.0001

30-min OGTT glucose, mmol/l 8.04 (6.93, 9.16) 11.49 (9.48, 13.78)a 12.04 (10.00, 14.39)ab < 0.0001

120-min OGTT glucose, mmol/l 5.70 (4.89, 6.55) 12.71 (9.98, 16.60)a 13.61 (11.41, 17.00)ab < 0.0001

Fasting serum insulin, mU/l 6.27 (4.88, 8.41) 7.01 (5.09, 9.91)a 9.60 (6.75, 13.84)ab < 0.0001

30-min OGTT insulin, mU/l 32.93 (20.90, 52.42) 16.13 (9.22, 31.39)a 21.60 (12.71, 37.95)ab < 0.0001

120-min OGTT insulin, mU/l 22.09 (13.71, 34.69) 24.60 (14.05, 43.34)a 36.76 (20.76, 66.81)ab < 0.0001

Systolic blood pressure, mmHg 115.00 (107.50,122.50) 120.00 (110.00,130.00)a 137.50 (125.00,150.00)ab < 0.0001

Diastolic blood pressure, mmHg 75.00 (70.00, 80.00) 78.00 (70.00, 80.00)a 82.50 (78.00, 90.00)ab < 0.0001

Triglycerides, mmol/l 1.01 (0.77, 1.28) 1.13 (0.85, 1.44)a 1.96 (1.42, 2.84)ab < 0.0001

HDL-C, mmol/l 1.39 (1.19, 1.62) 1.40 (1.21, 1.61) 1.16 (0.99, 1.36)ab < 0.0001

HOMA-IR 1.38 (1.04, 1.87) 2.29 (1.54, 3.54)a 3.27 (2.17, 4.94)ab < 0.0001

ISIm 8.45 (6.28, 11.40) 5.52 (3.81, 7.79)a 3.89 (2.63, 5.59)ab < 0.0001

HOMA-B, % 86.30 (61.29,126.64) 40.87 (24.06, 65.67)a 49.94 (30.34, 80.16)ab < 0.0001

Insulinogenic index 8.98 (4.53, 16.81) 1.93 (0.50, 4.87)a 2.45 (0.82, 5.77)ab < 0.0001

a P value < 0.05 compared with non-MetS control subject in multiple comparison using Dunnett’s test.
b P value < 0.05 compared with non-MetS T2D patients in multiple comparison using Dunnett’s test.

doi:10.1371/journal.pone.0143607.t001
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adjustment for BMI (P> 0.05). Further, the GRS did not contribute to the other MetS compo-
nents in T2D patients (S3 Table). The associations between GRS and MetS-related components
were further tested in the entire sample of cases and controls (S4 Table).

Contribution of SNPs to MetS T2D, non-MetS T2D, and T2D with each
MetS-related component
As shown in Table 4, the reported T2D risk allele of rs7756992 in CDKAL1, rs10811661 near
CDKN2BAS, rs7903146 in TCF7L2, rs1111875 near HHEX, and rs2237895 in KCNQ1 were
predisposed to both MetS T2D and non-MetS T2D compared with non-MetS controls. The
associations remained significant after Bonferroni correction (P< 2.00 × 10−3), except for the
association between rs1111875 and T2D, and the association between rs7903146 and MetS
T2D. In addition, the T allele of rs7903146 increased the risk for non-MetS T2D by 1.47-fold
(P = 9.88 × 10−5), while only increased the risk for MetS T2D by 1.20-fold (P = 2.91 × 10−2).

On the other hand, rs243021 near BCL11A, rs780094 in GCKR, rs4607103 near ADAMTS9,
rs972283 near KLF14, rs12779790 near CDC123/CAMK1D, and rs10830963 inMTNR1B were
found related to non-MetS T2D (P values ranged from 3.61 × 10−3 to 4.93 × 10−2), while
rs10010131 inWFS1, rs7961581 in TSPAN8/LGR5, rs8050136 and rs9939609 in FTO, and
rs7501939 in TCF2 contributed to MetS T2D (P values ranged from 1.42 × 10−4 to 4.30 × 10−2).
The association between FTO and MetS T2D remained significant after Bonferroni correction
(P< 2.00 × 10−3). When further adjusted for BMI, the associations between rs7903146,
rs7961581, rs8050136, rs9939609 and MetS T2D were attenuated (P> 0.05). In addition, the
reported T2D risk allele of rs972283 was associated with a decreased risk for non-MetS T2D in

Table 3. Association between T2D GRS and the risk for abdominal obesity in T2D patients. Abbrevia-
tions: BMI, body mass index; CI, confidence interval; GRS, genotype risk score; OR, odds ratio; Q, quartile;
T2D, type 2 diabetes; WC, waist circumference. OR and 95%CI are reported for T2D GRS quartiles with the
risk for abdominal obesity using logistic regression under an additive assumption using the following models:
model 1, age and sex were adjusted as co-variables; model 2, age, sex, and BMI were adjusted. P values are
calculated for T2D GRS quartiles. Ptrend values are calculated for T2D GRS. All non-Gaussian distributed
quantitative traits were natural logarithmically transformed to normalize distributions. Associations with P val-
ues < 0.05 are shown in bold and underlined.

Quartile Elevated WC WC, cm

(men: � 90 cm;

women: � 85 cm)

Model 1 Model 2

Q1 1 1 89.00 (82.00, 96.00)

Q2 0.89 (0.75,1.06) 0.99 (0.79,1.24) 88.00 (82.00, 95.00)

P = 1.78×10−1 P = 9.34×10−1

Q3 0.84 (0.71,1.00) 0.97 (0.77,1.21) 88.00 (81.00, 94.00)

P = 5.24×10−2 P = 7.73×10−1

Q4 0.76 (0.63,0.90) 0.86 (0.68,1.08) 87.00 (80.00, 94.00)

P = 2.10×10−3 P = 1.99×10−1

Ptrend = 1.29×10−2 Ptrend = 4.39×10−1 Pa = 2.20×10−3

Pb = 3.72×10−1

a, P value calculated for T2D GRS using linear regression under an additive assumption adjusted for age

and sex.
b, P value calculated for T2D GRS using linear regression under an additive assumption adjusted for age,

sex and BMI.

doi:10.1371/journal.pone.0143607.t003
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Table 4. Associations between T2D-related SNPs with non-MetS T2D and MetS T2D compared to non-MetS controls in DMS. Abbreviations: BMI,
body mass index; Chr, chromosome; CI, confidence interval; DMS, Chinese National Diabetes and Metabolic Disorders Study; MetS, metabolic syndrome;
OR, odds ratio; SNP, single nucleotide polymorphism; T2D, type 2 diabetes. OR and 95%CI are indicated for the reported T2D risk allele of each SNP using
logistic regression under an additive assumption using the following models: model 1, age and sex were adjusted as co-variables; and model 2, age, sex, and
BMI were adjusted. Associations with P values < 0.05 are shown in bold and underlined.

Gene SNP Chr. Major/minor allelea Non-MetS T2D v.s. Non-MetS
controls

MetS T2D v.s. Non-MetS controls

(1,518:4,373) (3,651:4,373)

Model 1 Model 2 Model 1 Model 2

NOTCH2 rs10923931 1 G/T OR (95%CI) 0.89 (0.71,1.11) 0.89 (0.71,1.11) 0.91(0.77,1.08) 0.88 (0.71,1.08)

P P = 3.06×10−1 P = 3.12×10−1 P = 2.79×10−1 P = 2.10×10−1

BCL11A rs243021 2 T/C OR (95%CI) 1.10 (1.01,1.20) 1.10 (1.00,1.20) 1.02 (0.95,1.09) 0.98 (0.90,1.08)

P P = 3.49×10−2 P = 4.70×10−2 P = 6.23×10−1 P = 7.20×10−1

GCKR rs780094 2 A/G OR (95%CI) 1.13 (1.04,1.23) 1.13 (1.04,1.23) 1.03 (0.97,1.10) 1.01 (0.93,1.09)

P P = 3.61×10−3 P = 4.96×10−3 P = 3.66×10−1 P = 8.89×10−1

PPARG rs1801282 3 C/G OR (95%CI) 1.15 (0.96,1.37) 1.16 (0.97,1.39) 1.04 (0.91,1.19) 1.10 (0.93,1.30)

P P = 1.24×10−1 P = 1.09×10−1 P = 5.82×10−1 P = 2.51×10−1

ADAMTS9 rs4607103 3 C/T OR (95%CI) 1.09 (1.00,1.19) 1.10 (1.00,1.19) 1.02 (0.95,1.09) 1.04 (0.95,1.12)

P P = 4.93×10−2 P = 4.38×10−2 P = 6.60×10−1 P = 3.91×10−1

WFS1 rs10010131 4 G/A OR (95%CI) 1.14 (0.93,1.41) 1.16 (0.94,1.45) 1.25 (1.06,1.47) 1.33 (1.10,1.64)

P P = 2.21×10−1 P = 1.46×10−1 P = 5.96×10−3 P = 4.15×10−3

ZBED3 rs4457053 5 A/G OR (95%CI) 0.86 (0.71,1.06) 0.87 (0.71,1.07) 1.01 (0.87,1.17) 1.00 (0.83,1.20)

P P = 1.58×10−1 P = 1.83×10−1 P = 8.88×10−1 P = 9.72×10−1

CDKAL1 rs7756992 6 G/A OR (95%CI) 1.15 (1.06,1.25) 1.15 (1.05,1.25) 1.12 (1.05,1.20) 1.18 (1.09,1.28)

P P = 1.07×10−3 P = 1.14×10−3 P = 4.50×10−4 P = 6.84×10−5

JAZF1 rs864745 7 A/G OR (95%CI) 1.01 (0.92,1.12) 1.02 (0.92,1.12) 1.02 (0.94,1.10) 1.05 (0.95,1.15)

P P = 8.03×10−1 P = 7.22×10−1 P = 6.90×10−1 P = 3.10×10−1

KLF14 rs972283 7 G/A OR (95%CI) 0.90 (0.82,0.99) 0.85 (0.81, 0.98) 1.18 (0.96,1.11) 1.06 (0.97,1.16)

P P = 2.59×10−2 P = 2.05×10−2 P = 3.66×10−1 P = 2.13×10−1

TP53INP1 rs896854 8 G/A OR (95%CI) 1.02 (0.93,1.12) 1.02 (0.93,1.12) 1.05 (0.98,1.121) 1.04 (0.95,1.13)

P P = 6.63×10−1 P = 6.46×10−1 P = 2.05×10−1 P = 3.96×10−1

CDKN2BAS rs10811661 9 T/C OR (95%CI) 1.20 (1.11,1.32) 1.20 (1.11,1.32) 1.16 (1.09,1.25) 1.25 (1.15,1.35)

P P = 1.09×10−5 P = 1.42×10−5 P = 5.62×10−6 P = 5.54×10−8

CHCHD9 rs13292136 9 C/T OR (95%CI) 1.02 (0.88,1.18) 1.01 (0.88,1.18) 0.97 (0.87,1.08) 0.98 (0.85,1.12)

P P = 7.77×10−1 P = 8.65×10−1 P = 5.59×10−1 P = 7.97×10−1

TCF7L2 rs7903146 10 C/T OR (95%CI) 1.47 (1.21,1.78) 1.47 (1.22,1.79) 1.20 (1.02,1.40) 1.19 (0.98,1.45)

P P = 9.88×10−5 P = 8.14×10−5 P = 2.91×10−2 P = 8.69×10−2

CDC123/CAMK1D rs12779790 10 A/G OR (95%CI) 1.15 (1.03,1.28) 1.15 (1.03,1.28) 1.03 (0.94,1.12) 1.09 (0.98,1.22)

P P = 1.35×10−2 P = 1.39×10−2 P = 5.22×10−1 P = 1.07×10−1

HHEX rs1111875 10 A/G OR (95%CI) 1.13 (1.03,1.24) 1.13 (1.03,1.24) 1.11 (1.03,1.19) 1.11 (1.02,1.22)

P P = 1.21×10−2 P = 1.16×10−2 P = 5.48×10−3 P = 1.82×10−2

MTNRIB rs10830963 11 C/G OR (95%CI) 1.11 (1.02,1.21) 1.10 (1.01,1.20) 1.05 (0.98,1.12) 1.06 (0.97,1.14)

P P = 2.07×10−2 P = 2.94×10−2 P = 1.72×10−1 P = 1.93×10−1

KCNQ1 rs2237895 11 A/C OR (95%CI) 1.26 (1.15,1.38) 1.25 (1.14,1.37) 1.16 (1.07,1.24) 1.18 (1.08,1.29)

P P = 1.59×10−6 P = 3.20×10−6 P = 1.04×10−4 P = 3.08×10−4

CENTD2 rs1552224 11 T/G OR (95%CI) 1.08 (0.92,1.25) 1.06 (0.92,1.25) 1.06 (0.95,1.20) 1.06 (0.93,1.22)

P P = 3.69×10−1 P = 3.87×10−1 P = 2.54×10−1 P = 3.78×10−1

TSPAN8/LGR5 rs7961581 12 T/C OR (95%CI) 1.05 (0.95,1.17) 1.04 (0.94,1.16) 1.09 (1.00,1.18) 1.05 (0.96,1.16)

(Continued)

Genetics of Metabolic Syndrome in Chinese

PLOS ONE | DOI:10.1371/journal.pone.0143607 November 24, 2015 9 / 21



the present study, while the risk alleles of the other genomic loci displayed similar trend as pre-
viously reported. Comparative sensitivity analysis including only the non-MetS super controls
without any MetS components as controls, yielded results confirming most of the above find-
ings (S5 Table).

Further, we compared the allele frequencies between T2D patients combined with one of
the MetS-related components (abdominal obesity, high blood pressure, high TG, and low
HDL-C) and non-MetS super controls (Table 5). Moderate-to-significant associations were
observed between the reported risk alleles for T2D of rs10010131 inWFS1, rs7756992 in
CDKAL1, rs10811661 near CDKN2BAS, rs2237895 in KCNQ1, rs8050136 and rs9939609 in
FTO, rs7501939 in TCF2 and the increased risk for the concurrence of T2D and each MetS
component (P values ranged from 3.42 × 10−6 to 5.61 × 10−2). In addition, our findings sug-
gested that the T2D risk allele of rs1111875 nearHHEX only contributed to an increased risk
for T2D combined with abdominal obesity (P = 2.63 × 10−2), and T2D with elevated TG level
(P = 4.60 × 10−2). The T2D risk allele of rs7903146 in TCF7L2 specifically contributed to an
increased risk for T2D combined with abdominal obesity (P = 3.77 × 10−2) and the T2D risk
allele of rs7961581 in TSPAN8/LGR5 was related to an increased risk for T2D with elevated TG
level (P = 4.61 × 10−2). As expected, these signals showed a large overlap with the associated
SNPs of MetS T2D. Further, after additional adjustment for BMI, the associations between
rs7903146, rs1111875, rs8050136, rs9939609 and T2D with abdominal obesity, the associations
between rs8050136, rs9939609, rs7501939 and T2D with elevated blood pressure or reduced
HDL-C levels, and the associations between rs1111875, rs7961581, rs9939609, rs7501939 and
T2D with elevated TG level were attenuated (P> 0.05). Moreover, the associations between
rs7756992, rs10811661, rs2237895 and T2D with each metabolic component remained signifi-
cant after Bonferroni correction (P< 5.00 × 10−4).

Discussion
MetS is the major risk factor for diabetes mellitus and CVD [1,46,47]. It is prevalent in patients
with T2D [1]. Epidemiological evidence suggests that the comorbidity of T2D and MetS

Table 4. (Continued)

Gene SNP Chr. Major/minor allelea Non-MetS T2D v.s. Non-MetS
controls

MetS T2D v.s. Non-MetS controls

(1,518:4,373) (3,651:4,373)

Model 1 Model 2 Model 1 Model 2

P P = 3.62×10−1 P = 4.48×10−1 P = 4.30×10−2 P = 2.94×10−1

ZFAND6 rs11634397 15 A/G OR (95%CI) 1.09 (0.95,1.25) 1.10 (0.96,1.26) 1.03 (0.92,1.14) 1.00 (0.87,1.14)

P P = 2.15×10−1 P = 1.88×10−1 P = 6.42×10−1 P = 9.66×10−1

PRC1 rs8042680 15 A/C OR (95%CI) 0.92 (0.68,1.23) 0.91 (0.68,1.23) 1.11 (0.88,1.43) 1.19 (0.88,1.61)

P P = 5.66×10−1 P = 5.42×10−1 P = 3.81×10−1 P = 2.71×10−1

FTO rs8050136 16 C/A OR (95%CI) 1.11 (0.98,1.26) 1.10 (0.97,1.25) 1.20 (1.08,1.32) 1.08 (0.95,1.22)

P P = 1.03×10−1 P = 1.49×10−1 P = 3.95×10−4 P = 2.32×10−1

FTO rs9939609 16 T/A OR (95%CI) 1.13 (0.99,1.28) 1.12 (0.98,1.27) 1.21 (1.10,1.34) 1.09 (0.96,1.23)

P P = 6.25×10−2 P = 9.65×10−2 P = 1.42×10−4 P = 1.76×10−1

TCF2 rs7501939 17 C/T OR (95%CI) 1.08 (0.99,1.19) 1.08 (0.99,1.19) 1.12 (1.04,1.20) 1.13 (1.03,1.24)

P P = 9.69×10−2 P = 9.60×10−2 P = 3.44×10−3 P = 7.45×10−3

a Previously reported risk alleles for T2D are shown in bold and underlined.

doi:10.1371/journal.pone.0143607.t004
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increases the risk of CVD and all-cause mortality among T2D patients [2]. The current diag-
nostic criteria of MetS are based on the harmonized definition (2009) proposed by IDF and
AHA/NHLBI, which requires presence of any three of the five components included in the IDF
(2005) definition [28]. A previous study also suggested that the optimal cutoff of waist circum-
ference for abdominal obesity in MetS should be 90 cm for men and 85 cm for women of Chi-
nese [29]. In addition, as MetS is a constellation of clinical features, the association between
genetic factor and MetS is strongly driven by the varied definitions of MetS. In the present
study, we investigated the associations between 25 T2D-related genetic variants and MetS-
related components in DMS, according to the recent harmonized criteria (2009) and the Chi-
nese cutoffs for abdominal obesity, instead of MetS as a binary trait. The results revealed that
seven genomic loci, including BCL11A, GCKR, KLF14, TCF7L2,MTNR1B, KCNQ1, and
ZFAND6 were significantly associated with MetS-related components in T2D among Chinese.
It also indicated that T2D GRS of the 25 SNPs was related to a lower risk for abdominal obesity
and decreased WC. Further, we identified the clusters of SNPs predisposed to non-MetS T2D
and MetS T2D compared with the non-MetS controls, as well as the SNPs contributed to the
risk for T2D with each MetS-related component. To the best of our knowledge, it is the first
study focused on the associations of these candidate genes and MetS-related components
among a large and national representative T2D population of Chinese Han.

The reported T2D risk alleles of three SNPs, including the T allele of rs243021 near
BCL11A, the G allele of the intronic rs10830963 inMTNR1B, and the C allele of the intronic
rs2237895 in KCNQ1, contributed to a decreased risk for abdominal obesity in T2D patients.
All the genomic loci were found to be associated with T2D and β-cell dysfunction in human
[43,48,49]. BCL11A functions as a leukemia disease gene. Its relationship with obesity and adi-
posity indices is unknown.MTNR1B encodes the melatonin receptor, which mediates the
action of melatonin. KCNQ1 encodes the potassium voltage gated channel, KQT like subfam-
ily, member 1. BothMTNR1B and KCNQ1 are expressed in pancreatic islets and play an essen-
tial role in the regulation of glucose homeostasis [50,51]. The G allele of rs10830963 was
reported to be related to lower BMI [52]. The carriers of G allele were also found to be more
sensitive to lifestyle intervention-induced reduction of WC in the Look AHEAD study [53].
Our previous study as well as the other studies have indicated that the C allele of rs2237895
was related to decreased BMI and WC in Chinese [54,55,56]. The results of the present study
suggest a potential role of T2D-related genomic loci in abdominal obesity. However, the bio-
logical mechanism needs further elucidation.

The reported T2D risk allele G of KLF14 contributed to the elevated blood pressure and TG
levels in T2D patients. KLF14 belongs to the Kruppel-like family of transcription factors. A bio-
logical study has demonstrated that KLF14 could participate in the metabolism as a transcrip-
tional activator via regulating the gene networks involved in lipid metabolism [57]. GWAS
study identified a group of highly correlated SNPs including rs972283 and rs4731702 (r2 =
0.967 in Caucasians reported by 1000 Genome project) upstream of KLF14 gene in association
with multiple metabolic traits and T2D in Caucasians [45], which was recently confirmed by a
meta-analysis in a global population [58]. Carriers of T2D risk allele of rs4731702 manifested
higher fasting insulin, which suggested a role of its residue gene region in insulin resistance. In
addition, rs4731702 was reported to be associated with gene expression in subcutaneous adi-
pose tissue biopsies, which suggested that KLF14 was the master trans-regulator of adipose
gene expression [59]. The minor allele T of rs4731702 was previously reported to be associated
with increased HDL-C and cholesterol in Chinese Hans [60]. Our present study revealed the
contribution of G allele of rs972283 to increased risk of high blood pressure and elevated TG
levels. In addition, in contrast to previous reports, the present results indicated that the G allele
of rs972283 was protective against non-MetS T2D. However, these findings suggested the
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significance of KLF14 gene in metabolic modulation and require confirmation studies in the
future.

The present study also revealed that the reported T2D risk allele T of rs7903146 in TCF7L2
was related to decreased risk for elevated blood pressure and TG levels among T2D patients,
which were unaltered by adjustment for BMI. The TCF7L2 gene product is one of the T cell fac-
tor/lymphoid enhancer-binding factor transcription factors in Wnt / β-catenin signaling path-
way. Studies have revealed the residue block of rs7903146 in TCF7L2 as the strongest
susceptible gene region for T2D in Caucasians [34], which is also applicable across different
populations [12]. However, due to a relatively lower MAF of rs7903146 in Chinese Hans (0.029
reported by HapMap project) compared with Caucasians (0.308 reported by 1000 Genome
project), larger sample sizes are required to achieve enough statistical power in Chinese. Our
present study found a protective association of the T2D risk allele T of rs7903146 with blood
pressure and TG levels independent of obesity, while contributing to the increased risk for T2D
with or without MetS. It is well known that elevated blood pressure and TG levels are risk fac-
tors for T2D, and the above findings appear to be contradictory. However, the association
between rs7903146 and hyperglycemia was stronger than its relationship with blood pressure
or TG levels, suggesting a greater influence on the metabolic status of the general population
[13,14,15,16,61,62,63] than in the diabetics. On the other hand, the pleotropic effects of T allele
on the factors promoting MetS or preventing MetS could partly explain the negative findings
in previous studies [14,61,62,63]. In addition, a study reported that the T allele was the risk fac-
tor for incident hypertension [64] or increased TG level in elderly population [22], which was
inconsistent with the present findings. However, the inconsistency could be partly explained by
the different study design and population, as both the phenotypes were closely connection to
blood glucose. The findings should be confirmed in the future studies.

The reported T2D risk allele G of rs780094 in GCKR showed a significant association with
decreased risk for elevated TG level. GCKR encodes the glucokinase regulatory protein, which
is a specific inhibitor of glucokinase in both liver and pancreatic islet cells by competitively
forming a protein-protein complex with glucokinase with respect to glucose [65]. GWAS stud-
ies revealed that the G allele of rs780094 contributed to a higher risk for T2D, with pleiotropic
effects on MetS-related traits including lower TG level in Caucasians and Chinese
[66,67,68,69,70,71,72,73,74]. Accordingly, we previously confirmed the above findings in the
newly diagnosed T2D from DMS [56]. In addition, the results showed that the T2D risk allele
also contributed to the risk for non-MetS T2D in Chinese Hans from DMS, but not to the risk
for MetS T2D.

The T2D risk allele G of rs11634397 near ZFAND6 showed a moderate association with the
increased risk for elevated TG level. The gene product of ZFAND6, the zinc finger AN1-type
domain 6, has a functional interaction with tumor necrosis factor receptor-associated factor 2.
It plays a role in the negative regulation of nuclear factor kappaB activation, and is a susceptible
gene for T2D in Caucasian [45], but its biologic mechanism was still unclear. We previously
observed that G allele of rs11634397 was related to lower insulinogenic index in Chinese [12].
The above finding suggested a potential role of ZFAND6 in lipid metabolism. Additional stud-
ies are needed to confirm or refute the findings.

Interestingly, although obesity is a major risk factor of T2D, individuals with a higher T2D
GRS had a lower risk for abdominal obesity and a decreased WC among Chinese T2D patients
in the present study. The underlying mechanism is not clear. However, the association could
be driven by the genetic loci of which the T2D risk allele was related to a decreased risk for
abdominal obesity, including BCL11A,MTNR1B, and KCNQ1. In addition, GRS was not asso-
ciated with the other MetS components in T2D, which might be partly due to the antagonistic
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role of the T2D risk alleles. The results suggested that the T2D-related genomic loci have differ-
ent biological roles in metabolic regulation.

Further, we observed that the associated SNPs clusters of MetS T2D or non-MetS T2D were
substantially similar. For example, TCF7L2, CDKN2BAS, CDKAL1, KCNQ1, and HHEX con-
tributed to both non-MetS T2D and MetS T2D.MTNR1B, CDC123/CAMK1D, ADAMTS9,
BCL11A, KLF14, and GCKR were associated with non-MetS T2D, while TSPAN8/LGR5, FTO,
TCF2, andWFS1were associated with MetS T2D. In our previous study, we confirmed the
associations between SNPs in or nearWFS1, CDKAL1, CDKN2A/2B, CDC123/CAMK1D,
HHEX, TCF7L2, KCNQ1,MTNR1B and the risk for T2D in DMS [12]. These findings sug-
gested that the associations of genomic loci and T2D could be modified by the individual meta-
bolic status. For example, the associations between TCF7L2, TSPAN8/LGR5, FTO and MetS
T2D were attenuated when adjusted for BMI, suggesting the role of obesity. The results also
showed that SNPs related to MetS T2D were associated with T2D combined with at least one
of the metabolic components. The underlying mechanism requires further elucidation.

The present study has several strengths. First, it investigated the associations between geno-
mic loci and MetS-related components among T2D patients of Chinese Han origin, focusing
on 25 genome-wide association loci of T2D, and based on a relatively large T2D population.
Second, all the study subjects were Han Chinese from DMS who were genetically homoge-
neous. Third, the study used an optimal Chinese definition of abdominal obesity. However,
our study has limitations. Until now, more than 120 genomic loci have been identified to be
related to T2D [75]. In the present study, only 25 index SNPs from 24 genomic loci were exam-
ined. Thus, additional studies are warranted to reveal the associations between the other geno-
mic loci and MetS components in Chinese. Only one SNP was selected from each genomic
locus, which may result in negative findings due to the lack of adequate coverage of the candi-
date regions. In addition, the MetS group was conducted in T2D patients, which was not gener-
alizable to the common population. However, better understanding of MetS pathogenesis in
T2D is important for the prevention of CVD and other diabetes complications among diabetes
patients. Further studies are warranted to replicate these findings.

In conclusion, the present study identified that genomic loci of BCL11A,MTNR1B, KCNQ1,
KLF14, TCF7L2, GCKR, and ZFAND6 were associated with MetS-related components among
T2D in a large Chinese population. It’s shown that T2D GRS was related to a lower risk for
abdominal obesity. In addition, the results revealed the SNP clusters that contributed to MetS
T2D, non-MetS T2D, and T2D with each MetS-related component, respectively. The present
study may improve our understanding of the comorbidity of MetS and T2D. It also provides
insights into the pleotropic effects of T2D-related genomic loci.
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