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Abstract
The aim of this study was to investigate if trunk muscle activation patterns during rapid

bilateral shoulder flexions are affected by movement amplitude. Eleven healthy males per-

formed shoulder flexion movements starting from a position with arms along sides (0°) to

either 45°, 90° or 180°. EMG was measured bilaterally from transversus abdominis (TrA),

obliquus internus (OI) with intra-muscular electrodes, and from rectus abdominis (RA),

erector spinae (ES) and deltoideus with surface electrodes. 3D kinematics was recorded

and inverse dynamics was used to calculate the reactive linear forces and torque about the

shoulders and the linear and angular impulses. The sequencing of trunk muscle onsets at

the initiation of arm movements was the same across movement amplitudes with ES as

the first muscle activated, followed by TrA, RA and OI. All arm movements induced a flex-

ion angular impulse about the shoulders during acceleration that was reversed during

deceleration. Increased movement amplitude led to shortened onset latencies of the

abdominal muscles and increased level of activation in TrA and ES. The activation magni-

tude of TrA was similar in acceleration and deceleration where the other muscles were spe-

cific to acceleration or deceleration. The findings show that arm movements need to be

standardized when used as a method to evaluate trunk muscle activation patterns and that

inclusion of the deceleration of the arms in the analysis allow the study of the relationship

between trunk muscle activation and direction of perturbing torque during one and the

same arm movement.

Introduction
Rapid voluntary arm movements at the shoulder perturb postural equilibrium and challenge
the stabilization of the spine via reactive forces and torques. As such, rapid shoulder flexions,
either uni- or bilateral, have been frequently used to study leg and trunk muscle activation
patterns (e.g. [1,2]). Special attention has been given to the anticipatory muscle activation
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supposedly aimed to counteract and minimize the impact of the disturbance from the arm
movement [1–3]. It has been reported that in healthy persons, the first trunk muscle to be acti-
vated at the initiation of a rapid shoulder flexion is the innermost abdominal muscle, the trans-
versus abdominis (TrA), and that this early activation was absent in a group of patients with
low back problems [4]. Since then, the shoulder flexion task has been used extensively as an
experimental model to describe trunk muscle activation patterns [5–9], to compare trunk mus-
cle activation patterns between categories of people [4,10,11] and to investigate effects of
interventions [12,13]. Even though, any experimental model should be robust and well stan-
dardized, the end position of the arm movement is often not controlled, with the motivation
that it is the initiation of the movement that is under study. Yet, increased movement ampli-
tude increases the duration of acceleration of the arm and results in higher velocity, thus a
larger perturbation. This means that arm movements with different endpoints might induce
perturbations of different magnitude to the trunk. In line with this, there is a report of increas-
ing torque, about the ankles, with increasing asymmetrical (right arm is moved towards flexion
and left arm simultaneously towards extension) arm movement amplitudes from 5 to 40 °,
with associated increase in trunk muscle EMG amplitude [14]. Furthermore, it has been shown
that keeping the arm movement amplitude the same but decreasing the speed of a unilateral
shoulder flexion from maximal to submaximal, delays TrA activation [15]. However, detailed
mechanical description of symmetrical (bilateral) shoulder flexion movements with maximal
speed but of different amplitudes, and the impact on trunk muscle activation patterns, such as
onset and amplitude of activation, is still lacking.

A kinetic analysis has demonstrated a ventrally directed torque on the trunk at the level of
the shoulders at the initiation of rapid shoulder flexion and a dorsally oriented torque at the
initiation of rapid shoulder extension [16]. Since the type of muscle activity needed to deceler-
ate a shoulder flexion is similar to that required producing a shoulder extension, the direction
of the reactive torque in the two situations should also be similar, i.e. dorsally oriented. How-
ever, this has not been investigated previously, but has implications for choosing the intervals
for e.g. muscle activation amplitude measurements during a shoulder flexion. Also, differences
between acceleration and deceleration of arms may vary with movement amplitude, depending
on e.g. varying degree of assistance from gravity during deceleration depending on arm posi-
tion. It has previously been shown that the activation of the superficial trunk muscles at the
initiation of rapid arm movements is direction specific, creating a torque with the opposite
direction from the reactive torques resulting from the limb movements [1,2,17]. Thus, these
muscles should be active in a phasic manner during the completion of the arm movement. In
contrast, TrA has shown an activation pattern that is independent on the direction of the tor-
que in the sagittal plane, both regarding onset latency in advance of rapid shoulder flexion or
extension movements [18] and activation amplitude in static flexed or extended arm positions
[19]. It is yet to be shown if this direction independency is present also when comparing the
acceleration and deceleration phase within a rapid shoulder flexion movement.

The purpose of the present study was to describe the activation patterns, both timing and
amplitude, of four trunk muscles during the acceleration and deceleration of rapid bilateral
shoulder flexion movements of different amplitudes. Further, using inverse dynamics analysis,
the aim was to relate the muscle activation to the magnitude and direction of the perturbation
to the trunk at shoulder height caused by the various arm movements. The main hypotheses
were that the onset latency as well as the amplitude of trunk muscle activation would be depen-
dent on the amplitude of the arm movement and the associated magnitude of trunk perturba-
tion, and that the activation amplitude of TrA would be independent of the phase
(acceleration/deceleration) of the arm movement.

Trunk Muscle Activation during Bilateral Shoulder Flexion Movements
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Materials and Methods

Subjects
Eleven healthy male volunteers (mean ±1 SD age 28 ± 4 years, height 1.81 ± 0.08 m, mass
80 ± 8.4 kg) participated. Subjects were recruited via advertisements on campus and consisted
of staff and students at the Swedish School of Sport and Health Sciences. The subjects had not
experienced any low back pain in the last 3 years, where low back pain was defined as having to
stay home from work or school, or avoid participating in normal activities due to pain from the
back. Furthermore, the subjects had no muscular-, skeletal-, neurological- or inflammatory dis-
ease and had not had any surgery performed on the trunk. All subjects read and signed a writ-
ten consent form prior to participation. The protocol was approved by the Regional Ethical
Review Board in Stockholm (Reg. no. 2009/438-31) and the procedures performed in accor-
dance to the 1964 declaration of Helsinki.

Experimental procedure
The subjects stood barefoot on the floor with arms along the sides and were instructed to raise
both arms as fast as possible to one of three target end positions; 45°, 90° and 180° in relation
to the vertical (Fig 1) in response to a beep signal. Each position was targeted three times con-
secutively with the order of end positions randomized between subjects. Each subject was
instructed to keep his eyes on a picture of the current end position placed at eye level in front
of him. After approximately 5 s, the subject received a verbal command and lowered his arms
back to the start position. Two practice movements were performed to ensure that the move-
ment was performed according to instructions. Given the denotations in Fig 1, the total torque
and linear forces on the trunk at shoulder height caused by the arm movement was calculated
as M = αleft + αright, Fx = Fxleft + Fxright and Fz = Fzleft + Fzright. The effects of gravity are
included in α.

Last in the experimental protocol, the subjects performed 3 static maximum voluntary con-
tractions in upright standing, front or back to a wall: attempted trunk flexion, Valsalva manæ-
uvre (maximal voluntary pressurization of the abdomen) with a superimposed attempted
trunk flexion, and attempted trunk extension. All maximum voluntary contractions lasted
approximately 5 s and were performed twice with the resistance provided by a broad belt
placed around the chest at armpit height and firmly fixed to the wall. The efforts were per-
formed without visual feedback but with verbal encouragement by the investigators.

Electromyographic recordings
Bilateral intra-muscular EMG signals were recorded with fine-wire electrodes placed in TrA,
insertion point in the mid-axillary line, 2 cm caudal to the twelfth rib, and obliquus internus
(OI), insertion point 2 cm ventral of the mid-axillary line and 2 cm caudal to the twelfth rib.
The electrodes were made of Teflon coated seven-stranded silver wire (0.4 mm in diameter,
Leico Industries, USA) with 2 mm of the coating removed at the tip. Each wire was inserted
using sterilized needles (0.70 x 88 mm for TrA and 0.60 x 60 mm for OI) under ultrasound
guidance (GE Logic 9, Transducer 12 MHz, UK). The two hooked electrode tips within each
muscle were placed with an inter-electrode distance of about 5 mm. Needles were inserted
obliquely from the side to minimize the risk that movement within or between muscles would
displace the electrodes. After electrode placement, the needles were gently removed. Bilateral
surface EMG recordings (self-adhesive Ag/AgCl electrodes (Blue Sensor, Ambu, Denmark,
interelectrode distance 2 cm) were made from rectus abdominis (RA), 2 cm lateral to the umbi-
licus, erector spinae (ES), 3 cm lateral to the L3 spinous process and from the anterior deltoids.
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A ground electrode was placed over the spinous process of C7. Besides the adhesive, tape was
used to fixate all surface electrodes to the skin. All EMG signals were amplified 1000 times
(Myosystem 2000, Noraxon, USA, for TrA, IO, ES and RA, and NL 824, Digitimer Ltd, UK, for
deltoids) and band-pass filtered between 10 and 1000 Hz with a 1st order Bessel filter (NL 125,
Digitimer Ltd, UK) with a notch filter at 50 Hz.

The EMG signals were sampled in parallel on two systems. For the latency analysis, separate
collection software was used with a sampling rate of 2 kHz (Spike2, version 5.15, Cambridge
Electronic Design, UK) and for the EMG amplitude measurements, the signals were collected
on the kinematic recording system at 1.5 kHz (Qualisys Track Manager, Qualisys AB, Sweden).
A power spectrum analysis of one of the files sampled at 2 kHz revealed very little power in the
signals above 0.75 kHz. This indicates that the sampling frequency of 1.5 kHz of the kinematic
recording system should be roughly in agreement with the Nyquist theorem of a sampling fre-
quency of twice the frequency of the signal, and the risk of aliasing should be minimal.

Kinematic recordings
3D kinematic recordings were made with an optoelectronic system (Pro reflex, MCU 1000,
Qualisys AB, Sweden) and collected with computer software (Qualisys Track Manager,

Fig 1. The experimental set-up. In (A) the three different arm movement amplitudes are illustrated with the
solid arm showing the start position of all movements and the three dashed arms representing the three
different end positions. In (B) and (C), the marker positions used are shown and in (C) also the reactive torque
(α) on the trunk around the centre of rotation and the linear forces in the antereo-posterior (Fx) and caudo-
cranial (Fz) directions during the deceleration of an arm movement is illustrated.

doi:10.1371/journal.pone.0141777.g001
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Qualisys AB, Sweden). The set-up involved 7 cameras and 16 reflexive markers (for marker
locations see Fig 1B and 1C). The markers had a diameter of 19 mm and during calibration the
residuals of each camera were below 2 mm. Kinematic data were sampled at 150 Hz and low
pass filtered at 20 Hz. The anatomical location of the markers will be given in the text ahead
under the subheading Kinematics and Kinetics.

Data analysis
EMG onsets. EMG onsets were defined as the instant when the rectified EMG signal rose

above a threshold level set to the average baseline signal plus 1.4 SD, calculated during a period
of 80 ms prior to the trigger signal (beep), and stayed above this level for at least 25 ms [20].
The signal was allowed to fall beneath the threshold level for no more than 3 ms within the 25
ms without affecting the onset definition [21]. For left and right deltoids, the search for onsets
started at the trigger signal; for the rest of the muscles, the search started 100 ms prior to the
onset of the ipsilateral deltoid and lasted for 200 ms. The investigator was blinded as to which
muscle was displayed while performing this analysis. EMG onsets were first determined auto-
matically using a custom made algorithm in Spike2 software and then checked manually [22].
For all movement amplitudes, the mean onset of the three trials for each muscle, relative the
onset of the ipsilateral deltoid, was used in the statistical analysis.

EMG amplitudes. EMG amplitudes were calculated as root mean squares in two 100 ms
intervals, one starting 50 ms prior to the start of the bilateral arm acceleration and the other 50
ms before the start of the bilateral arm deceleration (see definitions of events below and illus-
trations in Fig 2). The amplitudes were normalized to the highest EMG root mean square
value, obtained with a 1 s sliding window for each muscle during the maximum voluntary con-
tractions. For all movement amplitudes, the mean EMG amplitude of the three trials was mea-
sured for each muscle at the start of acceleration and at the start of deceleration and used in the
statistical analysis.

Kinematics and kinetics. The reflexive markers were labelled to a large extent by an auto-
mated process with subsequent manual labelling. Kinematic analysis and kinetic calculations
were performed using custom written code (Matlab, The Mathworks Inc, Natick, MA, USA)
and commercial computer software (Visual3D, C-motion, Germantown, MD, USA). Two seg-
ments defined each arm. The markers on the processus styloideus radii, processus styloideus
ulnae, and the medial and lateral epicondyles of the humerus defined the forearm. The markers
on the medial and lateral epicondyles of the humerus, lateral upper arm and acromion defined
the upper arm. The markers on the left and right acromion and the left and right anterior supe-
rior iliac spine defined the trunk. The joint centre for the whole arm was taken as the centre of
rotation at the shoulder. The masses of the individual segments were defined in proportions
of the total body mass according to Dempster [23]. The inertial properties of the segments,
including their centres of mass, were defined from the segment model (default settings in
Visual3D) assuming a homogenous distribution of the mass of each segment. Truncated cones
represented the shape of the segments.

After defining the local coordinate systems, joint torques were calculated using inverse
dynamics, by which measured segment positions, velocities and accelerations (from marker
data) are combined with the model of the body segments (articulations and inertial properties)
to compute the joint torques and linear forces necessary to produce the observed movement
[24]. Only the linear forces in the antereo-posterior direction (Fx) and caudo-cranial direction
(Fz) together with the torques in the sagittal plane was considered in this study. The medio-lat-
eral forces were excluded since we assumed that the forces in this direction, to a large degree,
would cancel each other out due to the symmetry of the movement. The total torque, Fx and Fz
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Fig 2. Recordings from one subject.Mean angular velocity and acceleration of shoulder flexion, mean
reactive torque on the trunk at shoulder height, and mean normalized EMG in % of that at maximum voluntary
contraction of the four different trunk muscles for three repetitions of a medium sized arm movement. The
dashed line indicates mean onset of deltoid EMG and the shaded areas illustrate the two intervals of EMG
amplitude measurements. The solid vertical lines indicate: 1 = start of acceleration of shoulder flexion,
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that perturb the trunk at shoulder level due to the movements of the arms was calculated by
adding the two sides together.

Three events describing each unilateral arm movement were defined relative the angular
acceleration at each shoulder (Fig 2). Firstly, start of arm acceleration was defined as the instant
when the angular acceleration at the shoulder (upper arm relative the trunk) rose above a
threshold level of a baseline average plus 2 SD and stayed above this level for 20 ms. Secondly,
start of deceleration of the arm movement was defined as the instant when the angular acceler-
ation of the shoulder crossed the 0 line. During the medium (example in Fig 2) and large ampli-
tude movements, the signal often oscillated around 0 (constant velocity) for a period of time.
When this occurred, the last crossing was defined as the start of deceleration. Thirdly, end of
movement was defined as the instant when the angular acceleration returned to 0. Also at the
end of movement the signal could oscillate around 0. The crossing that correlated best with the
instant when the concomitant angular velocity signal of the shoulder movement returned to 0
was then used. The movement events were first defined automatically with a computer and
then checked manually.

The start of the bilateral arm movement was defined as the start of acceleration of the first
arm to move, the onset of deceleration as the mean for the start of deceleration between the left
and right arm, and the end of movement as the last arm to reach the defined end position. The
mean torque, Fx and Fz during the acceleration phase (between start of acceleration and start
of deceleration) and the deceleration phase (between start of deceleration and the end of move-
ment) were calculated. The mean torque and the linear forces Fx and Fz during the acceleration
and deceleration phase, respectively, was multiplied with the duration of each phase to obtain
the angular and linear impulses (Fx-impulse and Fz-impulse) imposed on the trunk by the arm
movement. For each of the phases and movement amplitudes, the mean angular and linear
impulses of the three trials were calculated and used in the statistical analysis as a measure of
the magnitude of the perturbation.

Statistical analysis
Statistical analyses were performed using PASW Statistics 18.0 (SPSS Inc., USA). Regarding
EMG latency, a three-way Mixed model ANOVA was used with latency as the dependent vari-
able and muscle, side and movement amplitude as within-subject factors. The EMG amplitude
was analyzed with a four-way Mixed model ANOVA with normalized EMG amplitude as the
dependent variable and muscle, side, movement amplitude and phase (acceleration/decelera-
tion) as within-subject factors. The residuals were positively skewed when histograms and nor-
mal plots were visually checked. Thus, log transformation and square root transformations
were performed. The square root transformation was deemed the most appropriate and used
in the analysis of the EMG amplitude data. For the kinematic and kinetic variables, several
two-way Repeated measures ANOVAs were used with peak and mean angular acceleration/
deceleration, mean angular velocity, duration, mean torque, linear forces (Fx and Fz), angular
impulse and linear impulses (Fx-impulse and Fz-impulse) as the dependent variables and
movement amplitude and phase as within subject factors. Where a main effect or interaction
was found in the main ANOVAs, subsequent post hoc pair-wise comparisons were performed
with Bonferroni corrections. Possible differences regarding timing of acceleration/deceleration
and arm movement amplitudes between the left and right arm were tested with one-way ANO-
VAs. The level of significance was set to p<0.05 for all statistical analyses.

2 = start of deceleration of shoulder flexion and 3 = end of shoulder flexion. Note the two peaks of activation in
TrA corresponding to both acceleration and deceleration of the armmovement.

doi:10.1371/journal.pone.0141777.g002
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Results
No main effects were seen for side in the EMG latency and amplitude analyses. Therefore, the
results are reported as mean values of the left and right side.

General movement characteristics
All kinematic and kinetic variables are shown in Table 1. Regarding the end positions of the
arm movements, the deviations from the target angles were less than ± 6° for all movement
amplitudes, and there was no consistent difference between the left and right arm. The timing
differences between the left and right arm ranged 0–2 ms for the start of acceleration, 6–16 ms
for the start of deceleration and 5–10 ms for the end of the arm movement, respectively, and
they were not statistically significant for any event. The peak velocity and the total duration of
the movements increased with arm movement amplitude and averaged 281 (50), 487 (96), and
596 (73) °/s, and 0.39 (0.06), 0.45 (0.07) and 0.56 (0.06) s, respectively.

Acceleration phase
A flexion angular impulse on the trunk at shoulder height was observed during the acceleration
phase for all arm movement amplitudes, with the angular impulses becoming significantly
larger in magnitude with increasing arm movement amplitude, ranging 4.8 (1.2)– 11.0 (2.0)
Nms (Table 1). During the two smaller arm movement amplitudes the linear Fx-impulse was
oriented posteriorly and increased with arm movement amplitude. The net direction changed
to anterior during the large arm movement amplitude (Table 1). The linear Fz-impulse was ori-
ented downwardly and increased in magnitude with increased arm movement amplitude,
ranging 3.0 (1.5)– 12.4 (2.0) Ns (Table 1).

For EMG latency in relation to onset of deltoid activation, there was a significant interaction
between muscle and movement amplitude (Fig 3). All abdominal muscles responded signifi-
cantly faster at the large compared to the small arm movement amplitude. Onset latencies for
TrA, OI and RA being 14 (37), 58 (31) and 36 (33) ms in the small; -1 (19), 35 (36) and 16 (21)
ms in the medium; and 2 (23), 15 (30) and 12 (23) ms in the large amplitude movement (Fig
3). In addition, OI displayed shorter onset latency at the large compared to the medium ampli-
tude movement. ES did not vary in timing of activation between movement amplitudes with
onset latencies of -12 ms (22), -15 ms (23) and -14 ms (17) for the small, medium and large
movement amplitude respectively.

Regarding activation magnitude, there was a significant interaction between muscle, phase
and movement amplitude. At the start of arm acceleration, the magnitude of muscle activation
varied with the arm movement amplitude for TrA and ES with greater activation at the large
compared to the small amplitude movements (Table 2). For TrA, there was also a difference with
higher activation at the medium compared to the small movement amplitude (Table 2). No dif-
ferences in muscle activation levels between movement amplitudes were present for OI or RA.

Deceleration phase
During the deceleration phase, the angular impulse to the trunk at shoulder height was
reversed to extension. The angular impulse during the deceleration of the large arm movement
was significantly greater than during the small and medium arm movements, with the angular
impulse magnitude ranging, 2.3 (1.4)– 6.7 (1.5) Nms (Table 1). The linear Fx-impulse was ori-
ented anteriorly and increased in magnitude with arm movement amplitude during the small
and medium arm movement. During the large movement amplitude the net direction changed
towards posterior (Table 1). The linear Fz-impulse was oriented upwards across all movement
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amplitudes and increased in magnitude as arm movement amplitude increased, ranging -2.3
(2.0)–-12.8 (1.9) Ns (Table 1).

At the start of deceleration of the arm movement, TrA showed higher activation levels at
the large movement compared to the small, whereas ES displayed the opposite with less

Table 1. Kinematic and kinetic variables (means and SD) during the acceleration and deceleration phases of the three bilateral armmovement
amplitudes.

Acceleration Deceleration

Small Medium Large Small Medium Large

Peak acc/decang (°/s
2) 5028 (2563) b 5959 (1507) c 7367 (1923) b c * 4685 (1662) a 5791 (1277) a 5912 (1576) *

Mean acc/decang (°/s
2) 1634 (451) a * 2297 (480) a * 2047 (565) * 1401 (497) a b * 1829 (471) a * 2115 (499) b *

Mean velang (°/s) 112.2 (12.0) a b * 205.2 (25.0) a c * 331.1 (29.6) b c * 88.0 (15.8) a b * 164.4 (22.1) a c * 220.9 (46.5) b c *

Duration (s) 0.17 (0.02) a b * 0.19 (0.02) a c * 0.28 (0.04) b c 0.22 (0.04) b * 0.25 (0.06) * 0.28 (0.05) b

Mean torque (Nm) -29.2 (10.1) a b * -43.0 (11.8) a * -40.4 (7.8) b * 12.4 (8.7) b * 14.5 (8.7) c * 25.5 (8.1) b c *

Linear force X (N) 28.9 (9.8) b * 34.0 (11.4) c * -5.1 (8.6) b c * -25.1 (10.8) b * -28.1 (9.0) c * 7.0 (12.2) b c *

Linear force Z (N) 18.1 (10.5) a b * 36.7 (8.6) a * 46.0 (10.6) b * -10.8 (11.3) a b * -30.8 (9.0) a c * -47.3 (9.6) b c *

Impulseang (Nms) -4.8 (1.3) a b * -8.2 (1.7) a c * -11.0(2.0) b c * 2.3 (1.4) b * 3.2 (2.0) c * 6.7 (1.5) b c *

ImpulseFx (Ns) 4.8 (1.3) a b * 6.3 (1.8) a c * -1.7 (2.6) b c * -5.1 (1.5) a b * -6.7 (2.0) a c * 1.3 (2.7) b c *

ImpulseFz (Ns) 3.0 (1.5) a b * 7.0 (1.6) a c * 12.4 (2.0) b c * -2.3 (2.0) a b * -7.3 (1.9) a c * -12.8 (1.9) b c *

Negative values indicate flexion direction for the torque, anterior direction for Fx, and upward direction for Fz.
a = significant difference between small and medium amplitude movements within phase.
b = significant difference between small and large amplitude movements within phase.
c = significant difference between medium and large amplitude movements within phase.

* = significant difference between acceleration and deceleration phases within movement amplitude.

doi:10.1371/journal.pone.0141777.t001

Fig 3. Bilateral mean onset latencies in ms (95%CI) for the four trunkmuscles at the initiation of
bilateral shoulder flexion for the three movement amplitudes. The dashed line indicates the mean onset
of left and right deltoid. * Indicates a significant difference within muscles between armmovement amplitudes

doi:10.1371/journal.pone.0141777.g003
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activation in the large movement compared to the small (Table 2). No difference in activation
of OI or RA was evident between movement amplitudes.

Acceleration vs. deceleration
Comparing the magnitude of muscle activation at the start of arm acceleration to that at the
start of deceleration it was shown that TrA was activated to the same magnitude at both events,
i.e. regardless flexion or extension impulse to the trunk at shoulder height (Table 2). OI and
RA showed higher activation levels at the start of the deceleration phase compared to the start
of the acceleration phase across arm movement amplitudes. ES displayed the opposite, with
higher activation at the start of the acceleration phase compared to the deceleration phase,
except at the small arm movement amplitude.

The various trunk muscles displayed different patterns of association between the magni-
tude of muscle activation and the angular impulse on the trunk (Fig 4). Visual inspection of Fig
4 shows that the activation level of TrA was positively associated with the impulses at the start
of both acceleration and deceleration of the arm movement. For ES this was true only at the
start of acceleration. For OI and RA across phases, and for ES at the start of deceleration there
was no obvious association between the magnitude of activation and the size, or the direction,
of the impulses.

Discussion
The present data showed that trunk muscle behaviour was not constant between different
movement amplitudes of rapid bilateral shoulder flexions. By varying the amplitude of rapid
shoulder flexion movements in standing, and by considering both the acceleration and the
deceleration phases, it was possible to grade the magnitude and direction of perturbation of the
trunk induced at shoulder level. This variation in trunk perturbation between different arm
movement amplitudes was associated with different modulations in activation patterns among
the trunk muscles, both with respect to onset latency and activation magnitude. All abdominal
muscles were activated earlier with larger arm movement amplitude, whereas TrA was the only
muscle that also showed greater activation magnitude with increased trunk perturbation size,
irrespective of perturbation direction.

Acceleration phase
Increasing the amplitude of a rapid shoulder flexion movement significantly increased the
kinematic variables of the arm and the associated reactive forces and torques on the trunk at

Table 2. Mean normalized EMG amplitude as % of that at maximum voluntary contraction (SD) for eachmuscle and armmovement amplitude, at
the start of arm acceleration and deceleration, respectively.

Acceleration Deceleration

Small Medium Large Small Medium Large

ES 10 (4) b 16 (5) * 22 (7) b * 9 (4) b 6 (3) * 4 (2) b *

TrA 17 (13) a b 26 (20) a 34 (26) b 20 (14) b 26 (22) 30 (21) b

OI 6 (5) * 7 (7) * 9 (10) * 28 (16) * 34 (13) * 27 (19) *

RA 3 (2) * 3 (2) * 3 (2) * 11 (6) * 14 (8) * 13 (9) *

a = significant difference between small and medium amplitude movements within muscle and phase.
b = significant difference between small and large amplitude movements within muscle and phase.

* = significant difference between start of acceleration and start of deceleration within muscle and movement amplitude.

doi:10.1371/journal.pone.0141777.t002
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shoulder level during the acceleration of the arm, initially directed in the flexion direction. This
is in concordance with a previous study where the speed of the arm was altered, albeit the
amplitude was kept constant, showing greater perturbation with increased speed [15].

The increase in initial perturbation was associated with specific modulations of onset of
trunk muscle activation. Although all onset latencies were within the realm of feedforward con-
trol, there was a clear shortening (about 20 ms) of abdominal muscle latencies with increased
arm movement amplitude from small to large. A “dosage” sensitive muscle response suggests
that the activation is dependent on the size of the forthcoming perturbation, indicating a
change in preprogramming in anticipation of the larger perturbation. These findings are in
concordance with previous studies that show an earlier activation of TrA in association with
higher speed of arm movement (movement amplitude unchanged) [15]. However, except for
OI, there was no difference between the medium and large amplitude movement in the present
study indicating that the modulation of onset latency with movement amplitude reaches a

Fig 4. The relationship between EMG amplitude and angular impulse. The relationship between the mean EMG amplitude in % of that at maximum
voluntary contraction (95%CI) for the four muscles investigated and the mean absolute angular impulse in Nms (95%CI) for each muscle, arm movement
amplitude (small, medium and large) and phase (acceleration and deceleration).

doi:10.1371/journal.pone.0141777.g004
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“plateau” where further shortening of the onset latency does not further improve the functional
consequences. On the other hand, there was no adaptation in onset latency for ES, which is in
line with previous research that showed no variation in onset latency of ES above a certain
threshold of arm movement speed during shoulder flexion [25]. Possibly, the “plateau”, men-
tioned above, is reached earlier for ES than the abdominal muscles, i.e. a modulation in the
time domain does not provide any biomechanical advantage.

Interestingly, of the studied abdominal muscles, only TrA showed a modulation of activa-
tion magnitude simultaneous to the adaptation in onset latency during the acceleration phase.
The increase in TrA activation magnitude for all increments in movement amplitudes and the
concomitant increase in ES activation between the small and large movement are compatible
with the larger reactive trunk flexion moment induced by the larger arm movements. It is pos-
sible that TrA could assist ES in generating an extensor torque on the trunk through an
increased intra-abdominal pressure [26] in a synergistic pattern that has been observed before
[27], or, that TrA provides a more non-specific contribution to trunk control.

Deceleration phase
Although kinematic and kinetic information from complete shoulder flexion movements
(from start to end) have been presented graphically in several studies [1,2,28], the deceleration
of the movement has never been the focus of the experiments. While the acceleration of the
arm is performed against the force of gravity, the deceleration of the arm is assisted by gravity
to varying degree depending on the stop position, with the greatest assistance in the medium
movement in the present study where the forward horizontal displacement of the arms’ COM
is the greatest. This might reflect the small change in impulse during the deceleration phase
between the small and medium amplitude movement despite higher peak and mean angular
deceleration during the medium movement. It can also provide a possible explanation to the
lack of increase in activation magnitude for OI and RA with increasing arm movement ampli-
tude. However, the lack of increase, rather a tendency of decreased activation, of these muscles
between the medium and large arm movement amplitude when the assistance of gravity
decline during deceleration would suggest otherwise. Yet, in the positions where the arms
reaches forwards or above the head, particularly the RA but also OI might be stretched so that
they are activated in an eccentric manner, which would require less activation levels for the
same muscle torque than during concentric work [29].

Another biomechanical prerequisite during the deceleration phase that differs between the
different arm movement amplitudes is the postural demand due to the height of the COM over
the base of support [28], which is the highest in the large amplitude movement. This aspect is
not covered by the inverse dynamics calculations, and represents an increased postural threat,
where any perturbing force has a larger destabilizing potential. It has been seen previously in
various static arm positions that particularly TrA activation magnitude is closely related to an
increase in postural demand [19].

Acceleration vs. deceleration
Out of the trunk muscles, TrA displayed a unique activation pattern with the same activation
magnitude during the deceleration of the arm movement as during the acceleration across
movement amplitudes. Hence, it seems that the purpose of TrA activation might vary depend-
ing on situation and that it can add to the control of the lumbar spine, not only by contributing
to extension (as mentioned above), but also in a direction non-specific manner in the sagittal
plane. The independence of the magnitude of TrA activation from the induced direction of a
perturbation in the sagittal plane is consistent with previous experiments conducted in
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standing and side-lying, with static arm positions and sudden external loading to the trunk,
respectively [19,30], suggesting that it is not dependent on the task performed or body
position.

Besides TrA, all other muscles in the present study were phase specific in their activation
with OI and RA showing higher activation levels during deceleration of the arm and ES during
acceleration. A likely explanation is the torque generating capacities of these muscles. The fibre
orientation of ES makes this muscle suitable to counteract the initial flexion perturbation to the
trunk, thus higher activation is required during the acceleration phase than the deceleration
phase. Further, the lower activation of ES during the deceleration of the large compared to the
small and medium amplitude movement could be influenced by the change in direction of the
linear Fx-impulse during the deceleration phase of this movement. During the large movement
the mean linear Fx-impulse is posteriorly oriented, which could assist ES and perhaps decrease
the need for activation of this muscle. However, following the same reasoning, OI and RA, that
generate flexion torque on the trunk, should then increase their activation levels during the
deceleration of the large amplitude movement, but this is not supported by the present data.
Thus, other aspects of the kinetic chain, not controlled for in this experimental set-up, are likely
to contribute to the complex coordination of trunk muscles and further research is needed to
gain complete understanding of the biomechanics surrounding the bilateral arm raise.

Methodological considerations
Since the arm movement paradigm is frequently used to evaluate motor control in low back
pain patients, the present study can provide important reference material. However, in this
regard it is important to consider that this study included only healthy male subjects, which
affects the external validity. Furthermore, we used bilateral arm movements, whereas some pre-
vious studies use a unilateral arm flexion. Unilateral arm movements produce a rotational tor-
que to the trunk, which might be responsible for the frequent findings of early activation of the
contralateral TrA [31]. However, the fact that larger arm movement amplitude creates a larger
perturbation and has an impact on latency and EMGmagnitude measurements should be
universal.

The choice of placement of the centre of rotation affects the inverse dynamics model. A cho-
sen centre of rotation lower in the trunk, e.g. in the lumbar spine, could perhaps be more intui-
tive since it is the abdominal and lumbar back muscles that are under study. This would give
the linear forces a longer moment arm to the shoulders (the point of application of the linear
forces) and a larger impact on the net angular momentum calculations. However, in the pres-
ent set-up, this would mean that the trunk would have to be reduced to one or two rigid seg-
ments, which would be an over-simplification of reality, creating results that would be difficult
to interpret.

Intra-muscular EMG is regarded as the most reliable method for obtaining activity record-
ings from deep muscle layers where there are superficial muscles overlapping, and the results
in the present study were statistically robust. Nevertheless, all findings from experimental stud-
ies should be interpreted in the light of the measurement error associated with the chosen
methodology. Previous results indicate that intra-muscular recordings of TrA and OI mixed
together, during single shoulder flexion tasks, has a minimal detectable change (SDD) in
latency of 29 ms (i.e. two single repetitions lies within this interval with 95% certainty) [32].
However, it is unclear if the arm movement amplitude in that study was standardized, which, if
not, in combination with the small subset of participants (n = 5) indicates (as the authors point
out) that variability might be overestimated [32]. This is supported with other findings from
the same study, where the average latency difference between two sets of shoulder flexions
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(separated by 30 min) was only 1 ms (95% CI of bias; ±12 ms) [32]. In conjunction with these
considerations, the mean of three repetitions was used in the calculations in the present study,
and not single contractions, which further suggests that the indicated SDD is too conservative
to be used in the present setting. Therefore we believe that the current statistically significant
findings of latency differences between arm movement amplitudes exceed what can be
expected to be a measurement error.

Practical implications
The present results show that movement amplitude needs to be standardized when performing
rapid shoulder flexions to evaluate trunk muscle activation. This needs to be considered regard-
less of whether the focus lies on the activation of the trunk muscles in the initial or later phases
of the movement, on within subject designs, on comparing activation of the trunk muscles
between categories of subjects, or, above all on trying to synthesize findings from different
studies. In addition, inclusion of the deceleration of the arm movement in the analysis can pro-
vide an opportunity to study the relationship between trunk muscle activation and direction of
perturbing torque during one and the same arm movement.

Conclusion
Increased movement amplitude of rapid bilateral shoulder flexion affects initial trunk muscle
responses with shortened onset latencies of the abdominal muscles and increased level of acti-
vation in TrA and ES. Shoulder flexion movements impose a flexion angular impulse to the
trunk at shoulder height during acceleration of the arms, which is reversed during deceleration.
Despite this change in trunk perturbation direction, TrA activation remains on the same level,
whereas the other trunk muscles show a response specific to either acceleration or deceleration.
This lends support to the notion that TrA is involved in the control of the spine in a way not
necessarily related to the direction of the perturbation in the sagittal plane.
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