@’PLOS ‘ ONE

CrossMark

click for updates

E OPEN ACCESS

Citation: Dilshad E, Cusido RM, Estrada KR, Bonfill
M, Mirza B (2015) Genetic Transformation of
Artemisia carvifolia Buch with rol Genes Enhances
Artemisinin Accumulation. PLoS ONE 10(10):
€0140266. doi:10.1371/journal.pone.0140266

Editor: Tianzhen Zhang, Nanjing Agricultural
University, CHINA

Received: June 10, 2015
Accepted: September 22, 2015
Published: October 7, 2015

Copyright: © 2015 Dilshad et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper and its Supporting Information files.

Funding: The authors have no support or funding to
report.

Competing Interests: The authors have declared
that no competing interests exist.

RESEARCH ARTICLE
Genetic Transformation of Artemisia
carvifolia Buch with rol Genes Enhances
Artemisinin Accumulation

Erum Dilshad', Rosa Maria Cusido?, Karla Ramirez Estrada?, Mercedes Bonfill?,
Bushra Mirza'*

1 Department of Biochemistry, Faculty of Biological sciences, Quaid-i-Azam University, Islamabad,
Pakistan, 2 Laboratorio de Fisiologia Vegetal, Facultad de Farmacia, Universidad de Barcelona, Spain

* dr.bushramirza @ gmail.com

Abstract

The potent antimalarial drug artemisinin has a high cost, since its only viable source to date
is Artemisia annua (0.01-0.8% DW). There is therefore an urgent need to design new strate-
gies to increase its production or to find alternative sources. In the current study, Artemisia
carvifolia Buch was selected with the aim of detecting artemisinin and then enhancing the
production of the target compound and its derivatives. These metabolites were determined
by LC-MS in the shoots of A. carvifolia wild type plants at the following concentrations: arte-
misinin (8ug/g), artesunate (2.24ug/g), dihydroartemisinin (13.6ug/g) and artemether
(12.8ug/g). Genetic transformation of A. carvifolia was carried out with Agrobacterium
tumefaciens GV3101 harboring the ro/ B and rol C genes. Artemisinin content increased
3-7-fold in transgenics bearing the rol B gene, and 2.3-6-fold in those with the ro/ C gene. A
similar pattern was observed for artemisinin analogues. The dynamics of artemisinin con-
tent in transgenics and wild type A.carvifolia was also correlated with the expression of
genes involved in its biosynthesis. Real time gPCR analysis revealed the differential
expression of genes involved in artemisinin biosynthesis, i.e. those encoding amorpha-4,
11 diene synthase (ADS), cytochrome P450 (CYP71AV1), and aldehyde dehydrogenase

1 (ALDH1), with a relatively higher transcript level found in transgenics than in the wild type
plant. Also, the gene related to trichome development and sesquiterpenoid biosynthesis
(TFAR1) showed an altered expression in the transgenics compared to wild type A.carvifo-
lia, which was in accordance with the trichome density of the respective plants. The tri-
chome index was significantly higher in the rol B and rol C gene-expressing transgenics
with an increased production of artemisinin, thereby demonstrating that the rol genes are
effective inducers of plant secondary metabolism.
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Introduction

Artemisinin (AN), a sesquiterpene lactone produced mainly in Artemisia annua as a secondary
metabolite, is a highly effective natural product against malaria and other parasitic diseases, as
well as an anti-cancer agent. The World Health Organization (WHO) has recommended the
Artemisinin-based Combination Therapy (ACT) for the treatment of malaria [1,2]. Our group
has previously reported artemisinin in 12 Artemisia species found in Pakistan [3] but at very
low levels, i.e. 0.01-0.8% of the dry weight of the plant [4], reaching a maximum of 1.5% in
some cases [5,6]. There is therefore a need either to enhance the metabolite concentration in
the natural plant or seek alternative sources of artemisinin.

Among different strategies used to improve secondary metabolite production, the recombi-
nant DNA technology has made it possible to directly modify the expression of biosynthetic
genes, and manipulate the pathways that lead to secondary plant compounds [7]. Various stud-
ies have shown rol genes to be powerful inducers of secondary metabolism in different plant
families [8]. Rol A is a DNA-binding protein and stimulator of growth, while the tyrosine phos-
phatase activity of rol B regulates the signal transduction pathway of auxin [9]. Rol B has been
used to increase the production of resveratrol in Vitis amurensis [10] and anthraquinones in
Rubia cardifolia [11]. The rol C gene, which has cytokinin glucosidase activity, is capable of
stimulating the production of many secondary compounds in transformed plants and cell cul-
tures, such as tropane alkaloids, pyridine alkaloids, indole alkaloids, ginsenosides and anthra-
quinones [12,13,14]. Our previous work also showed that Artemisia dubia, when transformed
with rol ABC genes, produces 10 times more artemisinin and its derivatives [15].

The aim of the present investigation, after the detection of artemisinin and its derivatives
[16] (Fig 1) in Artemisia carvifolia Buch, was to enhance the levels of these metabolites by the
expression of rol B and rol C genes. As the A. carvifolia Buch transgenics showed a significant
increase in target compound levels, real time qPCR analysis of artemisinin biosynthetic genes
including those encoding amorpha-4, 11 diene synthase (ADS), cytochrome P450
(CYP71AV1), and aldehyde dehydrogenase 1 (ALDHI) [17,18,19,20] (Fig 2), was carried out
to find a correlation between the level of gene expression and metabolite concentration. As
artemisinin and other secondary metabolites are produced in 10-celled glandular trichomes
located on leaves and other aerial parts [21,22,23] and sequestered in the epicuticular sac at the
apex of the trichome [22], we also carried out RT-qPCR analysis of the TAFR1 (trichome-spe-
cific fatty acyl-CoA reductase 1) gene. TAFR1 is an enzyme involved in trichome development
and sesquiterpenoid biosynthesis. We also calculated the trichome density to find a relation-
ship between trichome development and artemisinin production.

Material and Methods
Seed Germination and DNA Barcoding

Seeds of Artemisia carvifolia were collected from Astore, in the Northern regions of Pakistan
(35.3667° N, 74.8500° E; 8,500 ft elevation). No specific permissions were required for the men-
tioned location for collection of seeds. However, the project was approved by the Institutional
Biosafety Committee (IBC) Quaid-i-Azam University Islamabad, Pakistan. After collection,
seeds were surface sterilized with 70% ethanol and germinated on half-strength MS medium.
Genomic DNA was extracted from the germinated plantlets according to our established lab
protocol [24]. For the identification of A.carvifolia Buch, a non-coding spacer between the
psbA and trnH genes of chloroplast DNA was amplified by PCR using primers of psbA: 5’
-GTTATGCATGAACGTAATGCTC-3'; trnH: 5-CGCGCATGGTGGATTCACAATC-3'". The
PCR reaction was carried out according to the reaction conditions reported previously [25].
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Rapid PCR Purification System 9700 (Marligen Biosciences, Ijamsville, MD, USA) was used to
purify the PCR product, which was then sequenced following the dideoxy-chain termination
method using an ABI Prism 310 Automated DNA Sequencer (PE, Applied Biosystems, Foster
City, CA, USA). Sequences were identified and aligned via the BioEdit sequence alignment tool
(editor version 7.2.5.0).

Bacterial Strains and Plasmids

Agrobacterium tumefaciens strain GV3101 containing plasmids pPCV002-CaMVBT and
pPCV002-CaM VG, kindly provided by Dr. A. Spena, Max-Planck-Institut fur Zuchtungs-
forschung, 5000 Koin 30, FRG [26], was used for transformation purposes. The coding

OCO(CH,),CO,Na OH
sodium artesunate dihydroartemisinin

Fig 1. Artemisinin and derivatives. Structure of artemisinin and derivatives studied. Fig taken from literature [16].

doi:10.1371/journal.pone.0140266.g001
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Fig 2. Artemisinin biosynthesis. A schematic diagram of artemisinin biosynthetic pathway.
doi:10.1371/journal.pone.0140266.g002

sequence of the rol B and rol C genes was expressed in the T-DNA region of the plasmids
pPCV002-CaMVBT and pPCV002-CaMVG, respectively, under the control of the CaM35S
promoter. T-DNA of pPCV002-CaMVBT and pPCV002-CaMVC also contained the neomycin
phosphotransferase (NPTII) gene with the nopaline synthase (NOS) promoter and NOS termi-
nator sequences (Fig 3). Agrobacterium tumefaciens containing the plasmids
pPCV002-CaM VBT and pPCV002-CaMVC were grown overnight in Luria broth (Sigma Cat
#1-1900). After inoculation, bacterial cultures were maintained at 28°C and 120 rpm in a shak-
ing incubator. Growth was obtained in 24 hours and OD was checked by spectrophotometer,
when in the range of 0.2-0.8, the bacterial suspension was used for the transformation.

Transformation and Regeneration

One-month-old in vitro grown plants were used for transformation. Nodal, explants were pre-
pared, and after 2 days of preculturing on shooting media (0.5 mg/l BAP and 0.1 mg/l NAA)
supplemented with 200uM acetosyringone, they were infected with bacterial strains containing
the desired constructs. After 10-15 minutes of bacterial infection, the explants were dried on
autoclaved filter paper for 2-3 minutes and placed on MS shooting media supplemented with
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Fig 3. Detail of vectors used for transformation of A. carvifolia. Vectors (pPCV002-CaMVBT and pPCV002-CaMVC) used in the transformation of
Artemisia carvifolia. Fig taken from literature [26].

doi:10.1371/journal.pone.0140266.9003

200uM acetosyringone. After 2 days of incubation in darkness at 28°C, explants were washed
with antibiotics and placed on selection medium (0.5mg/l BAP, 0.1mg/l NAA, 50mg/] kanamy-
cin, 300mg/1 cefotaxime). Regeneration occurred within one month, and explants were shifted
to fresh selection media every 15 days. When shoots attained considerable length of 3-4cm,
they were shifted to rooting media (NAA 0.1mg/l, kanamycin 50mg/1) to get complete plant
with roots. After three to four selection cycles, the complete plants were regenerated on selec-
tion media.

Molecular Analysis

Molecular analysis was performed after extraction of genomic DNA from aerial parts of

2 month old transformed and wild type plants by the CTAB method [24]. The plasmid from
GV3101 was isolated by the alkaline lysis method. PCR analysis was performed using a pro-
grammed DNA thermal cycler (Biometra, USA). The rol B gene forward 5-GCTCTTGCAGT
GCTAGATTT-3 and reverse primer 5-GAAGGTGCAAGCTACCTCTC-3’, the rol C gene
forward 5-GAAGACGACCTGTGTTCTC-3’ and reverse primer 5- CGTTCAAACGTTAGC
CGATT-3" and the nptII gene forward 5-AAGATGGATTGCACGCAGGTC-3’ and reverse
primer 5’GAAGAACTCGTCAAGAAGGCG-3" were used for PCR analysis. Conditions
applied for PCR were as described previously [15].
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Southern Blotting

Southern blot analysis was performed using the DIG High Prime DNA Labeling and Detection
Starter Kit IT (Roche Cat. No. 11585614910), following the manufacturer’s instructions. For
southern blotting, 1-5 ug of genomic DNA of rol B transformants was digested with X-bal and
that of rol C gene transformants was digested with EcoRI and electrophoresed on 0.7% agarose
gel overnight. The transfer of digested DNA to the positively charged nylon membranes was
carried out according to the standard procedure [27]. The probe used for hybridization was the
PCR products of rol B and rol C genes from plasmids, which was labeled using digoxigenin
(DIG)-11-dUTP with DIG High Prime DNA Labeling reagents (Roche, Mannheim, Germany).
Hybridization was done at 42-44°C and then immunological detection was carried out on X-
ray film using CSPD substrate in accordance with the manufacturer’s instructions.

Analysis of Artemisinin and Its Derivatives by HPLC-ESI/MS

Extraction of artemisinin and its derivatives from shoots of 4 months old transformed and wild
type plants was carried out using the reported methodology [28]. HPLC-MS analysis was per-
formed with a Varian 500 Ion Trap Mass spectrometer (Varian, Spain) coupled to a 212-HPLC
system equipped with an auto sampler 410 (Varian, Spain). The analytes were separated by a
C18 (5um) column (150mmx 4.6mm) (AKDAY Chromatografica, Spain) using a mobile phase
consisting of water with 0.1% formic acid (A) and acetonitrile (B) in a gradient as follows: (t
(min), % B) (0, 50) (10, 50) (15, 99) (23, 50) (26, 50). The flow rate was 1ml/min. Electro spray
ionization (ESI) in positive mode was applied with a capillary voltage of 4000V and plate volt-
age of 600V. Other parameters include: spray chamber temperature 50 C, nebulizing gas (N,)
pressure: 35psi, dry gas (N;) 10 I/min at 35psi and 400C. Mass analyzer scanned from 66-500
u. Fragmentation amplitude was 1.0 V. Three injections per sample were applied.

Expression Analysis of rol Genes and Artemisinin Biosynthetic Genes by
Real Time Quantitative PCR

The young leaves of transformed and wild-type plants (4 months old) were selected for the RT-
qPCR analysis. Total RNA was extracted from three replicates of each plant according to the
procedure reported previously [29] and also by using the trizol reagent (Life Technologies).
Turbo DNAse (Ambion) was used to ensure complete removal of DNA from RNA after extrac-
tion. Purity and quantity were checked by taking absorbance at 260 and 280nm on a Nanodrop
ND-2000 spectrophotometer (Thermo scientific). The quality of RNA was also assessed by
running RNA samples on 1.2% agarose gel. Reverse transcription of 1 g of RNA was carried
out using a 1* strand cDNA synthesis kit (Invitrogen), following the manufacturer’s instruc-
tions. In order to check the expression of ol B and rol C genes, a semi-quantitative reverse
transcriptase-polymerase chain reaction was performed with rol B and rol C gene primers as
previously, using 1 pl of cDNA reaction mixture as a template. The PCR reactions were run in
triplicate. Gel images of PCR products were scanned by Kodak Molecular Imaging software
(version 4.2) and integrated density values were found to be different for each band.

To evaluate the possible effects of rol genes on the expression of artemisinin biosynthetic
genes, quantitative real time PCR of four selected genes was performed, namely those encoding
amorpha-4, 11 diene synthase (ADS), cytochrome P450 (CYP71AV1) and aldehyde dehydro-
genase 1 (ALDH1). The gene involved in trichome development and sesquiterpenoid biosyn-
thesis (TFAR1) was also studied. The B-actin gene was used as reference gene [30]. For real
time qPCR, a 1:4 dilution of cDNA was used. The amplification reaction was performed by
gene specific primers i.e. ADS forward: 5-ATTACTGGCGGTGCTAAC-3’ and reverse:
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5-GTGCAGAGACAGCCCATT-3’, CYP71AV1 forward: 5-ATTTTGGATATGTTTGGAGC
AGGC-3’ and reverse: 5-TCCGCTTGTACTTTCTCCATTGCT-3’, ALDHI1 forward: 5-CAG
GAGCTAATGGAAGTTCTAAGTCAG-3’ and reverse: 5’-TTTCTTCCTTCGGCCACTGTT
G-3’, TAFRI forward: 5-CCTTGGAGATCCTGAAGCTG-3" and reverse: 5-CGTTGGATTG
TGCTGAACTG-3’, B-actin forward: 5-ATCAGCAATACCAGGGAACATAGT-3’ and re-
verse: 5’-AGGTGCCCTGAGGTCTTGTTCC-3’. Primer amplification efficiency was deter-
mined as previously [31]. The qPCR was performed using iTAqTM Universal SYBR Green
Supermix (BioRad, Hercules, CA, USA) in a 384-well platform system (ABI Prism® 7900HT
sequence detection system, Applied Biosystems, Foster, CA, USA). The reaction conditions for
real time qPCR were as follows: denaturation for 5 min at 95 °C, followed by 45 cycles each of
denaturation for 10s at 95 °C, annealing for 10 s at 60 °C, followed by elongation for 10 s at

72 °C. The RT-qPCR reactions were run in triplicate with mean values and standard deviation
calculated for all cycle thresholds (Ct). For each gene, the relative expression levels were nor-
malized with respect to the wild-type plant (reference value = 1).

Calculations of Trichome Density

Young leaves of wild-type and transformed A. carvifolia plants were selected to calculate tri-
chome density. The ventral surfaces of the leaves were attached to the microscopic slides with
the help of glue and maintained overnight at 4°C for dehydration. The next day, slides were
examined under the fluorescent microscope (Leica) with a FITC green filter. Slides were stud-
ied under 10 x resolution and photographed.

Statistical Analysis

All the experiments including, PCR, LC-MS and trichomes analysis were run in triplicate.
Results of metabolites content, real-time quantitative PCR analysis and calculation of trichome
density are presented as mean values + S.E. The data obtained for the qualitative and quantita-
tive analysis of artemisinin and derivatives, was analyzed statistically by ANOVA and Duncan’s
multiple range test using Mstat C software. Statistical significance of trichomes was determined
by t-test (**, P<0.01; *, P<0.05).

Results
Plant Identification through DNA Barcoding

We successfully amplified the 500bp psbA-trnH region of the chloroplast genome (Fig 4). DNA
samples were sequenced in triplicate to confirm the authenticity of species-specific nucleotides
and the same results were obtained. GenBank Accession number [NCBI: FJ418751] was used
as the reference sequence to confirm our plant species. After performing the CLUSTAL W in
BioEdit software (version 7.2.5.0) and BLAST in NCBI, our sequence was confirmed as psbA-
trnH of A. carvifolia.

Transformation and Regeneration

Successtul transformation of A. carvifolia with A. tumefaciens GV3101 harboring the rol B and
rol C genes was carried out. Two independent transformation experiments were performed
and 300 explants were used per transformation event. Transformation efficiency was found to
be 20-30%, but only 4 rol B transformants and 3 rol C transformants survived to maturity on
the selection media. Morphological variability was observed between wild type plants and
transgenics bearing rol B and rol C genes. Rol B transgenics, which grew faster on the selection
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TGTTATGCATGAACGTAATGCTCATAATTTCCCTCTAGACTTAGCTGCTATTGAAGCT
CCATCTACAAATGGATAAGACTTTGGTCTGATTGTATAGGAGTAGTTTTTGAACTAA
AAAAGGAGCAATAGCTTITCCTCTTGTTTTATCAAGAGGGCGTTATTGCTCCTTTTTTT
ATTTAGTACTATTTGCCTTACACAGTTITCTTTAAAAATATTTTATAGTTTGGTTCGATT
CGCGTGTTTTCTCTITGTATTCATATTCATTTATATTATAGGTTTGTATATTCTATTCC
AAATTTTTTATGAAGTTITGATTTCCAATTCAATTITCAAACCAAAATATATAAAAATTG
AATTTTTGCTTATTTATTACTTTGATTTCATAAATAAAAAAGAAATAATATGCTCTIT
TITATGTTGAGGTAAAAATATAGATAATACTAGATAGATATATAGTAGAGGGGCGG
ATGTAGCCAAGTGGATCAAGGCAGTGGATTGTGAATC

Fig 4. Sequenced DNA for identification of Artemisia carvifolia. psbA-trnH sequence of A. carvifolia NCBI: FJ418751].
doi:10.1371/journal.pone.0140266.9004

media, had wider leaves and more inflorescence, while rol C transgenics, which were recalci-
trant to regeneration, showed a narrow leaf blade and decreased internode length (Fig 5).

Molecular Analysis

PCR performed for the rol gene transformants of A.carvifolia showed the amplified products of
779bp for rol B, 540bp for rol C and 781bp for the nptII gene, as shown in Fig 6A, 6B & 6C.
Similar amplified products were obtained from plasmid DNA of GV3101-CaMVBT and
GV3101-CaM VG, respectively. Wild-type plants did not show the presence of these genes in
their genome. Southern blot analysis confirmed the integration of rol genes in the plant genome
and also gave an idea of the gene copy number in independent transgenic lines (Fig 7A & 7B).
RT-PCR confirmed gene expression in all the regenerants, although it varied according to line.
The rol B transgenic line TB4 and the rol C transgenic line TC1 showed the highest levels of
expression (Fig 6D & 6E), and were found to harbor two copies of the respective genes.

Analysis of Artemisinin and Derivatives by LC-MS

Analysis of artemisinin and its derivatives by an HPLC-UV system was not successful in A. car-
vifolia plant extracts, as these compounds lack UV properties or fluorescent chromophores.

(a) (b) (c)

Fig 5. Vegetative propagation of A. carvifolia. A.carvifolia: wild type (a), tranformant of ro/ B (b), and transformant of ro/ C gene (c).

doi:10.1371/journal.pone.0140266.9005
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M TB1I TB2 TB3

Thus, a method coupling HPLC with an Ion trap mass spectrometer was developed for the
detection and quantification of the target compounds (S1 Fig), with the following results found
in A.carvifolia wild-type extracts: artemisinin (8ug/g), artesunate (2.24ug/g), dihydroartemisi-
nin (D.H.A. 13.6ug/g) and artemether (12.8pg/g). Differences in content between transformed
and untransformed plants were observed. All the transgenic lines bearing rol B and rol C genes
showed enhanced levels of artemisinin and its derivatives (Fig 8). In rol B gene transgenics, this
increase was 3-7-fold for artemisinin, 3-10 fold for artesunate, and 2.6-4 fold for D.H.A and
artemether, whereas in rol C transgenics it was 3.8-6 fold for artemisinin, 4.4-8.9 fold for arte-
sunate, 2.3-3.2 fold for D.H.A and 2.3-5 fold for artemether.

Statistical analysis was conducted in factorial design (8 X 4 X 3) to see the effect of different
transgenic lines on the production of artemisinin and derivatives, where wild type A. carvifolia
and transgenics of rol B and rol C gene showed significant difference (P<0.05) in the produc-
tion of studied compounds (Table 1).

Expression Analysis of Artemisinin and Trichome Biosynthetic Genes by
Real Time gPCR

Higher transcript levels of all the studied genes were found in the transgenics expressing the rol
Band rol C genes, although in a variable fashion (Fig 9). Among the artemisinin biosynthetic

T84 P WT M TC1 TC2 TC3 P WT

-
779b ‘ 540bp
— e
(a) (b)
MTB1 TB2TB3 TB4TC1TC2TC3 P WT M TB1I TB2 TB3 TB4 WT
781bp 779bp
— —
(c) (d)
M TB1TB2TB3TB4TC1TC2TC3 WTNC
540bp 160bp
— 4

(e)

(f)

Fig 6. Gel pictures showing results of normal and semi quantitative reverse transcriptase PCR. PCR amplified products of rol B (a), rol C (b) and nptll
(c) gene are shown in the figure. Semi quantitative RT-PCR showing the relative expression of rol B (d) and ro/ C gene (e). B-actin used as housekeeping
gene (f). TB1-TB4 represents rol b transgenics whereas TC1-TC3 represent rol C transgenics. WT stands for wild type plant of A. carvifolia, lane “P” refers to
the plasmid DNA and lane M corresponds to the marker DNA (Fermentas). NC = negative control.

doi:10.1371/journal.pone.0140266.9006
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WT TB1 TB2 TB3 TB4 P WT TC1 TC2 TC3 P

10kb 10kb

5kb 5kb

3kb 3kb

1kb 1kb

(a) (b)

Fig 7. Southern blot analysis. Southern blot analysis of ro/ B (a) and rol C transgenic lines (b). TB1-TB4 represents rol B transgenics whereas TC1-TC3
represent rol C transgenics. Whereas "P” stands for the plasmid DNA run as positive control. WT indicates the wild type plant.

doi:10.1371/journal.pone.0140266.9007

genes, CYP71AV1 was the most expressed in the transgenics, increasing 15-30-fold in rol B
transformants and 10-26-fold in rol C transformants, compared to wild-type plants. The
ALDH]1 and ADS genes showed a respective 3-9-fold and 2-6-fold enhanced expression in rol
B transformants, and a 5-9-fold and 3-6-fold increase in rol C gene transformants. The trans-
genic lines TB4 and TC1 exhibited the highest expression of these genes. Real time qPCR anal-
ysis of the TFARI gene revealed variable expression among the transgenics, with a 3-6-fold
and 2-4-fold increase, respectively, in rol B and rol C transformants.

The Trichome Density

The number of glandular trichomes was determined on the adaxial side of 3 random pieces of
fresh leaf material from each sample, with an accurately determined leaf area of approximately
lcm? per leaf, and significant differences were observed, as shown in Fig 10A & 10B. The leaves
of A. carvifolia Buch transformed with rol B and rol C genes produced more trichomes (20-30
trichomes/cm?) compared to untransformed leaves (5-7 trichomes/ cm?).

Discussion

In the Artemisia genus, many species have been evaluated for their artemisinin content, as
mentioned previously, but not A. carvifolia. We not only detected this important

PLOS ONE | DOI:10.1371/journal.pone.0140266 October 7, 2015 10/17
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Fig 8. Quantitative analysis of artemisinin and derivatives. Comparative analysis of artemisinin content and its derivatives in wild type A. carvifolia and
transgenics of rol B and ro/ C gene. Values with same alphabet did not differ significantly at 5% probability level using LSD. Error bars indicate the standard
deviation.

doi:10.1371/journal.pone.0140266.g008

phytochemical and its derivatives in this species, but also demonstrated the effectiveness of rol
genes in the enhancement of their production.

Transformants harboring the rol B and rol C genes showed a significant increase in their
artemisinin content compared to the wild-type plants. Data was obtained from four indepen-
dent regenerants bearing rol B and three independent regenerants bearing rol C genes from
two independent transformation events. Significant differences were observed in terms of
growth, morphology and artemisinin accumulation. Similar findings were reported by another
group who showed for the first time how rol genes induce ginsenoside overproduction in trans-
formed cell cultures of P. ginseng, using plasmid DNA containing the individual rol genes from
the TL-DNA of A. rhizogenes strain A4 [32]. Rol C cultures were found to accumulate 1.8-

Table 1. Analysis of variance for quantitative analysis of artemisinin and derivatives.

Source Degree of freedom Sum of Squares Mean Square F-Value Probability
Factor A (Transgenic lines) 7 12415.863 1773.695 1457.1584 0.0000
Factor B (artemisinin standards) 3 11897.913 3965.971 3258.1977 0.0000

A X B (Transgenic lines X artemisinin standards) 21 3329.692 158.557 130.2605 0.0000
Error 64 77.903 1.217

Total 95 27721.371

Coefficient of Variation: 3.38%

doi:10.1371/journal.pone.0140266.1001
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Fig 9. Expression analysis of artemisinin biosynthetic pathway genes and TAFR1 gene. Expression level of Artemisinin biosynthetic genes, ADS (a),
CYP71AV1 (b) and ALDH1 (c) in wild type plant of A. carvifolia and transgenics of rol B and rol C gene. TFART1 is the gene involved in trichome development
and sesquiterpenoid biosynthesis (d).

doi:10.1371/journal.pone.0140266.9009

3-fold more ginsenoside than the control plant, although rol B lines were less productive [32].
In contrast, in another study, rol B gene transgenics of Rubia cardifolia showed enhanced pro-
duction of anthraquinones. In fact, B-glucosidase, the product of the rol B gene, releases indole
acetic acid (IAA) from its inactive glucose conjugates, thus increasing auxin sensitivity in rol B
transgenics. Increased tyrosine phosphatase activity in rol B transformed cells distracts the sig-
nal transduction pathway of the hormone. This sensitivity and transduction alters the
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Fig 10. Trichome density. Comparison of trichome density of transformed and untransformed plants of A. carvifolia (a). Graphical representation of
trichomes densitiy of wild type A. carvifolia and transformants of rol B and rol C gene (b). TB1-TB4 represent rol B transgenics whereas TC1-TC3 represent
transgenics of rol C gene. WT represents the control plant of A. carvifolia.

doi:10.1371/journal.pone.0140266.9010

physiological configuration of transformed cells and eventually the whole plant
[11,33,34,35,36,37,38]. Results of current study are also supported by our previous report, dem-
onstrating the effect of rol ABC gene construct in over production of artemisinin in A. dubia
[15]. It may be concluded that rol genes when combined show more increase in artemisinin i.e.
up to 10 fold [15] than individual rol genes as we observed 6-7 fold increase.

Morphological alterations and differences in metabolite concentrations among different
transgenic lines have been related to the variability in the expression level of rol genes and can
be attributed to position effect [39]. Transgenic A. carvifolia plants showing increased second-
ary metabolism and morphological alterations were analyzed by Southern blot analysis and
semi quantitative RT-PCR to check for correlation with rol gene expression. The results con-
firmed that the observed changes were due to the presence of rol gene transcripts. The lines
TB4 and TC1, which produced the most artemisinin, also showed more rol B and rol C gene
transcripts, respectively, as well as bearing two copies of these genes. On the other hand, the
unimproved accumulation of artemisinin and derivatives observed in TB2 can be attributed to
the less rol B transcripts in this line. Identical conclusions were reached by other group who
correlated the altered morphology of tobacco plants with the detectable level of rol gene tran-
scripts [39]. Our findings are also supported by Arshad et al. (2014), who found that the
expression of the rol B gene of A. rhizogenes in tomato enhanced nutritional contents and foliar
tolerance against fungal pathogens [40].

Variation in the target compound accumulation also reflected differential expression of arte-
misinin biosynthetic genes, with transcript levels being higher in the rol B and rol C gene trans-
formants than in wild-type A. carvifolia. Key enzymes in artemisinin biosynthesis include ADS,
CYP71AV1 and ALDH]1, which are involved in the conversion of farensyl diphosphate (FDP) to
artemisininc acid, a late precursor of artemisinin. Biochemical and molecular studies have shown
that amorpha-4,11-diene synthase (ADS) catalyzes the first committed step of the artemisinin
biosynthetic pathway by cyclization of FDP to amorpha-4,11-diene [41,42,43,44,45], which is
then oxidized to artemisinic alcohol by the cytochrome P450 enzyme, CYP71AV [18,46]. Con-
version of artemisinic alcohol to artemisinin through formation of either artemisinic aldehyde or
dihydroartemisinic aldehyde is catalyzed by the enzyme ALDHI. A. carvifolia transgenics bear-
ing rol B and rol C genes showed an overexpression of the studied genes, particularly CYP71AV,
in accordance with the accumulation of artemisinin and its derivatives. These results are sup-
ported by a previous study showing that overexpression of farensyl pyrophosphate synthase
(FPS) in A. annua increases the accumulation of artemisinin through conversion of isopentenyl
diphosphate (IPP) and dimethylallyl diphosphate (DMADP) into FDP [47]. Similarly, an
increased amount of artemisinin was reported in A. annua transformed with Agrobacterium
tumefaciens wild type nopaline strains [48], and in A. annua bearing the Ipt gene [49].

The TFARI gene, which stimulates trichome development and catalyzes sesquiterpenoid
biosynthesis [47], also showed increased expression in all transgenic lines. Accordingly, the
transformed lines of A. carvifolia showed higher trichome density compared to the untrans-
formed plant (Fig 10), indicating a relationship between trichome development and artemisi-
nin production. Glandular trichomes are the sites of production of important phytochemicals,
including artemisinin, as well as many others that have found numerous applications in the
pesticide, pharmaceutical and flavor industries [50,51]. Artemisinin content has been directly
related to the trichome index in previous studies [52,53].
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Conclusion

Transformation of A. carvifolia with rol B and rol C genes resulted in the enhancement of its
secondary metabolites, particularly artemisinin and its derivatives. Transcript levels of the rol B
and rol C genes found in the transgenics also correlated with their artemisinin accumulation
pattern. An altered expression of genes involved in artemisinin and trichome biosynthesis was
observed, indicating that rol gene integration modified the plant metabolism. The relationship
between trichome density and accumulation of artemisinin and its derivatives was confirmed.

Supporting Information

S1 Fig. LC-MS chromatograms. LC-MS chromatograms for standard artemisinin, artesunate,
D.H.A and artemether for C18, 5um (150mm x 4.6mm) column along with their mass spectra.
(TIF)
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