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Abstract
The empirical mode decomposition is applied to analyze the intrinsic multi-scale dynamic

behaviors of complex financial systems. In this approach, the time series of the price returns

of each stock is decomposed into a small number of intrinsic mode functions, which repre-

sent the price motion from high frequency to low frequency. These intrinsic mode functions

are then grouped into three modes, i.e., the fast mode, medium mode and slow mode. The

probability distribution of returns and auto-correlation of volatilities for the fast and medium

modes exhibit similar behaviors as those of the full time series, i.e., these characteristics

are rather robust in multi time scale. However, the cross-correlation between individual

stocks and the return-volatility correlation are time scale dependent. The structure of busi-

ness sectors is mainly governed by the fast mode when returns are sampled at a couple of

days, while by the medium mode when returns are sampled at dozens of days. More impor-

tantly, the leverage and anti-leverage effects are dominated by the medium mode.

Introduction
In recent years, there has been a growing interest of physicists in complex financial systems.
Physical concepts and methods have been applied to analyze the dynamic behaviors in finan-
cial markets, which are important examples of complex systems with many-body interactions.
As large amounts of historical financial data have piled up in stock markets, it allows to explore
the fine structure of the financial dynamics and achieve various empirical results [1–10]. Very
recently, with the online big data, various new methods are proposed and the results are aug-
mented. For examples, the price change could be predicted by using the collective mood states
derived from Twitter [11], and the trading behavior may be quantified with the Google Trends
data and Wikipedia topic view times [12, 13].

There are several stylized facts in financial markets, and a well-known one is the volatility
clustering, i.e., the long-range time correlation of volatilities [2, 3, 14, 15]. Statistical properties
of the price fluctuations and cross-correlations between individual stocks are topics of interest
[16, 17], not only scientifically for unveiling the complex structure and internal interactions of
the financial system, but also practically for the asset allocation and portfolio risk estimation
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[18, 19]. In the past years, much effort has been made to identify the business sectors from the
cross-correlation matrix with the random matrix theory (RMT) [4, 7, 20–22]. The financial
network has been gaining increasing interests, and it is helpful for understanding the interac-
tion structures of the financial markets [23–25]. Recently, a new approach is proposed, which
combines the cross-correlation decomposition based on the RMT theory with various methods
in complex networks. It may not only identify the business sectors of the financial markets, but
also characterize the interactions between the business sectors [26]. To further understand the
financial dynamics, one may consider a higher-order time correlation, i.e., the return-volatility
correlation [5, 6, 27, 28]. A negative return-volatility correlation, which is the so-called leverage
effect, is observed in almost all stock markets in the world [29–32]. However, a positive return-
volatility correlation is detected in Chinese stock markets, which is now called the anti-leverage
effect [6, 27]. The leverage and anti-leverage effects are important for the risk management and
optimal portfolio choice [5, 33].

To investigate the dynamic behavior of a time series in multi time scale, the Fourier spectral
analysis and wavelet approach are two common methods. For the Fourier spectral analysis,
there are some crucial restrictions, i.e., the dynamic system must be linear and the data should
be periodic or stationary. Otherwise, the resulting spectrum will be physically not so meaning-
ful [34]. For the wavelet analysis, a filter function should be selected beforehand, and one may
only obtain a physically meaningful interpretation to linear phenomena [35]. As the time series
of returns in financial markets are nonlinear and complex, the Fourier spectral analysis and
wavelet approach may give misleading results [35].

Therefore, searching for a new technique to analyze the nonlinear and non-stationary time
series is challenging. The empirical mode decomposition (EMD) appears to be a novel method
in this respect [35, 36]. With the EMDmethod, a time series can be decomposed into a small
number of intrinsic mode functions (IMFs), which are derived based on the local characteristic
time scale of the data itself and describe the dynamic behavior from high frequency to low fre-
quency [35–38]. All the IMFs are orthogonal to each other [35, 39]. The EMDmethod provides
us the ability to analyze the dynamics of financial markets in intrinsic multi time scale [34]. An
IMF is derived as a function having the same number of zero-crossings and extrema, and also
having symmetric envelopes defined by the local maxima and minima, respectively [35, 40].
The cycle of each IMF can be regarded as an indicator of repeating patterns specific to recur-
rence events [39]. These events are meaningful for better understanding the raw data [41–43].

The EMDmethod was initially proposed to study the movement of the ocean waves [35,
38], and then successfully applied in different areas. One important application of this method
is in social science, such as for the investigation of the dengue haemorrhagic fever [44], the
crude oil price [38, 45] and the financial markets. In the past years, with the EMDmethod, the
phase distribution and phase correlation of financial time series have been studied [39, 40],
the damped oscillations in the ratios of stock market indices has been analyzed [39]. The finan-
cial crisis forecasting and foreign exchange rate forecasting have been investigated with this
method, and the results are significantly improved compared with those obtained with conven-
tional neural networks [41, 45]. The EMDmethod is very useful for both theoreticians and
practitioners [46–48].

The spatial and temporal structures of financial markets in multi time scale are important,
but so far have not been touched so much. Our motivation in this paper is to investigate the
spatial and temporal structures of financial markets in multi time scale with the EMDmethod,
and to understand their intrinsic dynamic mechanisms. After analyzing the probability distri-
bution of returns, auto-correlation of volatilities and persistence probability of volatilities for
different modes, we conclude that these basic characteristics are rather robust in multi time
scale. However, the cross-correlation between individual stocks and the return-volatility
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correlation are time scale dependent. We uncover that the structure of business sectors in a
stock market is mainly governed by the fast mode when returns are sampled at a couple of
days, while by the medium mode when returns are sampled at dozens of days. More impor-
tantly, the leverage and anti-leverage effects are dominated by the medium mode.

Materials
To investigate the cross-correlations between individual stocks in a stock market, the data set
should include as many stocks as we may obtain. On the other hand, the absent data points for
each stock should be as few as possible. With these considerations, we have collected the data
of the daily closing prices of individual stocks for four stock markets. The price data of 174
stocks in the Shanghai Stock Exchange (SHSE) are from Jan., 1997 to Nov., 2007, with 2633
data points in total. The price data of 162 stocks in the Taiwan Stock Exchange (TWSE) are
from Jan., 2003 to Apr., 2011, with 2000 data points in total. The price data of 158 stocks in the
Hong Kong Stock Exchange (HKSE) are from Jan., 2003 to Apr., 2011, with 2000 data points
in total. The price data of 246 stocks in the New York Stock Exchange (NYSE) are from Jan.,
1990 to Dec., 2006, with 4286 data points in total.

For the stock market indices, the daily data of the German DAX are from 1959 to 2009 with
12407 data points. The daily data of the S&P 500 index are from Jan., 1990 to Dec., 2006 with
4286 data points. The daily data of the Hang Seng index (HSI) in Hong Kong are from 1990 to
2011 with 5472 data points. The daily data of the Taiwan Weighted index (TWII) are from
1997 to 2011 with 3571 data points. The daily data of the Shanghai Composite index (SHCI)
are from 1990 to 2009 with 4482 data points, and the daily data of the Shenzhen Composite
index (SZCI) in the Shenzhen Stock Exchange (SZSE) are from 1991 to 2009 with 4435 data
points. All these data are obtained from Yahoo! Finance (finance.yahoo.com).

Methods and Results

Basic dynamic characteristics
In this section, we analyze the probability distribution of returns, auto-correlation of volatilities
and persistence probability of volatilities. We denote the price of a stock index at time t0 as P
(t0), then its logarithmic price return over a time interval Δt is defined by

Rðt0;DtÞ � ln Pðt0 þ DtÞ � ln Pðt0Þ: ð1Þ
4t is first set to be one day, and the effect of different4t will be investigated in the last subsec-
tion. To ensure that the results are independent of the fluctuation scales of different financial
indices, we introduce the normalized price return

rðt0Þ ¼ ðRðt0Þ � hRiÞ=s; ð2Þ

where h� � �i represents the time average over time t0, and s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hR2i � hRi2

q
is the standard

deviation of R(t0) [7]. With the EMDmethod [35, 36, 38], the time series of the price returns of
each financial index is decomposed into a small number of intrinsic mode functions, i.e., the
so-called IMFs, which are derived based on the local characteristic time scale of the data itself
and characterize the price motion from high frequency to low frequency. But the IMFs are not
exact periodic functions, and the cycle and amplitude of each IMF fluctuate within a certain
range during the time evolution. To be clearer, we take the German DAX as an example. The
time series of returns for this index is decomposed into thirteen IMFs from high frequency to
low frequency. In Fig 1, the first ten IMFs are displayed. We observe that the average amplitude
of an IMF monotonously decreases from high frequency to low frequency. The average cycle of
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each IMF is then computed [38]. For the first three IMFs, the cycles are 2.9, 5.5 and 9.4 days,
respectively. For the fourth to the eighth IMFs, the cycles are respectively 16.5, 31.4, 59.9, 118.2
and 217.6 days. Roughly, the average cycle obeys a double increase from high frequency to low
frequency.

The IMFs may then be grouped into three modes, i.e., the fast mode, medium mode and
slow mode. The sum of the first three IMFs whose cycles are below two working weeks is iden-
tified as the fast mode. The sum of the fourth IMF to the eighth IMF is called the medium
mode. Considering that the average cycle of the ninth IMF is larger than one working year, we
identify the sum of the ninth to the last IMF as the slow mode.

The probability distributions of positive and negative returns are computed for the full time
series, fast mode, medium mode and slow mode, respectively. The results for the German DAX
are shown in Fig 2(a). All the curves exhibit a similar behavior with a fat-tail.

The auto-correlation function of volatilities is defined as

AðtÞ ¼ ½hjrðt0Þjjrðt0 þ tÞji � hjrðt0Þji2�=A0; ð3Þ

Fig 1. The time series of returns for the German DAX index, and the first ten IMFs decomposed with the EMDmethod. The left graph describes the
1st IMF to the 5th IMF from top to bottom, and the right one displays the 6th to 10th IMFs from top to bottom.

doi:10.1371/journal.pone.0139420.g001
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with A0 = hjr(t0)j2i−hjr(t0)ji2. It is well known that the volatility in financial dynamics is long-
range correlated in time, i.e., A(t) decays by a power law [2, 3, 14, 15]. After analyzing the auto-
correlation function of volatilities for all the IMFs, we observe that the curve for a single IMF
shows a relatively large fluctuation. In Fig 2(b), therefore, A(t) is plotted for the full time series,
fast mode, medium mode and slow mode of the German DAX. The curves of the full time
series, fast mode and medium mode display a similar behavior. However, the behavior of the
slow mode is deviating. In fact, as indicated in Fig 1, the average cycle of each IMF in the slow
mode is larger than two hundred days. One may suffer from the long periodicity when comput-
ing the auto-correlation function for the slow mode.

We further explore the persistence probability of volatilities P−(t) which is defined as the
probability that jr(t0+t)j has always been below jr(t0)j in time t. In general, P−(t) obeys a univer-
sal power law behavior, and describes the auto-correlation non-local in time, which may be
independent of that local in time [27]. Considering that the slow mode has a long periodicity,
we mainly focus on the behaviors of the fast mode and medium mode. As shown in the inset of
Fig 2(b), the curves for the full time series, fast mode and medium mode follow a similar
behavior.

Briefly speaking, the basic properties of a financial market, such as the probability distribu-
tion of returns, auto-correlation of volatilities and persistence probability of volatilities, are
rather robust in multi time scale, at least for the fast mode and medium mode. Among these
characteristics, the long-range auto-correlation of volatilities is dominating. It is reported that
the cycle of each IMF can be regarded as an indicator of repeating patterns specific to recur-
rence events [39]. In other words, although these events occurs in different intrinsic time scales,
their volatilities are similarly long-range correlated in time in the statistical sense [2, 3, 14, 15].

Structure of business sectors
Following the notations in Eqs (1) and (2), the logarithmic price return of the i-th stock is
denoted by Ri(t0), and the normalized one by ri(t0). ri(t0) for4t = 1 is then decomposed into a

Fig 2. The basic characteristics of the German DAX index. (a) The probability distribution of returns for the full time series, fast mode, mediummode and
slow mode is respectively displayed for the German DAX index. (b) The auto-correlation function and persistence probability of volatilities are shown.

doi:10.1371/journal.pone.0139420.g002
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small number of IMFs with the EMDmethod, and the typical number of IMFs is eleven to
thirteen.

The elements of the equal-time cross-correlation matrix C are defined by

Cij � hriðt0Þrjðt0Þi; ð4Þ

which measure the correlations between the price returns of individual stocks i and j. Accord-
ing to the definition, C is a real symmetric matrix with Cii = 1, and Cij is valued in the range
[-1,1].

The Wishart matrix is derived from non-correlated time series. Assuming that there are N
time series with a length T, statistical properties of such random matrices are well understood
[49, 50]. In the limit N!1 and T!1 with Q� T/N ⩾ 1, the probability distribution
Prm(λ) of the eigenvalue λ is given by [49, 50]

PrmðlÞ ¼
Q
2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðlranmax � lÞðl� lran
minÞ

p
l

; ð5Þ

and the lower and upper bounds of λ are

lranminðmaxÞ ¼ 1� ð1=
ffiffiffiffi
Q

p
Þ

h i2
ð6Þ

For a real dynamic system, large eigenvalues deviating from Prm(λ) of the Wishart matrix
imply that there exist non-random interactions. Both mature and emerging stock markets
show such a phenomenon [4, 21, 51]. In our notations, the eigenvalues are arranged in the
order of λα > λα+1, with α = 0,. . .,N−1, with N being the number of stocks. The eigenmodes for
the large eigenvalues are dominated by a community of stocks, usually associated with a busi-
ness sector. Taking into account the signs of the components of the eigenvectors, the sector
of λα may be further separated into two subsectors, i.e., the positive and negative subsectors
[52, 53].

The cross-correlation between two stocks can be decomposed into different eigenmodes
[26],

Cij ¼
XN
a¼1

laC
a
ij; Ca

ij ¼ ua
i u

a
j ; ð7Þ

where ua
i is the i-th component in the eigenvector of λα, and Ca

ij represents the cross-correlation

in the α-th eigenmode. In order to uncover the interaction structure in different eigenmodes,
we introduce the mode cross-correlation matrix

Cmode;ij ¼
Xmode

a

laC
a
ij: ð8Þ

For the market mode, Cmar;ij ¼ l0C
a
ij. For the sector mode, Csec;ij ¼

Pn�1

a¼1 laC
a
ij, and n is the

number of large eigenvalues λα, i.e., la > lran
max. Usually, n is less than twenty. For the random

mode, we typically take Cran;ij ¼
PN�1

a¼50 laC
a
ij.

According to the cross-correlation decomposition, the global price movement of the entire
market, the local price motion of business sectors and the background of the noisy correlations
between individual stocks are described by the market mode, sector mode and random mode
respectively. In fact, previous research reveals that one can not obtain really meaningful busi-
ness sectors and their interactions from the market mode and random mode [26]. The nontriv-
ial local interactions of the business sectors are mainly contained in the sector mode.
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Additionally, a business sector in the sector mode may split into two subsectors, which are
anti-correlated each other. These two subsectors are called a cluster pair [26, 52, 53].

Enlightened by the work in ref. [26], a methodology which combines the RMT theory with
the planar maximally filtered graph and the alluvial diagram is introduced [54, 55]. The alluvial
diagram is well applied to visualize the structural changes in network structures [55]. With this
approach, we investigate the interaction structures of business sectors with the sector mode
cross-correlation matrix, for the full time series, fast mode, medium mode and slow mode
respectively. The alluvial diagrams of the business sectors for the SHSE and TWSE markets are
shown in Fig 3. The height of a module is proportional to the number of its stocks. The module
usually corresponds to a business sector, in which most of the stocks are running a same busi-
ness. As shown in Fig 3, the structure of business sectors in the SHSE market for the fast mode
is almost identical with that for the full time series. The identified cluster pairs are DG-Energy
and RE-Utility. For the TWSE market, the behavior is similar.

For the medium mode, the identified communities are very different from those of the full
time series. In addition, these communities can hardly be associated to business sectors. The
alluvial diagrams are shown in Fig 4. Energy, Technology and Real estate for the SHSE, and
Electronic industry, Real estate, Steel industry and Daily consumer goods for the TWSE are
only exceptional, and these business sectors are the representative and important ones in their
own stock market [26, 53]. For the slow mode, the communities are also different, and one
could not identify any business sectors.

We have also examined the NYSE and HKSE markets, and our conclusion is that the struc-
ture of business sectors in a stock market is mainly governed by the fast mode. More precisely,
according to the average cycle of each IMF computed in Subsec. Basic dynamic characteristics
of Sec. Results, the price fluctuations whose time scales are below ten days, i.e., two working
weeks, contribute the most to the structure of business sectors. This result is somewhat unex-
pected. A naive conjecture might be that the medium mode and slow mode should also con-
tribute to the structure of business sectors, if not dominating, since the structure of business
sectors is considered to be relatively stable during the time evolution.

To obtain a better understanding of the above results, we compute the equal-time correla-
tion between the full time series of returns and the fast, medium or slow mode, and denote
it by

c ¼ hriðt0Þrmi ðt0Þi; ð9Þ

with rmi ðt0Þ being the fast, medium or slow mode of ri(t0). The value of cmay change for differ-
ent stocks. In Fig 5, the probability distribution of the correlation c is shown for the SHSE and
TWSE markets. The correlations for the fast mode are larger than those for the medium mode
and much larger than those for the slow mode. The average value of c for the fast mode is 0.92
and 0.93 for the SHSE and TWSE respectively, while that for the medium mode is 0.30 and
0.32. The average value of c for the slow mode is about 0.05 for both the SHSE and TWSE mar-
kets. Therefore, the fast mode of ri(t0) looks almost identical to ri(t0), but the medium mode and
slow mode are not. The results for the NYSE and HKSE markets are similar. This should be an
important reason that for Δt = 1, the structure of business sectors in a stock market is mainly
governed by the fast mode.

Return-volatility correlation
The return-volatility correlation function is usually defined by

LðtÞ ¼ ½hrðt0Þjrðt0 þ tÞj2i � L0�=Z; ð10Þ
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with Z = hjr(t0)j2i2 and L0 = hr(t0)ihjr(t0)j2i. For t> 0, L(t) describes how the past returns affect
the future volatilities. It was first discovered by Black that the past negative returns increase
future volatilities, i.e., the return-volatility correlation is negative [29, 30], and this phenome-
non is called the leverage effect. The leverage effect is observed in almost all the stock markets
in the world. However, a positive return-volatility correlation, which is the so-called anti-lever-
age effect, is detected in the Chinese stock markets in the past years [6, 7, 27]. In very recent
years, many researches have been devoted to the return-volatility correlation. Various macro-
scopical models and a recent microscopic model have been proposed [5, 7, 56–59]. In this
paper, the EMDmethod provides a possible technique to analyze the return-volatility correla-
tion in multi time scale.

Firstly, we calculate the return-volatility correlation function for the German DAX index
and the HSI index in Hong Kong, respectively. As shown in Fig 6(a), the return-volatility corre-
lation function of the full time series for the two indices exhibit a leverage effect, while that of
the fast mode just fluctuates around zero. This is a surprising result, since the equal-time corre-
lation between the full time series and fast mode is very large, over 0.92 in general. For the Chi-
nese indices, i.e., the average of the SHCI and SZCI indices, it is observed that before the year

Fig 3. The business sectors of the full time series for the SHSE and TWSEmarkets are compared with those of the fast mode. DG-Energy and
RE-Utility are cluster pairs for the SHSEmarket, while RE-CI, EI-CI and DG-CI are those for the TWSEmarket. The abbreviations are as follows. RE: Real
estate; CI: Chemical industry; SI: Steel industry; IG: Industrial goods; EI: Electronic industry; IT: Technology; BM: Basic materials; Serv: Service; DG: Daily
consumer goods.

doi:10.1371/journal.pone.0139420.g003
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2000, it exhibited a strong anti-leverage effect, while after 2000, it gradually changed to the
leverage effect [53]. For comparison, we concentrate our attention on the period from 1990 to
2000. Again, the return-volatility correlation function for the fast mode fluctuates around zero.
We have also analyzed the return-volatility correlation for individual stocks. We choose 40
stocks from the NYSE market, which show a strong leverage effect, and the results are dis-
played in Fig 6(b). The return-volatility correlation of the fast mode also fluctuates around
zero. Thus we conclude that the fast mode dose not contribute to the leverage or anti-leverage
effect.

After careful analyzing, we find that the medium mode contributes the most to the leverage
and anti-leverage effects while the slow mode also does not. The average cycles are from fifteen
days to over two hundred days. In Fig 7(a), the return-volatility correlation function is shown
for the German DAX index and the HSI index in Hong Kong, and in Fig 7(b), the one averaged
over the chosen 40 stocks for the NYSE market is displayed. In all these cases, the medium
mode dominates the leverage effect. After removing the medium mode, the leverage effect is
not detected. As shown in Fig 1, each frequency mode exhibits a quasi periodic behavior. Such
a periodicity will be reflected in the return-volatility correlation function, especially for the

Fig 4. The business sectors of the full time series for the SHSE and TWSEmarkets are compared with the communities of the mediummode.Most
of the communities of the mediummode could not be associated with the business sectors. The abbreviations are the same as in Fig 3.

doi:10.1371/journal.pone.0139420.g004
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Fig 5. The probability distribution of the correlation c defined in Eq (9) for the fast mode, medium
mode and slowmode. There are 174 stocks for the SHSEmarket, and 162 stocks for the TWSEmarket.

doi:10.1371/journal.pone.0139420.g005

Fig 6. The return-volatility correlation function for the full time series and the fast mode. (a) The return-volatility correlation function for the HSI index in
Hong Kong and the German DAX index, and that for the fast mode of each index. (b) The return-volatility correlation function averaged over the chosen 40
stocks for the NYSEmarket, and that of the fast mode.

doi:10.1371/journal.pone.0139420.g006
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medium and slow modes. Therefore, the curve for the medium mode in the figures is the aver-
age of the upper and lower envelopes of the original one.

Why the medium mode is important for the leverage and anti-leverage effects? Previous
analysis reveals that large volatilities are dominating [27]. For example, the leverage effect for
the DAX is mainly contributed from the volatilities jr(t0)j> 2σ, while the anti-leverage effect
for the Chinese indices is essentially dominated by the volatilities jr(t0)j> 8σ. On the other
hand, it is reported that the high frequency IMFs reflect the short-term fluctuations, while each
sharp up or down of the medium frequency IMFs corresponds to a significant event [38].
These events may cause large volatilities.

Enlightened by these works, we generate six new time series of returns by removing the
large volatilities jr(t0)j> 8σ for the SHCI and SZCI indices, and jr(t0)j> 2σ for the S&P 500,
German DAX, HSI and TWII indices. All the new time series do not show a leverage or an
anti-leverage effect. Then we compute the equal-time correlation between an IMF of a full time
series and that of the new time series. In Table 1, the results are shown for the six stock market

Fig 7. The return-volatility correlation function of the full time series, the mediummode and that after removing the mediummode. (a) The return-
volatility correlation function of the full time series, the mediummode and that after removing the mediummode for the HSI index in Hong kong and the
German DAX index. (b) The return-volatility correlation function of the full time series, the mediummode and that after removing the mediummode for the
NYSEmarket. The results are averaged over the chosen 40 stocks.

doi:10.1371/journal.pone.0139420.g007

Table 1. The equal-time correlation between an IMF of the full time series and that of the new time series. The new time series are generated by remov-
ing the large volatilities, i.e., jrj > 8σ for the SHCI and SZCI indices, and jrj > 2σ for the S&P 500, DAX, HSI and TWII indices.

1 2 3 4 5 6 7 8 9 10

S&P 500 0.71 0.62 0.51 0.43 0.39 0.35 0.31 0.09 0.15 0.54

German DAX 0.68 0.57 0.51 0.45 0.42 0.41 0.34 0.20 0.12 0.54

HSI 0.67 0.56 0.54 0.46 0.36 0.43 0.11 0.18 0.22 0.41

TWII 0.71 0.56 0.52 0.42 0.44 0.39 0.19 0.42 0.68 0.70

SHCI 0.80 0.61 0.51 0.67 0.73 0.57 0.44 0.43 0.14 0.91

SZCI 0.93 0.82 0.78 0.70 0.69 0.51 0.65 0.50 0.74 0.67

doi:10.1371/journal.pone.0139420.t001
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indices. We observe that the correlation is obviously smaller for the IMFs with medium fre-
quencies. The ninth IMF is an exception. This may be due to its small amplitude, and even a
minor contribution from the volatilities may bring a large fluctuation to the equal-time correla-
tion. In other words, the large volatilities are mainly contained in the medium mode rather
than in the fast or slow mode. Therefore, the fast mode and slow mode do not contribute to the
leverage or anti-leverage effect. Both the effects are dominated by the medium mode, or mainly
by the large volatilities whose time scales are above two working weeks.

The effect of4t
To further investigate how the dynamic properties of different modes depend on the time
scale, we change the value of4t in computing the price returns in Eq (1), for example,4t = 5,
10, 20 and 60 days. After analyzing the probability distribution of returns, the auto-correlation
function and the persistence probability of volatilities for different4t, we find that the results
of these three characteristics are consistent with those obtained for4t = 1. In other words,
these characteristics are robust in multi time scale for different4t. In Fig 8, for example, the
auto-correlation function of volatilities for the German DAX is shown for4t = 20. As dis-
cussed before, the deviation of the slow mode is possibly due to its long periodicity.

Following the procedure in Subsec. Structure of business sectors of Sec. Results, for a partic-
ular4t, the normalized logarithmic price return of each stock is decomposed into a small
number of IMFs. The equal-time correlation between the full time series of returns and the
fast, medium or slow mode are computed. The probability distributions of the correlation c in
Eq (9) for4t = 20 days are displayed for the TWSE market in Fig 9, and the results are differ-
ent from those for4t = 1. For4t = 20, the mode who has the largest equal-time correlation
with the full time series is not the fast mode but the medium mode. The average value of c for
the fast mode and the slow mode is 0.39 and 0.12 respectively, while that for the medium mode
is 0.90.

To obtain the interaction structure of communities, again, the methodology which com-
bines the RMT theory with the planar maximally filtered graph and the alluvial diagram is
applied. With this approach, the alluvial diagrams of the business sectors for the four stock
markets have been analyzed. In Fig 10, the results for the TWSE market are displayed. All the
business sectors for the full time series can be discovered in the medium mode. For the fast
mode and slow mode, the identified communities are very different from those of the full time
series, and can hardly be associated to business sectors. The other three stock markets also
show a similar phenomenon.

We observe that for a particular4t, the IMF with the largest average amplitude has the larg-
est equal-time correlation with the full time series. We call this IMF the most correlated one,
and it changes with4t. Further, the period of volatility for the most correlated IMF is approxi-
mately equal to4t. Here we should note that the period of volatility is equal to half of the
period of return. For4t = 20 days, for example, the period of volatility for the fourth IMF is
about twenty days. The practical computation shows that the fourth IMF is indeed the most
correlated one. This should be an explanation that for4t = 20 days, the business structure is
mainly governed by the medium mode.

Finally, the return-volatility correlation functions for different4t are computed, and the
results for the HSI index and the German DAX index with4t = 20 are shown in Fig 11. It
remains that the medium mode contributes the most to the leverage effect, while the return-
volatility correlation function of the fast mode fluctuates around zero.
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Fig 9. The probability distribution of the correlation c defined in Eq (9) for the fast mode, medium
mode and slowmode. There are 162 stocks for the TWSEmarket, and4t = 20 days.

doi:10.1371/journal.pone.0139420.g009

Fig 8. The auto-correlation function of volatilities for the full time series, fast mode, mediummode and
slowmode of the German DAX. The value of4t is set to be 20 days.

doi:10.1371/journal.pone.0139420.g008
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Discussion
In this paper, we explore the intrinsic multi-scale dynamic behavior of complex financial sys-
tems, based on the daily data of individual stock prices and financial indices in five typical
stock markets, i.e., the NYSE, SHSE, SZSE, HKSE and TWSE markets. With the EMDmethod,
the time series of the price returns of each stock or index can be decomposed into a small num-
ber of intrinsic mode functions, i.e., the so-called IMFs. The decomposition is based on the
local characteristic time scale of data itself, and the IMFs represent the price motion from high
frequency to low frequency. After analyzing the probability distribution of returns, auto-corre-
lation of volatilities and persistence probability of volatilities for different modes, we conclude
that these basic characteristics are rather robust in multi time scale. However, the cross-correla-
tion between individual stocks and the return-volatility correlation are time scale dependent.
The structure of business sectors in a stock market is mainly governed by the fast mode when
returns are sampled at a couple of days, while by the medium mode when returns are sampled

Fig 10. The business sectors of the full time series for the TWSEmarket are compared with those of the fast mode andmediummode for4t = 20
days. The abbreviations are the same as in Fig 3. The module that does not have a name is the one we could not identify.

doi:10.1371/journal.pone.0139420.g010
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at dozens of days. More importantly, the leverage and anti-leverage effects are dominated by
the medium mode.
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