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Abstract

Drainage ditches, either seasonally flooded or permanent, are commonly found on inten-
sively managed lowland farmland in the UK. They are potentially important for wetland bio-
diversity but, despite their ubiquity, information on their biodiversity and management in the
wider countryside is scarce. We surveyed 175 ditches for their physical and chemical char-
acteristics, spatial connectivity, plant communities and aquatic invertebrates in an area of
intensively managed farmland in Oxfordshire, UK and collected information on ditch man-
agement from farmer interviews. Water depth and shade had a small impact on the diversity
of plant and invertebrate communities in ditches. Increased shade over the ditch channel
resulted in reduced taxonomic richness of both channel vegetation and aquatic inverte-
brates and channel vegetation cover was lower at shaded sites. Invertebrate taxonomic
richness was higher when water was deeper. Spatial connectivity had no detectable impact
on the aquatic invertebrate or plant communities found in ditches. The number of families
within the orders Ephemeroptera, Plecoptera and Trichoptera (EPT), which contain many
pollution-sensitive species, declined with decreasing pH of ditch water. As time since dredg-
ing increased, the number of EPT families increased in permanent ditches but decreased in
temporary ditches. Whether or not a ditch was in an agri-environment scheme had little
impact on the reported management regime or biodiversity value of the ditch. Measures for
increasing the amount of water in ditches, by increasing the water depth or promoting reten-
tion of water in ditches, could increase the biodiversity value of ditches in agricultural land.
Some temporary ditches for specialised species should be retained. Reducing the amount
of shade over narrow ditches by managing adjacent hedgerows is also likely to increase the
species diversity of plant and invertebrate communities within the ditch. We recommend
that to preserve or enhance the biodiversity value of ditches, and improve their ecosystem
service delivery, management prescriptions for hedgerows adjacent to ditches should differ
from those aimed at hedgerows only.
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Introduction

Where landscapes are dominated by agriculture, semi-natural areas provide critical habitat for
biodiversity in an otherwise inhospitable matrix (e.g.[1]). Wetland areas on farmland are
increasingly recognised as being important for wildlife, and their loss has been implicated in
the decline of some formerly widespread species [2]. Wetland habitats that have been lost in
the UK and across Europe include wet rough pasture or marsh, ponds, and small linear features
such as ditches [3,4]. Small wetland habitats (both artificial and natural) within agricultural
land have been demonstrated to contribute to regional diversity levels [5].

Agri-environment schemes (AES) are currently the most widely applied policy mechanism
aimed at halting or reversing the well documented declines of many farmland species [6,7,8].
They provide financial support for farmers and land managers to undertake a range of wildlife-
friendly management measures. However, while AES are benefitting some species and habitats
[9], others are still faring badly [10]. Given the continuing declines in farmland species, and the
cost of AES (for example, approximately £400 million per year is paid to English farmers under
AES [11]), improving their effectiveness for biodiversity conservation is a high priority [12].
Recent work has highlighted the need for better assessments of the importance of different hab-
itat features and how to manage them (e.g. [13]).

While a large body of information exists on the biodiversity and management of many
semi-natural habitats in farmland, such as field margins and hedgerows, others, particularly
small freshwater bodies, remain neglected [14]. Despite having been replaced by sub-surface
drainage in some areas [4], ditches are still widespread in agricultural land. As linear wetland
areas, they provide very different habitat compared to other farm habitats and are particularly
important for aquatic plants [15], aquatic invertebrates [14,16] and amphibians [17]. These
groups are also rather poorly studied on farmland, yet contribute to overall species diversity at
local and landscape scales [5]. Ditches and their margins may also function as corridors within
the landscape for other groups, including pollinators [18] and small mammals [19].

In addition to providing wildlife habitat, ditches supply other ecosystem services such as dif-
fuse pollution mitigation [20]. Both permanent and temporary ditches are often the first con-
centration point of water draining from agricultural land. The Water Framework Directive of
the European Union requires member states to have all surface water bodies in ‘good” ecologi-
cal and chemical condition by 2015 [21], and ditches have the potential to reduce the amount
of chemicals and sediment entering the wider water catchment [22]. By retaining water across
the wider landscape in times of high flow, ditch management may reduce flood risk [22]. Suth-
erland et al. [23] suggest that policy and economic incentives could be used to help maximize
achievement of these interlocking objectives: restoring flood plain wetlands, creating riparian
corridors, improving in-channel habitat and creating flood retention basins to improve eco-
logical status, reduce flood risk, and deliver biodiversity targets.

The biodiversity of ditches is likely to be affected both by their management and their con-
nectivity to other wetland habitats within the landscape. To maintain their drainage function,
ditches require management, particularly removal of vegetation and accumulated sediments to
allow water in the ditch to flow. The frequency of ditch management has significant impacts on
the vegetation and invertebrate fauna, with intermediate frequency of management commonly
having the most positive impacts [24,25,26]. The impacts of management on biodiversity may
be mediated by the level of connectivity of the ditch. For example, recolonisation of cleaned
ditches may be quicker if they are connected to a source of colonisers (plant diversity of ditch
banks has been shown to decrease with distance from a seed source [27]). Environmentally
sensitive management of ditches includes reducing the frequency of cleaning and preventing
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the application of agro-chemicals close to banks [28]. However, some management is usually
required, with infrequent management leading to loss of species diversity [25].

Well connected ditches have been shown to have higher species richness (e.g. [27,29]). Tem-
poral as well as spatial connectivity influences aquatic communities. In ditches which dry out
regularly, recolonisation can occur from sediments [30], or active or passive dispersal from
other areas. Conversely, rapid changes in flow rate in ditches closely connected to main water-
courses may have a negative impact on species richness [31]. Connectivity can have implica-
tions for the spread of invasive species if, for example, increased connectivity means that water
bodies are more likely to be invaded [32].

Much of the information on the biodiversity of ditches has come from permanently wet
(e.g. [33,34] ditches or those of high conservation value [25,35,36]. Despite this, small ditches
surrounding fields are common in some regions of Europe [4] and North America [37]. In the
UK, there are few data on ditches in agricultural land in landscape types other than fenland
and river flood plains [38]. Ditches in intensively managed agricultural land are widespread
throughout the UK—average UK ditch density is c. 2km per km? [38]. The relative lack of
information on the biodiversity of smaller, temporary ditches, which are widespread in farm-
land [14], may lead to lost opportunities for increasing the value of this habitat to farmland bio-
diversity. This is particularly important as the combined ditch and hedge management option
in England’s Entry Level agri-environment scheme (ELS) is one of the most frequently selected.
Ditches are eligible for management under ELS only if they contain plants considered typical
of wet ditches and farmers receive payments to ensure that these ditches are cleaned less than
once per agreement (5 years), and the vegetation cut not more than once every 2 years [39]. In
2009, 43,430km of ditches were managed under ELS [11] and maximising the biodiversity of
these is highly desirable.

The aim of this study was to improve knowledge of agricultural ditches using data from a
survey of plants and invertebrates in permanent and temporary ditches across multiple farms
in intensively managed agricultural land. We investigated the impacts of physical and chemical
characteristics, including water quality, the size of the ditch, the bank angle and surrounding
land use (which have been demonstrated to be important in other ditch systems e.g.
[26,40,41,42]), on biological communities. We also investigated whether management, both
vegetation cutting and dredging of the ditch and management of associated features such as
hedges, had any effect on ditch communities. Management of ditches can be affected by partic-
ipation in agri-environment schemes, so we established whether farms or individual ditches
were entered into these schemes. We investigated these factors in seasonal and permanent
ditches, and in ditches with differing spatial and temporal connectivity across the landscape.
We predicted that ditches with a higher proportion of agricultural land surrounding them
would have lower biodiversity but that this impact may be mitigated by the presence of associ-
ated features such as margins and hedges. We also predicted that ditches with more frequent
management would have lower biodiversity but that ditches with greater temporal and spatial
connectivity would have greater biodiversity. We also asked whether ditches managed under
agri-environment schemes had greater biodiversity than those not in agri-environment-
schemes.

Materials and Methods
Site Selection

Ditches were defined as man-made channels, primarily for agricultural purposes which usually
have a linear planform, follow linear field boundaries, and show little relationship to natural
contours (following [16]). The study area was the Upper Thames region (northern extent
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51.980024°, -1.2789423°, southern extent 51.6642°, -1.495128°, eastern 51.690568°,
-1.6601901°, western 51.716468°, -0.96372977° DD) which represents pre-quaternary clay
landscapes with some river floodplain areas [38]. Farms were randomly selected using post-
codes (http://www.yellowpages.com/) to obtain farmer contact details. Sixty-five farmers were
contacted. Of these, 18% did not have ditches and 11% did not want to participate, resulting in
175 ditches from 30 farms being included in the survey. Ditches included in the study ranged
from narrow temporary ditches, to large ditches which contained water all year (see Table 1
and Table 2). All ditches had been dug as drainage ditches and most were more than 45 years
old.

Ditch selection and survey

For recording local factors such as aspect and immediate land use, ditches were defined as end-
ing at a junction with another ditch, other linear feature (e.g. hedgerows), or drainage pipe.
The number of ditches surveyed per farm ranged from 1 to 14, (mean 5.8 £ 2.77 SD). If farms
contained fewer than six ditches, all were surveyed. If the farm had more than six ditches,
ditches were selected at random (if they appeared homogenous) or selected to cover the range
of ditch types on that farm. All ditches were surveyed for physical and chemical characteristics,
and bank and channel plant communities (see below). A subset of ditches that were at least
partially wet at the time of survey was sampled for aquatic invertebrates.

Physical and chemical characteristics of ditches

Ditches in our study differed from each other in terms of length and width, which could affect
their biodiversity. We therefore measured ditch length, bottom width and bank top width and
used the formula for a trapezoid area multiplied by the length to estimate ditch volume (ditches
tend to be more consistent than natural watercourses in channel shape).

Bank angle was estimated using a clinometer. A spatial connectivity index was calculated
(number of spatial connections at the end of each ditch multiplied by a qualitative score for
each connection type: 0 = earth bank, 1 = connected by a culvert or pipe to another ditch,

2 = connected directly to another ditch, stream or river). Although coarse, this method was

Table 1. Physical and chemical characteristics of surveyed ditches.

Characteristic Mean (x SD) Range (n)
Ditch length (m) 288.4 + 166.23 28-1292 (175)
Bottom width (m) 0.98 + 0.564 0.25-4.5 (175)
Bank top width (m) 3.49 £ 1.55 0.9-11 (175)
Bank angle (degrees) 411 +9.47 9-80 (349)
Water depth (m) 0.07 £9.77 0-1 (175)
Freeboard (m) 0.84 +0.34 0.03-1.65 (175)
pH 7.9+0.43 6.04-9.05 (270)
Conductivity (uS) 858.00 + 410.30 210-3924 (294)
Nitrate (mg/L nitrate-nitrogen) 3.02 £ 3.47 0-17.5 (243)
Phosphate (mg/L) 2.01 +3.46 0.01-29.15 (245)
Number of spatial connections 3.64 +1.82 0-10 (173)
Amount of shade (%): Ditch bank with hedge 61.1 £29.5 0-100 (129)
Amount of shade (%): Ditch bank without hedge 15.8+24.7 0-90 (192)
Amount of shade (%): Ditch channel with hedge 38.1+322 0-95 (141)
Amount of shade (%): Ditch channel without hedge 21.1+315 0-90 (31)
doi:10.1371/journal.pone.0138306.t001
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Table 2. Connectivity, land use and management of ditches. Participation in agri-environment schemes
(AES) includes Entry Level Stewardship Schemes (ELS), Higher Level Stewardship Schemes (HLS) and
Environmentally Sensitive Areas (ESA) (http://www.naturalengland.org.uk/ourwork/farming/funding/default.
aspx)

Characteristic Category Number of
ditches
Temporal connectivity (from farmer interviews) Wet after heavy rain 17
Winter wet and wet after 59
heavy rain
Winter wet 37
Wet all year 61
Land use surrounding ditch Predominantly arable 71
Predominantly pasture 63
Mixed (arable, pasture) 33
Woodland )
Number of ditches with associated features Hedgerow 154
Field margin (>3m) on one 63
side
Field margin (>3 m) on both 41
sides
Participation in AES (numbers of farms with ditch option ELS 19 (6)
selected in parentheses)
HLS 3(1)
ESA 1(0)
NO AES 7

doi:10.1371/journal.pone.0138306.t002

used because mapping the number of ditches within a radius of the study ditch might not rep-
resent whether the study ditch was actually connected to any of the other ditches in the net-
work and, furthermore, minor ditches are not always mapped. Each ditch was assigned to a
temporal connectivity category based on the reported perception of the land manager. The cat-
egories recognised were wet all year (permanent), wet during winter and after heavy rain, wet
during winter, or wet after heavy rain. Presence and width of uncropped or fenced field mar-
gins (alongside the ditch and abutting the ditch bank) were recorded, together with the per-
centage of each bank length with a hedge. The percent shade from woody vegetation was
estimated as the percentage of bank or channel that would be shaded if the sun was directly
overhead, during the summer surveys (i.e. with full foliage). Water depth, pH and conductivity
were recorded on each of three visits (summer 2010, winter-spring 2011, summer 2011) and
averaged before inclusion in analysis. The pH and conductivity were measured in the field
using a multiparameter tester (Hanna Instruments, UK), and water samples were taken, frozen
within 8 hours and analysed for nitrate (cadmium reduction method) and phosphate (ascorbic
acid method), on an environmental bench photometer (Hanna Instruments, UK). Samples
were tested in duplicate. If two samples gave readings that differed by >10% it was considered
that there was a replication error and the analysis was repeated. The mean result from the three
sampling periods was used in the analyses.

Local land use and ditch management

Farmers participating in the ditch survey were interviewed in person between February and
April 2011. Farmers were asked if they had an AES agreement, and whether it included options
related to ditch management. For each ditch, farmers were asked: its age and purpose; if the
ditch was managed under an AES; when the ditch vegetation was last cut; when the ditch was
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last dredged; and if any other management had been applied. For adjacent hedges, the time
since cut was recorded. S1 Table gives full details of the questions asked. Land use (arable, here
defined as annual crops; pasture, both temporary leys and permanent grassland; woodland or
other) on either side of the ditch was recorded in the field, following Palmer et al. [43].

Vegetation surveys

Vegetation surveys were conducted in the summers of 2010 (August-Oct, 86 ditches) and 2011
(late July-Sept, 87 ditches). Percentage cover of higher plant species (following [44]), mosses,
liverworts, bare ground and plant litter was estimated by eye along the middle 10 m length of
each ditch bank (sloping sides of ditch, above water line if wet) and channel (aquatic or dry
base of ditch) using a 10 m measuring tape as a guide.

Invertebrate surveys

Invertebrate surveys were carried out between May and early July 2011. Sweep netting and
timed bank sorting were carried out following the methods of Palmer et al. [43]. Sweep netting
was also timed (for three minutes) for consistency with Environment Agency methods [45].
Invertebrates were stored in 90% ethanol and identified by APEM Ltd (Stockport, UK), accord-
ing to Palmer et al. [43]) This method involves identifying key groups to species (all aquatic
groups excepting Diptera larvae, Oligochaeta and Bivalvess). The number of Ephemeroptera,
Trichoptera and Plecoptera (EPT) families per ditch were recorded. Many EPT families are
pollution sensitive and used for quality assessment of still waters such as ponds and canals

[46]. Invertebrate abundance was recorded on a logarithmic scale (1 = 1-9, 2 = 10-99, 3 = 100-
999, 4 = 1000+ [43]).

Statistical analysis

Several measures were used to assess the biodiversity value and habitat quality of ditches: i) tax-
onomic/ species richness for invertebrate and plant channel communities (for bank vegetation
data, the Berger-Parker Index [47] was used as a proxy for taxonomic diversity due to differ-
ences in bank width potentially biasing other metrics); ii) habitat quality score of Palmer et al.
[43] for aquatic plant communities (based on Ellenberg nitrogen indicator values, and indicat-
ing the water quality of ditches); iii) number of Ephemeroptera, Trichoptera and Plecoptera
(EPT) families per ditch; iv) community assemblages.

The effects of physical and chemical characteristics, spatial connectivity and land use on
ditch biodiversity were tested using a set of models based on plausible hypotheses developed
from the literature (see S2 Table). These hypotheses led to the framing of both main effects
models to represent factors such as ditch size or the presence of hedge and also models includ-
ing plausible interaction effects such as those including surrounding land use and the presence
of a vegetative field margin. Biodiversity indices were analysed using mixed effects models with
maximum likelihood [48] using R software [49]. Models were constructed using Site ID as a
random effect to account for similarity among ditches at the same farm. For invertebrate taxo-
nomic richness an offset of the length of ditch sampled was used to account for the survey
length being less than 50m in some ditches. Before model fitting, samples with missing values
for any predictors were removed. The number of EPT families per ditch was analysed using a
generalised linear mixed model with a Poisson distribution (package Ime4 [50]). Residuals
were checked for normality and the habitat quality score log transformed to an approximately
normal distribution.

Model selection procedures [51] were carried out using Akaike’s Information Criterion
(AIC) adjusted for small samples (AICc) using R package MuMIn [52]. Models with AICc
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values that were less than 7.0 greater than that of the best model were considered plausible,
provided they were a better fit than the null model [51]. Model averaging was not used due to
correlated explanatory variables leading to inflated estimates of parameter standard error. The
amount of variation explained by each model was assessed using a likelihood-ratio based
pseudo R sq [52] and Rsq adj following Nagelkerke [53]. Community analysis was carried out
using the R Vegan package [54]. Continuous environmental variables (same as those used in
taxonomic richness analysis, see S2 Table) were standardized to zero mean and unit variance
and response data were Hellinger transformed [55]. Partial redundancy analysis (pRDA) was
used to partition variation explained due to explanatory variables, and variation due to the cov-
ariables site (farm) and, for vegetation data, quadrat size [56]. These covariables were treated
by the pRDA as ‘conditioned’ variables, with variance explained by these removed, in the mul-
tivariate equivalent of a partial regression analysis [55]. For banks, one bank from each ditch
was randomly selected for analysis. The pRDA was carried out using the factors included in the
taxonomic richness models but without interaction terms. The global model was tested for sig-
nificance using 999 permutation tests and, if significant, forward stepwise selection using dou-
ble-stopping criteria was used to select the final model [57]. The Rsq adj were calculated using
variance partitioning [58], which aims to separate the variation explained into that explained
by the different sets of variables (environmental and conditioned). As the two explanatory
datasets are not orthogonal to one another (the variables are inter-correlated), some variation
is explained jointly by the explanatory and conditioned variables [55].

The models above suggested both shade and water depth were important environmental
predictors. Reasoning that these were plausibly affected by hedgerows, we used them as
responses in models with average interval of hedge cutting by the manager and the amount of
hedge next to the ditch as predictors using linear mixed effects models (LMM:s, R package
nlme [48]). Site was entered as a random effect and the average water depth was square root
transformed to meet the model assumption that data are normally distributed. The effect of
AES status on ditch management (time since dredged and time since vegetation cut) was tested
using general linear models with a Poisson distribution. As the majority of sites had only
ditches that were managed under AES or ditches that were not managed under AES, site was
entered first in the model to account for this variation.

Ethics Statement

All fieldwork was carried out on private land with permission of the land owner. No protected
species or vertebrates were sampled as part of this project. Data collected from farmer ques-
tionnaires were anonymised prior to analysis, and informed written consent was received from
all questionnaire participants. This study was approved by Oxford University Central Univer-
sity Research Ethics Committee.

Results
Factors affecting ditch vegetation

Bank vegetation. One hundred and fifty-four ditches were included in the ditch vegeta-
tion analyses. Between 2 and 39 plant species were recorded on ditch banks (mean 12.5 + 5.94
SD). None of the predictor variables explained any of the variation in the Berger Parker index.
The vegetation community composition was most strongly affected by shade and the water
depth (Table 3), however the amount of variation explained by the environmental variables
was low (Table 4). The multivariate analysis showed that shaded ditches had a higher abun-
dance of woodland and hedge ground cover species, such as Hedera helix and Glechoma
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Table 3. Results from final model in partial redundancy analyses of community data using the final model selected, using forward stepwise selec-
tion with double stopping criteria (Blanchet et al 2008). Significance of each term in the final model was tested using 999 permutation tests: a type | test
(in sequential order) and type lll test (test of marginal significance).

Community Type 1 test Type lll test
Final pRDA model Df Variance P Variance P
Bank vegetation % shade 1 0.024 <0.001 0.023 <0.001
Water depth 1 0.011 0.012 0.011 0.01
Ditch in AES 1 0.006 0.420 0.006 0.448
Bank slope 1 0.008 0.113 0.008 0.087
Channel vegetation Water depth 1 0.008 <0.001 0.008 0.005
Aquatic invertebrate pH 1 0.027 <0.001 0.021 0.015
Water depth 1 0.015 0.091 0.012 0.390
Dredged 1 0.015 0.091 0.018 0.020
Conductivity 1 0.018 0.028 0.0126 0.054
Phosphate 1 0.016 0.054 0.012 0.240
% shade + % shade sq 1 0.020 0.006 0.022 0.010
% arable 1 0.013 0.172 0.013 0.200
Ditch in AES 1 0.013 0.294 0.012 0.310
Nitrate 1 0.013 0.166 0.013 0.320

doi:10.1371/journal.pone.0138306.t003

Table 4. Amount of variation explained by environmental (Env) and conditioned (Site and Quadrat Size) variables in the partial redundancy analy-
ses of the bank vegetation community, channel vegetation community and aquatic invertebrate community (see Table 3 for environmental factors
included in final models, conditioned variables were always site and quadrat). Conditioned variables are treated as covariates and held constant whilst
investigating the amount of variation accounted for by explanatory variables. Some variation is explained jointly by environmental and conditioned data sets
(cannot be attributed to either data set) as they are not orthogonal [55].

Bank vegetation community Channel vegetation community Aquatic invertebrate community
Env adj 0.07 0.04 0.11
Site adj 0.07 0.10 0.08
Env + Site joint variation 0.02 0.01 0.04
Quadrat Size 0.004 0.01 NA
Unexplained variation 0.86 0.88 0.77

doi:10.1371/journal.pone.0138306.t004

hederacea (Fig 1a). Increased water depth was associated with the presence of species such as
Glyceria maxima and Phalaris arundinacea.

Channel vegetation. The number of plant species found in the ditch channel varied
between 1 and 15 (mean 5.4 £ 3.10 SD). The best fitting model demonstrated that greater
shade was associated with reduced plant species richness (parameter estimate -0.026 + 0.0072
SE, Fig 2, Table 5). The second best fitting model included the amount of shade as a quadratic
term. The amount of variation explained by all variables was low (global model Rsq adj 0.19,
see S2 Table for variables included), as was the amount of variation explained by the highest
ranked model (Rsq adj 0.08, Table 5). The mean Habitat Quality Score of wet ditches was
1.3 +0.33 SD. There was no evidence for any impact of the predictor variables tested on the
habitat quality score.

The channel vegetation community composition was affected by water depth (Fig 1b). The
amount of variation explained by the final model was very low (Rsq adj 0.04), as was the
amount explained by site (Table 4). Ditches with greater water depths were associated with spe-
cies more characteristic of open water such as Lemna minor.
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Fig 1. Correlation biplots from the final partial RDA models showing species and explanatory
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entered as a quadratic term. Species codes consist of [first 3 letters of genus name]_ [first 3 letters of species

name], see S1 Dataset for full taxonomic names.

doi:10.1371/journal.pone.0138306.g001
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Fig 2. Species richness of aquatic plants per 10 m length of ditch bank plotted against percentage
shade over ditch channel. Regression line fitted from a simple linear model of predictor plotted against
response without random effects.

doi:10.1371/journal.pone.0138306.g002

Aquatic invertebrates

Of the surveyed ditches, 49 were wet at the time of the aquatic invertebrate survey. From these
ditches, 190 invertebrate taxonomic groups were identified, and taxonomic richness varied
between 9 and 35 per ditch (mean 19.6 + 5.76 SD). The ditches surveyed did not cover the full
range of temporal connectivity (there was only one ditch which the farmer considered to be

Table 5. Model selection table from analyses with response variables i) Channel vegetation species richness; ii) Invertebrate taxonomic richness
and iii) Number of Ephemeroptera, Plecoptera and Trichoptera (EPT) families per ditch. Only models which were a better fit than the null model are

listed.

Response variate

i) Channel plant species
richness

i) Invertebrate taxonomic
richness

iii) Number of EPT
families per ditch

Model (Intercept) df logLik AlCc delta weight Rsq RsqAdj
Percent shade over channel 7.28 5 -376.31 763.02 O 0.53 0.08 0.08
Percent shade over channel + Percent shade 7.10 6 -37540 763.38 0.36 0.44 0.09 0.09
over channel squared

Percent arable <Percent hedgextotal margin 8.47 11 -373.91 771.68 8.66 0.007 0.11 0.11
width

Average water depth 14.416 5 -124.795 261.257 0.000 0422 0.178 0.179
Percent shade over channel 16.802 5 -126.119 263.904 2.646 0.112 0.125 0.125

Percent arable

doi:10.1371/journal.pone.0138306.1005

14188 5 -126.533 264.733 3.475 0.074 0.107 0.108

Average pH -16.67 4 -30.45 69.88 0.00 0.52 0.26 0.33
Dredged«Temporal connectivity -0.75 6 -28.12 70.39 0.51 0.40 0.33 0.41
Time since dredged -1.72 4 -34.23 7744  7.56 0.01 0.13 0.16
Post hoc model —pH + DredgedxTemporal -10.35 7 -25.59 68.12 O 0.56 0.40 0.50
connectivity
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winter wet only, and no ditches categorised as wet after heavy rain were wet at the time of sur-
vey). Ditches were therefore grouped into permanent ditches (wet all year) and temporary
ditches (all other categories). The model with the best fit to the data contained average water
depth (Table 5) indicating that taxonomic richness increased with water depth (parameter esti-
mate 19.9 £ 6.14 SE, R sq adj 0.179, Fig 3a). The second best fitting model had considerably
lower weight than the first and included percent of the channel shaded (parameter estimate
-0.09 + 0.037 SE, R sq adj 0.125, Table 5, Fig 3b). The extent of arable land surrounding the
ditch had a small negative impact on taxonomic richness (parameter estimate -0.04 £ 0.019 SE,
Rsq adj 0.11, Fig 3c). The number of Ephemeroptera, Plecoptera and Trichoptera (EPT) fami-
lies per ditch was positively associated with increasing pH of the ditch water (parameter esti-
mate 1.9 £ 0.58 SE, Table 5, Fig 4a). A very similar model in terms of fit and explanatory power
included temporal connectivity and time since dredged. Temporary ditches had lower numbers
of EPT families as time since dredging increased, whereas permanent ditches had higher num-
bers of EPT families as time since dredging increased (parameter estimate interaction term
0.13 + 0.04 SE, Fig 4b). A post-hoc model including terms from the best two models had an
Rsq adjusted of 0.50 (Table 5).

The global model for the invertebrate community analysis had an Rsq adj of 0.15. Variance
partitioning indicated that the variation explained solely by the environmental variables
selected using forward selection was 0.11 (Rsq adj), while the additional variation explained by
these variables but which could not be attributed to either owing to their inter-correlation was
0.04 Rsq-adj. Three factors were statistically significant predictors of the invertebrate commu-
nity (Table 3, Fig 1¢): pH, conductivity and the amount of shade entered as a quadratic term.
Species associated with higher pH included Limnephilus lunatus (caddisfly larvae), Velia spp
(riffle bugs) and Succineidae (amber snail slugs). Those associated with higher shade included
Potamopyrgus antipodarum (Jenkins spire snail shell), an invasive species in the UK, native to
New Zealand (Fig 1a).

Effects of management on influential environmental predictors

Eighty-eight percent of the ditches in this study had a hedge on one or both banks (Table 1).
Ninety-four percent of hedges on ditch banks were sited directly at the top of the ditch bank.
On the remaining 6% the hedge was, on average, 0.68m (+ 0.181 SE) away from the top of the
ditch bank. Ditches with a lower proportion of hedge along the bank had lower levels of shade
over both the channels and banks (parameter estimate 0.27 + 0.057 SE, F; 75 = 22.9, P<0.001
for channel data, 0.51 + 0.030 SE, F} 594 = 285.6, P<0.001 for bank data). There was no rela-
tionship between the frequency of hedge trimming and the amount of shade either for individ-
ual banks (F; 79 = 0.22, P = 0.64) or when assessed across the whole channel (F, ;4 = 0.27,

P =0.60). There was a negative relationship between the percent of banks with hedge present
and the average water depth (parameter estimate -0.001 + 0.0002 SE, F; 1,5 = 16.2, P<0.001).
Increased shade over the channel resulted in a reduction in the percent cover of vascular plant
communities (parameter estimate -0.57 + 0.069 SE, F 139 = 67.4, P<0.001).

Management of ditches under AES

At three sites, all ditches surveyed were included in an AES, 21 sites had no ditches included in
an AES and 5 sites had some ditches managed under an AES and some not. One land manager
could not tell us which ditches were managed under an AES agreement. Site (i.e. individual
farms and therefore farmers as a fixed effect) had a strong effect on the time since last dredged
and since the last vegetation cut. On sites with both AES and non-AES ditches, ditches in AES
had been dredged less recently than those not in AES (Table 6, parameter estimate
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Fig 3. Invertebrate sample taxonomic richness in relation to a) average water depth b) percent shade
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surrounding fields. Regression lines are fitted from a linear model of predictor plotted against response
without random effects.
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Table 6. Management of ditches in agri-environment schemes (AES) in England (Entry Level Stewardship, Higher Level Stewardship, Environ-
mentally Sensitive Areas, Countryside Stewardship Scheme [38]) and those notin AES. Data in square brackets beneath are ditches from sites where
land managers had both ditches that were managed under AES and those managed outside of AES.

Management Ditch in AES Ditch not in AES
Mean (years) £ SD Range (n) Mean (years) £ SD Range (n)
Time since last dredged 14.7+ 14.55 1-37 (32) 16.0 + 14.74 1-55 (122)
[10.9 £ 8.00] [1-28 (25)] [6.2+8.12] [1-28 (12)]
Time since vegetation last cut 3.7+1.82 1-10 (32) 9.4 + 13.59 0-50 (122)
[5.3+5.15] [1-20 (25)] [6.2+8.12] [1-28 (12)]
Interval of hedge cutting 29+235 1-10 (23) 3.75+5.33 1-22 (84)
[3.7 + 3.09] [1-10 (13)] [2.2 +1.79] [1-5 (5)]

doi:10.1371/journal.pone.0138306.t006

-0.68 + 0.164, z = -4.161, p <0.001). There was no significant difference in the time since the
vegetation was last cut between AES and non-AES ditches, once variation for site had been
accounted for (parameter estimate -0.03 + 0.180, z = 0.161, p = 0.87).

Discussion

Numbers of plant species per ditch were lower in this study than those reported from coastal
grazing marshes in England and Wales [26], but similar to those reported from a study of
ditches across Europe [59]. The Habitat Quality Score of aquatic plant communities in our
study was similar to that found in a study of coastal grazing marsh ditches (1.3 in this study,
compared to 1.7 in Drake et al. [26]). The biodiversity of the invertebrate community was simi-
lar to that found in temporary agricultural ditches in Maryland [60] and permanent ditches
across Europe [59].

The amount of variation explained by the environmental factors tested was low for most
groups. However the amount of shade over the ditch and the water depth had a small but sig-
nificant effect in several analyses. Both can be influenced by management. Bank vegetation,
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when shaded, was dominated by plants typical of woodland communities. The species richness
of channel vegetation decreased as the amount of shade over the channel increased. Contrary
to expectation, the reported interval between hedge cutting was not related to the amount of
shade over the ditch. Two possible reasons for this are, first, that hedges with trees may be less
frequently managed but result in patchier (overall lower) levels of shade than frequently
trimmed dense shrubby hedges and, second, only the hedge side furthest from the ditch may
have been cut (due to restricted access, and to prevent trimmings falling into the ditch). While
large amounts of hedge trimmings in ditches are considered undesirable, as they may lead to
blockage of ditches during periods of high flow [61], a small amount of woody vegetation in
ditches may benefit biodiversity by increasing habitat heterogeneity [62].

Increased water depth had a positive impact on both plants and invertebrates, with more
plants considered characteristic of ditches on the banks of wetter ditches (making the ditch eli-
gible for AES funding [39]). Taxonomic richness of both channel vegetation and invertebrates
was greater in ditches with greater water depth. The positive impact of water depth on taxo-
nomic richness may have been influenced by the exceptional dryness of the previous year
(2009-2010). However, other studies have found that increasing water depth increases ditch
vegetation diversity [63] and the abundance of emergent insects [64]. Twisk et al. [63] found
increasing the water depth was the most cost effective way of improving the diversity of ditch
vegetation, although, in water depths above 50-70cm, plant species richness declined due to
light limiting conditions. This agrees with our results as, although we found no evidence of a
decline, the depth of our deepest surveyed ditch was only 57cm. Deeper ditches are potentially
less vulnerable to temperature fluctuations [65], or may have lower nutrient loads [66].

Water depth in ditches can be increased by installing dams or barriers, which can be rela-
tively low cost [22,67]. Recent increased interest in rural sustainable drainage systems indicates
that increasing water retention in ditches may have multiple benefits, including mitigating
water pollution and retaining water in times of high flow to help prevent flooding in the wider
landscape [22]. Previous studies have found no link between species richness and flow control
structures, although they may alter invertebrate communities that are highly influenced by
flow rates [60]. The implications of alterations of water flow for flooding potential in the fields
directly around such features need to be considered: a short study of bunded ditches fitted with
overflow pipes found no reduction in yield in the surrounding fields, however it was only
assessed in one year [67]. Our research suggests that such schemes may have the potential to
increase the biodiversity value of ditches. However, we note that some seasonal ditches may
sustain uncommon temporary water invertebrate species that may not be present in any other
(permanent) water body type [16]. A further consideration is that increases in water depth, and
also reduction in shade, may lead to increases in dominant plant species and eventually result
in a decline in biodiversity levels if they are not removed by management [26,63]. Allowing
ditches to become shaded may reduce the required frequency of management, but lead to rela-
tively low biodiversity levels [61]. Increasing the water depth and reducing shade may lead to
more rapid succession, thus requiring more frequent disturbance through management. This
may result in higher biodiversity levels ([68,69] but see [70]). The current recommendations
for maintaining ditch biodiversity by using a variety of disturbance levels derive mainly from
wet ditches (e.g. [26]) but would apply equally to more temporary ditches if their water depth
was increased.

Spatial connectivity of ditches appeared to have little impact on the invertebrate or plant
communities found in them; the index of spatial connectivity may have been too coarse to
detect any effects. Temporary ditches were found to have lower numbers of EPT families with
time since dredging, whereas the opposite was true for permanent ditches. The number of EPT
families is used as indication of the pollution level of water bodies, with more EPT families
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indicating lower pollution levels. In permanent ditches, dredging is likely to lead to increased
sediments in the water and reduced uptake of any pollutants entering the ditch [20,71], which
may result in lower numbers of EPT families in ditches as they recover from disturbance. Tem-
porary ditches appeared to have an opposite relationship. The build-up of sediment in tempo-
rary ditches due to potentially lower flow rates, and less ‘flushing’ of the ditch, may mean that
ditches which have not been dredged for a long time contain more agrochemical residues. The
presence of EPT families is unlikely to be limited by dispersal, due to the mobility of the adult
stages.

Land use surrounding the ditch affected the species richness of the invertebrate community,
with lower invertebrate taxonomic richness in ditches entirely surrounded by arable land.
Ditches closer to nature reserves (the closest bordering nature reserves) in the Netherlands had
greater species richness [40], but relatively few studies compare ditches in pasture and cropped
arable land [72]. Ditches in arable land are likely to receive higher pesticide load than pastures
[38], as well as different nutrient inputs and sediment run off [73]. Agri-environment schemes
have, in part, been developed to mitigate for the effects of intensive agriculture. However, there
was little evidence from this study that the biodiversity of a ditch was affected by management
under an AES agreement, as has also been demonstrated for other AES schemes in Europe
[74,75]. There was no difference between vegetation cutting regimes in AES and non-AES
ditches in this study (Table 6). Boatman et al. [76] found 30% of ELS farmers in England had
to reduce the frequency of bank vegetation cutting to meet AES requirements, but only 8%
needed to reduce the frequency of dredging. While we found that ditches in AES had been
dredged less recently than non-AES ditches on the same site, the mean time since non-AES
ditches had been dredged was approximately 6 years. An AES agreement in England currently
runs for 5 years, which suggests that a number of these farmers would not have to have reduced
the dredging frequency (similar to [76]). Overall, management in this study appeared to be less
frequent compared to that recorded for high conservation value ditches in fenland (dredging
cycles of 1-4 years and 4-10 years for the Somerset Levels and Broads ESA respectively [77]).
Currently, to be eligible for inclusion in AES, ditches are required to contain typical ditch plant
communities [39]. In contrast to other linear habitats, such as field margins and hedgerows,
which can be created or restored with AES support, there is no provision within the lower tier
AES in England for improvement or restoration of ditches [39]. We suggest that, given their
importance as habitat for different communities within the landscape, a higher priority should
be given to creation and management of small wetland features, such as ditches, within AES.

Conclusions

Our data suggest that many farm ditches are underperforming in terms of delivering biodiver-
sity benefit, but this could be improved with relatively simple changes in management. Provi-
sion of AES options that would allow currently ineligible ditches to be improved would fill one
gap. For example ditches without characteristic hydrophilic plants are not eligible for support
under AES, but might benefit from directed management to increase the amount of water or
reduction of heavy shade from associated hedges. Simple measures such as barriers to increase
the amount of water in the ditch may also be beneficial, if appropriate to the ditch and sur-
rounding area [22] and fitted with overflow pipes in case of heavy rain (see [67]). Currently,
ecosystem service benefits from a ditch which has a hedge next to it are assumed to be the com-
bined impacts of hedges and ditches [78]. The current English AES framework has existing sep-
arate options for ditch management alone, or ditch and hedge combined management [39].
The combined management option for ditches and hedges is similar for these features when
they occur on their own. The combined option recommends that hedge trimmings should not
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be allowed to fall in the ditch [39]. However, these management options currently do not
include information about reducing over-shading from the hedge next to the ditch. Hedges
which create a high level of shade over the associated ditch could be cut on the side next to the
ditch. The increase in light available to plant communities may result in increased plant bio-
mass and this may lead to increased sedimentation as demonstrated in saltmarsh communities
[79]: this may lead to a need to increase the frequency of ditch management to maintain their
drainage function. However, this cost to the land manger may be offset by the wider benefit of
reduced sediment and potentially agricultural pollutants in water leaving farmland, leading to
an improvement in both the biodiversity value of ditches and improvement in the quality of
surface waters.
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