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Abstract
Detailed, precise, three-dimensional (3D) representations of individual trees are a prerequi-

site for an accurate assessment of tree competition, growth, and morphological plasticity.

Until recently, our ability to measure the dimensionality, spatial arrangement, shape of

trees, and shape of tree components with precision has been constrained by technological

and logistical limitations and cost. Traditional methods of forest biometrics provide only

partial measurements and are labor intensive. Active remote technologies such as LiDAR

operated from airborne platforms provide only partial crown reconstructions. The use of ter-

restrial LiDAR is laborious, has portability limitations and high cost. In this work we capital-

ized on recent improvements in the capabilities and availability of small unmanned aerial

vehicles (UAVs), light and inexpensive cameras, and developed an affordable method for

obtaining precise and comprehensive 3D models of trees and small groups of trees. The

method employs slow-moving UAVs that acquire images along predefined trajectories near

and around targeted trees, and computer vision-based approaches that process the images

to obtain detailed tree reconstructions. After we confirmed the potential of the methodology

via simulation we evaluated several UAV platforms, strategies for image acquisition, and

image processing algorithms. We present an original, step-by-step workflow which utilizes

open source programs and original software. We anticipate that future development and

applications of our method will improve our understanding of forest self-organization emerg-

ing from the competition among trees, and will lead to a refined generation of individual-

tree-based forest models.

Introduction
Understanding how macroscopic patterns of forests emerge as a result of self-organization of
individual plants and how ecosystems respond to environmental gradients and disturbances
that occur at different spatial and temporal scales has long been reported as a largely unre-
solved fundamental ecological challenge[1]. The phenotypic plasticity of individual trees is
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regarded as the major biological determinant of self-organization, structure, and dynamics of
forested ecosystems and their response to natural and anthropogenic disturbances [2,3].
Unique patterns of tree plasticity have been identified across ecological and species groups, for
instance, in conifers [4,5,6] and broad-leaf trees [7,8]; and biomes, including tropical [9] and
temperate ecosystems [10,11,12]. Failures to predict growth at the individual tree level with
acceptable accuracy have been attributed to the heterogeneity in geomorphic and climatic phe-
nomena affecting tree survival and growth, but primarily to inadequate information on the
size, shape, and spatial distribution of interacting trees [3].

National Forest Inventory (NFI) systems are a major source of systematic, spatially distrib-
uted, and repeated individual tree measurements obtained during field visits of established plots.
A review of NFI field protocols and data quality standards reveals that very precise measurements
are prescribed for tree stem diameter at breast height, and for fixed-area field plots, distances
used in determining whether a tree stem center is within the plot area. Where recorded, the rela-
tive position of tree stems within a plot and tree height is measured accurately. Some vegetation
parameters such as shrub and forb percent cover, crown base height, and crown compaction
ratio are assessed ocularly, and therefore should be regarded more as estimates rather than mea-
surements. Owing to cost, complexity, and logistic constraints such as visibility, crown width and
other specialized tree dimensionality measurements are obtained only during special projects.

Information on individual trees over large areas is feasible only via processing of remotely
sensed data. High (submeter) resolution space- or airborne spectral imagery has been used to
identify and delineate individual tree crowns[13,14,15,16], and to assess parameters of crown
morphology such as height, radius, and surface curvature [17,18] using various modeling
approaches. Information extracted by manual interpretation of aerial photographs has often
been used as surrogate of field measurements for model development and validation [17,19].
The advent of Light Detection and Ranging (LiDAR) technology enabled 3D measurements of
vegetation over forested landscapes. Operated mainly from airborne platforms, LiDAR instru-
ments emit short pulses of light that propagate through the atmosphere as a beam of photons
and are backscattered to the instrument from illuminated targets. The loci of interactions with
objects or object parts along a beam’s trajectory are determined with decimeter precision and
reported as points georeferenced in three dimensions. The collection of points generated across
all pulses is referred to as a point cloud. A typical LiDAR data set of a forested scene comprises
points from the entire volume of tree crowns and ground surfaces. Models operating on met-
rics that describe the spatial distribution of above-ground points have been proven useful for
assessing area-based forest inventory parameters such as wood volume and biomass [20,21].
With high-density LiDAR data, a single mature tree can be represented by many, up to hun-
dreds of points, conditions conducive to a precise assessment of its dimensions, including
height and crown width [22,23]. Often however, the token representation of lower canopy
components and ground surfaces in LiDAR data sets caused by substantial attenuation of pulse
energy in dense, multistory stands leads to less accurate estimates of tree dimensionality
[24,25]. Terrestrial LiDAR systems operated from ground or near-ground locations deliver
point cloud densities orders of magnitude higher than those generated by using airborne
instruments, enabling detailed and precise reconstructions of individual trees [26]. Modeling
of crown morphology supported by terrestrial LiDAR data has been shown effective in assess-
ing how trees grow in response to competition between and within crowns [27]. Point clouds
generated from single scanning locations always contain gaps due to partial target occlusion,
either from parts of the targeted tree itself or from surrounding vegetation. As occlusion rates,
gap frequency, and gap size increase with canopy height, the error levels in tree dimensionality
estimates obtained by processing these point clouds also increase with height [28,29]. Ensuring
that estimate precision meets established standards necessitates scanning targeted trees from
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multiple locations and then fusing the individual point clouds, a complication that often is
logistically complex and costly.

To date, precise tree crown dimensionality and location data supportive of a rigorous
modeling of individual tree growth has been inhibited by feasibility, logistics, and cost. Measur-
ing crown characteristics by using established inventory methods is very time consuming and
hardly affordable outside special projects. Existing remote sensing methods of measuring tree
crowns provide only partial crown reconstructions. Airborne LiDAR data acquisitions require
prolonged planning and are costly. As an example, the minimum cost for a single airborne
LiDAR acquisition with common specifications in the US Pacific Northwest exceeds $20,000
irrespectively of acquisition area size [30]. Transferring to and operation of terrestrial LiDAR
instruments in remote forest locations and challenging terrain is both labor intensive and time
consuming. As a result, the assessment of tree growth and competition relies on numerous sim-
plifying, albeit often unjustified, assumptions such as of trees with symmetric, vertical, perfectly
geometric crowns growing on flat terrain, and illuminated by omnidirectional sunlight. These
assumptions propagate through modeling efforts and ultimately reduce the validity of model
predictions, thereby decreasing their utility [31,3].

Recently, unmanned aerial vehicles (UAVs) equipped with inexpensive, off-the-shelf pan-
chromatic cameras have emerged as a flexible, economic alternative data source that supports
the retrieval of tree dimensionality and location information. Flying at low altitude above the
trees and with the camera oriented at a nadir view, UAVs acquire high-resolution images with
a high degree of spatial overlap. In such conditions, a point on the surface of a tree crown or a
small object on exposed ground is visible from many positions along the UAV trajectory and is
depicted in multiple images. Automated photogrammetric systems based on computer Vision
Structure fromMotion (VSfM) algorithms [32] explore this redundancy to retrieve the camera
location the moment an image was acquired, calculate an orthographic rendition of each origi-
nal image, and ultimately produce a precise 3D point cloud that represents objects [33,34].
Application of VSfM techniques on UAV imagery has enabled accurate 3D modeling of man-
made structures, bare ground features, and forest canopies [35,36,37]. Automated image pro-
cessing is now supported by open-source and commercial software packages.

Image acquisitions with nadir-oriented cameras onboard UAVs, however, face the same
issues as airborne imagery; the great majority of points in derived clouds are positioned near or
at the very top of tree crowns. The representation of crown sides tends to be sparse and contains
sizeable gaps, especially lower in the crown, a potentially serious limitation in efforts to quantify
lateral crown competition for space and resources, as in the periphery of canopy openings. In this
study, we extend UAV-based image acquisition configurations to include oblique and horizontal
camera views and UAV trajectories around trees or tree groups at variable above-ground heights
to achieve comprehensive, gap-free representations of trees. To overcome the challenges imposed
by these alternative UAV/camera configurations, we evaluated many UAV platforms and open-
source VSfM software options, and developed original, supplementary programs. To determine
whether comprehensive tree representations are attainable, we initially processed synthetic imag-
ery obtained via simulation. We finally evaluated the efficacy and performance of our workflow
targeting trees of different species, shapes, sizes, and structural complexity.

Method Development and Testing

2.1. Image processing
The procedure that uses a set of images exhibiting substantial spatial overlap to obtain a point
cloud representing the objects present in the images contains three main steps: feature detec-
tion, bundle adjustment, and dense reconstruction. To implement this procedure, we have
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carefully examined a variety of software available for image processing. The workflow pre-
sented below was found by experimentation to be the most efficient for our project. We
employed a sequence of computer programs, most of which are available as freeware or provide
free licenses to academic institutions. The software used includes OpenCV libraries,
VisualSFM, CMVS, SURE, OpenGL, and Mission Planner, with each of them accompanied by
a comprehensive manual. Considering that the majority of the software listed above evolves
rapidly, we intentionally refrained from duplicating here elements of associated manuals to
which we refer a reader in addition to our presentation.

Feature detection is based on the identification of image regions, often called keypoints, per-
taining to structural scene elements. Thanks to image overlap, these elements are present in
multiple images, but because their position relative to the focal point of the camera is image-
specific, they are depicted in different scale and orientation (Fig 1). Illumination differences
and image resolution can impose additional feature distortions. Algorithms used in feature
detection explore principles of the scale-space theory [38]. According to this theory, a high-res-
olution image can be perceived as a collection of scene representations, called octaves, in
Gaussian scale space. The scale space can be obtained by progressively smoothing the high-res-
olution image, an operation analogous to a gradual reduction of its resolution. If robust against
changes in scale and orientation, the characteristics of a keypoint identified on a given octave
of one image can be used to identify the same keypoint on other images. The algorithms pro-
posed for feature detection in this context include the Scale Invariant Feature Transform
(SIFT) [39], the Speeded Up Robust Features (SURF) [40], and the Oriented FAST and Rotated
BRIEF (ORB) [41]. We employed SIFT in our workflow as it is currently the reference
approach in the field of computer vision. To identify keypoints, SIFT initially applies to each
image octave an approximation of the Laplacian of Gaussian filter known as Difference of
Gaussians, an efficient edge detector. Identified SIFT keypoints are circular image regions, each
described by a set of parameters: the image coordinates at the center of the region, the radius of
the region and an angle. The radius and angle of each keypoint serve as scale and orientation
indicators respectively (Fig 1). Keypoints are further characterized by a descriptor of their
neighborhood, determined from the values of pixels in the vicinity of the keypoint’s center and
usually encoded into a vector of 128 values. By searching for keypoints at multiple scales and
positions, SIFT is invariant to image translation, rotation, and rescaling, and partially invariant
to affine distortion and illumination changes. It can robustly identify scene features even in
images containing substantial amounts of noise or under partial occlusion.

The bundle adjustment process initially compares keypoint descriptors identified across
images to determine two similar images. Then, an optimization procedure is performed to
infer the positions of cameras for these two images. Remaining images are added one at a time
with relative positions further adjusted, until camera locations become available for all images.
The optimization often uses the Levenberg-Marquardt algorithm [42,43], a general purpose
non-linear optimization procedure. Heuristics and prior information, such as GPS coordinates
of UAV locations at the moment an image is acquired, can be included to improve convergence
speed. In the end, the spatial positions and orientations of all cameras are triangulated using
the keypoints identified in the previous step. At the conclusion of bundle adjustment a so-
called sparse 3D model that contains the 3D positions of all identified features becomes avail-
able. We implemented the feature detection and bundle adjustment components of our work-
flow in VSFM software [44,45].

In dense reconstruction, the final processing step, all image pixels, not only keypoints, along
with the positions and orientations of each camera, are merged into a single high-density struc-
ture. This is achieved by matching pixels with similar value across pictures with respect to the
epipolar geometry constraints [46] of the sparse model. The epipolar geometry is defined for
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each image pair. It includes a baseline connecting the locations of the two cameras that are
known from the sparse model, the oriented image planes, the image locations where image
plane and baseline intersect known as epipoles, and the epipolar lines connecting a camera
location with a pixel on the image plane. By restricting searches for a pixel match along the epi-
polar lines, processing is greatly expedited. In our workflow, we considered CMVS [47] and
SURE [48], two state-of-the-art, freely available multi-core implementations, which adopt dif-
ferent strategies to generating the dense model. CMVS is a patch-based method which starts
from matched keypoints and generates local models of object surfaces, or patches, in the imme-
diate neighborhood of the keypoints. These patches are then expanded until their projections

Fig 1. SIFT-based scene keypoint detection andmatching on two overlapping images. Top: Original
images; Middle: 1464 (left) and 1477 (right) keypoints with arrows denoting orientation and radii scale;
Bottom: 157 keypoint pairs, matched by color and number.

doi:10.1371/journal.pone.0137765.g001

3D Tree Dimensionality Assessment Using Photogrammetry and Small UAVs

PLOSONE | DOI:10.1371/journal.pone.0137765 September 22, 2015 5 / 21



on the original pictures eventually form a dense tiling. SURE’s approach is based on the com-
putation of depth maps for a set of reference images, based on the disparity between these
images and other images obtained from nearby, according to the sparse model, positions. Each
depth map provides a dense model of pixels equivalent to a local reconstruction from one refer-
ence viewpoint. All partial reconstructions are eventually merged to obtain a dense reconstruc-
tion for the entire scene.

The sparse and dense reconstructions obtained from a set of overlapping images are config-
ured in the same internal coordinate system and scale. Conversion to real-world orientation
and coordinate system is a prerequisite for meaningful measurements of reconstructed objects
or for comparisons with ancillary spatial data. Such conversions can be performed manually
on the reconstructed scene, assuming reference in-situmeasurements of object dimensionality
are available. In this study, we used an alternative, automated approach. The latitude, longi-
tude, and elevation of camera locations recorded by a recreational-grade GPS device onboard
the UAV were converted to orthographic Universal Transverse Mercator (UTM) coordinates
using a GDAL reprojection function [49]. The rotation/ translation matrix linking the UTM
and sparse model coordinates of the camera positions was then calculated via maximum likeli-
hood, and applied to convert the sparse model coordinates system to UTM. All subsequent
processing by CMVS and SURE were performed on the UTM version of the sparse model.

2.1.1 Image calibration. All imaging systems introduce a variety of distortions onto
acquired imagery. The magnitude of the distortion is usually negligible in professional systems,
but it can be substantial for inexpensive, off-the-shelf cameras used in structure from motion
applications [50]. Most software, including VSfM, perform internal image calibration using
information on the focal length of the lens, usually stored in the header of the image, and a
generic rectification process, or undistortion as it is commonly called. Departures between the
actual distortion and the one anticipated by the generic rectification process reduce the spatial
accuracy of reconstructed objects. Using simulated and UAV-based, nadir looking imagery fea-
turing sparse and low vegetation on flat land, Wu [51], the author of the VSfM software, docu-
mented that scene reconstructions obtained by using the generic image calibration model
present in VSfM produced a macroscopically concave ground surface, an artifact attributed to
imprecise image calibration. To avoid artifacts, we first calibrated all cameras used in this study
with the efficient procedure described in the OpenCV image processing library [52], and then
instructed VSfM to skip the generic image calibration process. Separate calibrations were per-
formed for each operating mode of each camera. As expected, and evident in Fig 2, calibration
effects were more discernible near the periphery of the image. The convex scene horizon in the
original image appears flat and horizontal after calibration and the local road pavement on the
lower left part of the original image is excluded from the calibrated version.

2.2. Simulation-based assessment of image-based tree reconstruction
accuracy
Upon initial consideration, the accurate and detailed reconstruction of objects characterized by
complex structure and geometry, such as trees, using image-based techniques may be deemed
an ill-fated effort. The main reason for pessimistic prognoses is that the aforementioned meth-
ods and algorithms used in processing the imagery anticipate planar surfaces as structural ele-
ments of the objects and well-defined edges at object surface intersections. Except for the lower
part of the main stem of large trees, sizeable and homogeneous surfaces separated by crisp
boundaries are absent in trees. A second reason is that trees are not opaque objects. Even in
high foliage and branch density conditions, portions of scene background are clearly visible
through the tree crowns. The see-through-crown phenomenon can be overlooked in nadir-
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oriented imagery where the forest floor is acting as tree background, but it is often rather pro-
nounced in lateral imagery where the depth of the part of the scene situated behind the trees
can be large. The term ‘lateral’ is used here to describe images acquired with the UAV posi-
tioned to the side of the tree and lower than the tree top. The effects of substantial differences
in parallax between tree components and background depicted only pixels apart in lateral tree
imagery, and high rates of component occlusion, are likely analogous to image distortion, a
condition to which the SIFT algorithm is only partially invariant. Furthermore, the upper parts
of tree crowns depicted in lateral imagery can have the sky as background instead of the typi-
cally darker vegetation or terrain background present in nadir-oriented imagery. Drastic
changes in background brightness, for instance, from sky to vegetation and back to sky, behind
a given part of a tree crown that appears across multiple overlapping lateral images, influence
the red, green, and blue (RGB) values of image pixels corresponding to that crown part. The
ensuing variability in pixel values often mimics effects induced by differences in diurnal solar
illumination regimes. Illumination variability is another condition to which SIFT is only par-
tially invariant.

We used simulation and synthetic images to evaluate the robustness of our standard work-
flow to the idiosyncrasies of lateral tree imagery described above. We relied on terrestrial
LiDAR data representing a collection of free-standing trees, each scanned from multiple near-
ground locations. The scanning was performed in high-density mode with the laser beams dis-
tributed in fine horizontal and vertical angular increments (0.4 mrad). Each point in the gener-
ated clouds was furnished with RGB values extracted from panchromatic imagery captured by
the LiDAR instrument during the scanning. Details on the data acquisition are available in
[24,53]. The RGB-colored point cloud of each tree was then visualized in an OpenGL interface
[54] with perspective rendering (Fig 3A). In this virtual visualization environment, RGB-col-
ored snapshots of each scene, henceforth referred to as synthetic images, can be obtained with-
out limitations on image number, resolution, amount of spatial overlap, and format type. By
specifying the trajectory, orientation, snapshot frequency, and field of view of the virtual cam-
era and also the pixel dimensionality of the OpenGL interface, we can control the scale at
which targeted trees, or parts of trees, are represented in the synthetic imagery. The back-
ground can be adjusted to resemble the overall scene illumination conditions effective during
the acquisition of the terrestrial imagery, including illumination adjustments along azimuth
and sun elevation angle gradients. Synthetic images generated by exercising combinations of
these options yield very realistic approximations of imagery obtained onboard the UAVs, with
the additional advantage that the dimensionality of the objects depicted in the imagery is

Fig 2. Removal of lens distortion.Demonstration of a. original, vs. b. OpenCV-calibrated lateral tree image
obtained with a UAV-based GoPro camera at an above-ground altitude of 18 meters. Horizontal red line
drawn to illustrate form of horizon in each version of the image.

doi:10.1371/journal.pone.0137765.g002
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precisely known. Point clouds generated by processing the synthetic imagery can then be com-
pared to the original terrestrial LiDAR point cloud to evaluate the accuracy and precision of
object reconstructions.

For our simulations we employed a 2500 by 2000 pixel (5 Mp) virtual camera. The camera
was positioned on a circular trajectory centered on the crown of each of the trees depicted in
the terrestrial LiDAR point clouds. The camera trajectory was either aligned to a horizontal
plane elevated to approximately the vertical middle of the crown, or along a spiral ascent from
the 15th to the 85th percentile of tree height (Fig 3A). Camera distance to the nearest part of a
crown was between 10 and 15m and scene background was set to black. Between 100 and 250
synthetic images were acquired for each tree and trajectory combination, initially in BMP (bit-
map) format and subsequently converted to the Joint Photographic Experts Group (JPEG) for-
mat, required by VSFM, using a maximum quality setting in ImageMagick, an open-source
software suite (http://www.imagemagick.org). The synthetic imagery for each tree was pro-
cessed with VSFM using standard settings, and the coordinates of the resulting point clouds
generated at the sparse reconstruction stage were converted to the coordinate system of the ter-
restrial LiDAR data using the locations of the virtual camera known from the simulation set-
tings. Dense reconstructions were obtained by using SURE with standard setting plus an
option to ignore synthetic image regions with very low variability in pixel values, as those rep-
resenting the scene background.

The original Terrestrial LiDAR and dense reconstruction point clouds for each tree were
compared in voxel space [55,56]. In this setting, the bounding box of a point cloud is exhaus-
tively partitioned into discrete, equally-sized cubical elements, called voxels. Those voxels con-
taining one or more points are labeled ‘filled’, all others remain empty. By ensuring that the
terrestrial and reconstruction voxel spaces have the same origin and voxel size, we were able to
calculate the spatial correspondence of filled voxels between the two clouds and the rates of
omission and commission, and identify parts of the voxel space where correspondence is better

Fig 3. 3D reconstruction in simulation. a. Perspective view of point cloud acquired with terrestrial LiDAR
and camera locations (red spheres) used to obtain virtual images of the scene. b. Scene reconstruction
obtained by processing of the images.

doi:10.1371/journal.pone.0137765.g003
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or worse than in other parts. The size, or resolution, of the voxels was set to 2cm, in response to
the angular resolution of the terrestrial LiDAR beams at the mean distance between trees and
LiDAR instrument.

2.3. UAV platform characteristics and image acquisition procedures
After a preliminary evaluation of several commercially available UAV platforms, we focused
on an APM:Copter (http://copter.ardupilot.com), a hexacopter rotorcraft (Fig 4), because of its
easily modifiable architecture and open source software for flight control. We also used a com-
mercial IRIS quadcopter developed by 3DRobotics (http://3drobotics.com). The components
of the customized hexacopter and their purchasing prices are shown in Table 1. Both systems

Fig 4. Custom built UAV hexacopter used to collect imagery data in this study.

doi:10.1371/journal.pone.0137765.g004

Table 1. Specifications and prices of customized UAV platform used in this study at the time of
writing.

Component description March 2015
price ($)

DIJ F550 Hexacopter Frame with 6 motor controllers and brushless motors 200

3D Robotics Pixhawk flight controller. Microprocessor: 32-bit STM32F427 Cortex M4
core with FPU, 168 MHz/256KB RAM/2 MB Flash, 32 bit STM32F103 failsafe co-
processor. Sensors: ST Micro L3GD20 3-axis 16-bit gyroscope, ST Micro LSM303D
3-axis14-bit accelerometer / magnetometer, Invensense MPU 6000
3-axisaccelerometer/gyroscope, MEAS MS5611 barometer.

200

3D Robotics GPS with compass 90

915 Mhz telemetry radio and transmitter to controller 30

FrSky receiver 30

Spectrum DX7 transmitter 200

Tarot T-2D brushless camera gimbal 150

GOPRO 3+ Black Edition sport camera 350

LIPO batteries 60

doi:10.1371/journal.pone.0137765.t001
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feature gyroscopes and GPS receivers. Compared to systems available in the market, our hexa-
copter is an inexpensive but versatile configuration whose component acquisition cost is
expected to drop substantially in the future as UAV technology evolves and its popularity con-
tinues to increase.

Both UAVs used in this study can be operated either autonomously along a predefined tra-
jectory or manually. The manual flight control requires expertise and continuous line of sight
between the system and the operator. Maintaining nearly constant planar and vertical speed
and orientation of the onboard camera towards the target is challenging, even for operators
with years of experience. Experimentation confirmed that imagery acquired with manual flight
control exhibits variable rates of overlap between frames captured sequentially. Smaller compo-
nents of the targets are sometimes depicted in too few frames or are missing completely, while
others appear in an excessive number of frames. For these reasons, it was decided to rely on
autonomous flights configured by prior mission planning, and reserve the manual mode only
for intervention in the event of an emergency.

2.3.1. Characteristics of the imaging system. We conducted extended trials with several
cameras, including the sport GOPRO 3+ Black Edition (http://gopro.com/), Ilook Walkera
(http://www.walkera.com/en/) and Canon PowerShot (http://www.canon.com). The evalua-
tions involved all operating modes offered by each camera, including normal, wide, and super-
wide zoom settings, as well as acquiring video and then extracting individual frames with post-
processing. At the conclusion of the trials, we selected the GOPRO 3+ Black Edition operated
in photography mode, and normal, 5 Mp resolution. Acquired frames were stored in JPEG for-
mat to the camera’s flash card. We rarely achieved event partial tree reconstruction using the
alternative settings, likely because of the magnitude of distortion embedded into the imagery.

2.3.2. Mission planning. The objective of the mission planning phase is to optimize the
UAV trajectory, attitude, speed, and were applicable, the view angle of the camera gimbal for
image acquisition. The gimbal is a hardware component which allows the orientation of the
camera to be modified during the flight relative to the platform. Dynamic, trajectory-location-
specific adjustments of camera orientation can be used to ensure that the target is centered on
the images, especially when the UAV trajectory is not along a horizontal plane. During mission
planning the image acquisition frequency is also considered. After rigorous evaluation of vari-
ous UAV trajectory templates (Fig 5), we determined that the optimal reconstructions of trees
are achieved when sequential images have a field-of-view overlap of approximately 70%. In this
configuration, the nominal mean number of images where a part of a targeted tree would be
present in is 3.4. Once determined, a trajectory template is centered on the target and scaled
so that during the actual flight the mean camera-tree distance, platform speed, and image
acquisition frequency will generate images exhibiting the targeted field-of-view overlap. The
process is perceptually simple, but technically complex considering that all directional and atti-
tudinal vectors of the UAV have to be converted to instructions passed to the UAV controller.
Thankfully, it can be streamlined by using Mission Planner, an open-source software suite
developed by Michael Osborne (http://planner.ardupilot.com). Mission Planner relies on user
input and georeferenced imagery of the targeted area and tree(s), to establish the geographic
(latitude and longitude) coordinates of the UAV’s starting and ending position and trajectory.
A small set of high-level Mission Planner commands can accomplish even complex trajectory
templates. All templates shown in Fig 5 require only 5 commands (Table 2). Our typical setup
uses a location positioned in the middle of an open area for both the start and end of the flight.
The UAV would initially ascend vertically above its starting location to a pre-specified height,
then move horizontally to the beginning of the trajectory, complete it, and finally return to the
starting location. In the present development state of our system, it is the user’s responsibility
to ensure that the designed flight path is free of other objects, an easy to achieve requirement
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considering the wealth of georeferenced, high resolution, publicly available aerial photographs
(Fig 6). The Mission Planer is also used to convert telemetry data of camera locations the
moment images were acquired, provided by the GPS receiver stored to the onboard flash mem-
ory card, to an accessible format. As detailed in Section 2.1, these locations are later paired to
those calculated during the sparse reconstruction processing phase to adjust the scale and geor-
eference of reconstructed objects.

Fig 5. Different UAV trajectories tested for image acquisition. a. circular, at constant height; b. ‘stacked
circles’, each at different above-ground height, for tall trees (height more than 20 m); c. spiral, for trees with
complex geometry; d. vertical meandering, targeting tree sectors; e. clover, for trees with wide, ellipsoidal tree
crowns; f. ‘spring-hemisphere’, designed for trees with flat-top, asymmetrical crowns; g. ‘nested circles’,
centered on the tree; and h. ‘jagged saucer’, designed for trees with dense foliage but low crown compaction
ratio.

doi:10.1371/journal.pone.0137765.g005

Table 2. Mission Planner commands used for autonomous UAV flights.

Command Code Description

WAYPOINT 16 Latitude, longitude (in degrees) and altitude vector (in meters) of locations visited during a flight

DO_CHANGE_SPEED 178 Speed, in meters per second. Calculated considering distance to target and image acquisition frequency, usually 2Hz.
Typical speed value is 4 meters per second

DO_SET_ROI 201 Vector of UAV heading planar azimuth and gimbal angle (in degrees) that orients the camera towards relative to a
specified point of interest.

RETURN_TO_LAUNCH 20 Return to launch location after flight completion

DO_SET_HOME 179 Latitude and longitude vector (in degrees) of return UAV location to use in the event of an emergency, or system
anomaly

doi:10.1371/journal.pone.0137765.t002

3D Tree Dimensionality Assessment Using Photogrammetry and Small UAVs

PLOSONE | DOI:10.1371/journal.pone.0137765 September 22, 2015 11 / 21



2.4 Evaluation of tree reconstructions
Processing of the synthetic imagery always produced complete tree reconstructions. The num-
ber of points in the reconstruction ranged between 20 and 25 percent of those present in the
original terrestrial LiDAR point cloud (Fig 3B). Larger percentages could be achieved by
increasing the resolution of the virtual camera, at the expense of prolonged processing time in
both VSfM and SURE. Volumetric comparisons in voxel space revealed excellent agreement
between LiDAR and reconstructed point clouds, with a mean of 94 percent of filled voxels col-
located. Omnidirectional jittering of the voxel-rendered tree reconstructions relative to the ter-
restrial LiDAR equivalent always resulted in a substantial, 30 to 40 percent reduction in
collocation rates, even when the jittering was limited to a single voxel. The rapid reduction in
the collocation rates caused by jittering limited to one voxel suggests that the scaling and trans-
lation of the derived point cloud relative to the original terrestrial LiDAR cloud is accurate and
precise. It also implies that the coordinates of the virtual camera positions deduced by VSfM
during the processing of the synthetic imagery and those used in the simulation are identical
up to the scale difference. Once calculated, scaling and translation of the reconstructed point
cloud performed by using this relationship rendered the derived tree point cloud a thinned
copy of the original terrestrial point cloud. Our simulation results suggest that the absence of
planar surfaces and lack of opacity in tree crowns do not impose systemic restrictions to the
surface-from-motion approach we used to obtain the 3D tree representations.

By exploring several virtual camera trajectory patterns while altering the image acquisition
frequency in each of them, we were able to quantify the effects that different patterns and
image field-of-view overlap percentages have on tree reconstruction accuracy (Fig 7). Even in
the ideal, noise-free environment of the simulations, a minimum 30 percent image overlap
was required for complete target reconstructions. For patterns involving camera locations at

Fig 6. Visualization of designed and accomplished UAV trajectories. a. and c. circular and clover
templates as seen in Mission Planner with yellow lines showing the flight paths, green balloons indicating
waypoints, and red balloons the center of targeted trees. b. and d. perspective scene view in Google Earth,
with yellow pins indicating camera locations along each trajectory at the moment images were captured.

doi:10.1371/journal.pone.0137765.g006
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variable above-ground heights the minimum percentage was higher, between 35 and 40 per-
cent. Below a mean 45 percent overlap, all simulations were susceptible to failure, pending on
the image pair selected for initiating the matching process described in section 2.1. For the cir-
cular trajectory pattern, the level of volumetric correspondence between the terrestrial LiDAR
and imagery-derived point clouds would increase rapidly at low field-of-view overlap percent-
ages and then progressively decline until reaching an asymptote, usually at 90 percent volumet-
ric correspondence or higher (Fig 7). Complete reconstructions obtained with the spiral
trajectory usually required at least 35 percent image overlap. The observed volumetric corre-
spondence to the LiDAR point cloud showed a sigmoidal increase with higher image overlap
percentages until reaching an asymptote level, sometimes as high as 94 percent.

In a spiral acquisition trajectory yielding the same number of images of a targeted tree as a
circular trajectory, the horizontal overlap percentage between two sequential images is lower.
Unlike the circular trajectory, though, in the spiral there is vertical overlap with images
obtained after the UAV has completed a rotation around the tree. While the overall mean over-
lap between the two trajectory patterns was the same in our simulations, the spiral had lower
overlap percentage between any two images selected for the initiation of the matching process,
and therefore more likely to fail to yield a complete reconstruction when the overall overlap
image rate was low. Owing to the vertical image overlap present in spiral UAV missions,
selected parts of the tree are visible from more than one vertical viewing angles, an arrange-
ment that reduces target occlusion rates. For tree species with dense, uniform distribution of
foliage and deeply shaded crown centers, the variability in vertical view angles offered by the
spiral trajectory pattern may be unimportant. For species with predominantly horizontal or

Fig 7. Accuracy and completeness of reconstruction for a Pinus ponderosa tree. This analysis is based
on synthetic imagery simulated using visualization of terrestrial LiDAR point clouds and two camera
trajectories. Percentage of collocated filled voxels is used as reconstruction completeness criterion.

doi:10.1371/journal.pone.0137765.g007
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angular branch arrangement and lower crown compaction rates, vertical viewing variability
allows internal crown components to be represented adequately in the derived point cloud.
Three out of four of the voxels accounting for the approximately 4 percent difference in recon-
struction completeness between the spiral and circular UAV trajectories around a Red Pine
(Pinus ponderosa) tree at 70 percent image overlap rates or higher (Fig 7) were located in the
internal half of the crown.

Most UAV flights also produced complete tree reconstructions (Figs 8 and 9). In the
absence of detailed crown dimensionality measurements, we relied on ocular assessment of
reconstruction accuracy and precision. The typical example shown on Fig 8, obtained with the
spiral UAV trajectory (Fig 5C), among our most reliable for complete target reconstruction,
shows that even the shaded components of the tree crown interior are represented. Many parts
on the upper quarter of the crown have a light blue hue inherited from the sky background in
corresponding UAV images. Although less evident, selected parts of the lower crown exhibit
similar ground-influenced coloring. The coloring artifacts shown in Fig 8 appear where the
image area occupied by an identified keypoint is dominated by a uniformly colored back-
ground. Sometimes these anomalies are limited to the RGB values assigned to points and can
be overlooked if the main objective of the UAVmission is the retrieval of tree dimensionality.
Often though they represent an overestimation of tree crown volume and must be removed
(Fig 10). Accomplishing this task with manual intervention is laborious and subjective. The
task can be easily automated for points pertaining to a sky background thanks to their
markedly different RGB values compared to those of vegetation. Where suitable RGB value
thresholds cannot be safely identified, as it is usually the case for the lower parts of trees, we
found it useful to trim the depth of the part of the overall reconstructions that is derived from
each image, so that only the portion nearer the camera position is retained. SURE facilitates
this procedure by providing a separate dense reconstruction for each processed image orga-
nized in a common coordinate system. The complete reconstruction can be obtained by merg-
ing the trimmed parts. In the absence of precise reference data, we were unable to determine
quantitatively the significance of these artifacts.

The ‘nested circle’ and ‘jagged saucer’ trajectories (Fig 5G and 5H) produced only partial
reconstructions and several disjointed models in VSfM and are, therefore, not recommended,
while the altitude variability in the ‘meandering’ trajectory (Fig 5D) was often responsible for
premature mission termination owing to rapid depletion of the UAV batteries. Partial recon-
structions were the norm, rather than the exception, when for a portion of the mission the
camera was positioned directly against the sun. In such conditions the shaded portion of the
crown would either not be reconstructed at all, or it would be organized in separate 3D models

Fig 8. Orthographic horizontal view of reconstructed point cloud and UAV-based oblique perspective
image.Colored arrows denote corresponding tree crown components.

doi:10.1371/journal.pone.0137765.g008
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with much lower point density and sizable gaps. In the example shown in Fig 11, the GPS
recorded and process-derived positions of the camera on board the UAV show a nearly perfect
correspondence for three quarters of the circular UAV trajectory. GPS recordings are half as
many as the camera positions because of limitations in the recording frequency of the GPS
device. Is should be noted that pending on the hardware configuration of the UAV and the
number of peripheral devices connected to it, it is sometimes necessary to operate below the
capacity of a particular device to either conserve energy, or to avoid overwhelming the UAV
controller. Based on our experience, a close fit between recorded and derived camera positions
practically guarantees that a complete target representation will be obtained during the dense

Fig 9. Illustration of comprehensive tree reconstructions (right column) and reference UAV-based
images (left column).

doi:10.1371/journal.pone.0137765.g009

Fig 10. Demonstration of artifacts in the 3D tree reconstruction pertaining to a single UAV image. a.
Initial reconstruction, positioned facing the camera with a band of white-colored points belonging to sky
background near the top, and light colored points to the sides belonging to fallow land background, b. Side
view, with camera position to the left and sky points in oval and land points in rectangle, and c. Trimmed
reconstruction positioned facing the camera.

doi:10.1371/journal.pone.0137765.g010
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reconstruction phase. The remaining part of the trajectory, where the camera is positioned
against the sun, was actually derived from a separate model and shows a poor fit, resembling
more of a linear transect than a circular arc. As the camera moves from partially to completely
against the sun, image contrast is reduced, and the radii of identified keypoints become smaller.
Radius reductions increase the uncertainty associated with keypoints orientation and descrip-
tor. We suspect that changes in the magnitude of the mean image keypoint radius are mani-
fested as variability in the distance between the tree and calculated camera locations, evident in
the misfit part of the VSfM-derived camera trajectory shown in Fig 11.

On a few occasions, we observed more than one, nearly parallel, and closely stacked layers
of points representing the ground, likely an artifact of texture uniformity in those parts of the
scene. The use of calibrated imagery has expedited the computations for identifying camera
positions and for generating the sparse reconstructions in VSfM and has reduced the rate of
partial reconstruction occurrence. However, its effect on the accuracy of the reconstruction
obtained using SURE was unclear.

Discussion
Our results indicate that a meticulously planned image acquisition mission, namely a judicious
selection of flight trajectory, UAV speed, and image acquisition frequency, will deliver a com-
prehensive dense reconstruction of targeted vegetation, except perhaps in unfavorable sun illu-
mination and wind conditions. As explained in section 2.1, our workflow relies on keypoints,
most of which are identified along image discontinuities. A smooth flight trajectory around the
target ensures that sequential images contain an adequate number of similar keypoints from
which the camera location effective for each image capture can be calculated with adequate pre-
cision. Where the smooth change in the field of view between two sequential images is inter-
rupted, the offending image becomes the first in a separate model. Bundle adjustments can
reduce the frequency of separate model emergence but they cannot eliminate it. The often

Fig 11. Comparison between real and reconstructed trajectory.Nadir view of reconstructed tree with
camera GPS locations at image frame acquisition moments (yellow circles) and VSfM-calculated locations
(red dots). Frame frequency 2Hz, GPS fixes at 1Hz. Inset at the lower left shows lateral view of the
reconstructed tree.

doi:10.1371/journal.pone.0137765.g011
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advocated practice of adding to a model image frames originally put by VSfM to a separate
model without performing bundle adjustment after each frame addition may be warranted for
manmade objects but is not recommended for trees because it leads to obvious reconstruction
artifacts. Mission plans for flights expected to occur during bright solar illumination conditions
using gimbal-equipped UAVs could be adjusted to avoid camera positioning directly against
the sun. This can be accomplished by specifying a slightly downward, oblique camera orienta-
tion. The precise solar elevation angle and azimuth for any location can be obtained from the
NOAA Solar Position Calculator (http://www.esrl.noaa.gov/gmd/grad/solcalc/azel.html), or
can be computed as described in [57].

GPS-equipped UAV platforms not only enable preprogrammed navigation, but also, and
perhaps equally importantly, can be used for a precise scaling of reconstructed tree point clouds
to actual dimensions. The GPS receivers placed on the two UAVs employed in this study offer
recreational grade precision, and as such, their individual position recordings may contain an
absolute error of a few meters. In our trials, however, the relative error between trajectory
recordings appeared to always be less than a meter, in most cases about half a meter. This is
based on the observation that our UAVs, initially placed on a launch pad measuring about 60
cm on each side, would return at the completion of the mission with their landing gear partially
on the launch pad. Fitting the VSfM-calculated camera locations to corresponding GPS record-
ings containing a relative positional error of such magnitude, would yield point cloud scaling
errors of 0.5 percent or lower, a level deemed adequate for UAV imagery and structure from
motion based assessment of yearly tree growth. In the absence of GPS recordings, the scaling of
the point cloud would have to be performed manually using georeferenced imagery.

Except for extremes in solar illumination conditions such as sun facing camera exposures or
at dusk, disparities in light distribution may actually be beneficial for structure-from-motion-
based applications in natural environments because they accentuate feature edges. As it is evi-
dent in the tree portion between the red and purple colored arrows shown in Fig 8, crown parts
in the penumbra are still represented, albeit with reduced point density. Image enhancements
focusing on shaded or very bright parts could perhaps be used to ameliorate the direct sunlight
effects or improve the reconstruction density for shaded areas.

To account for absolute GPS receiver and ancillary imagery registration errors, current
UAV missions must be planned with adequate clearance from any scene objects. We were able
to comply with this requirement in our trials because we mostly targeted individual trees or
small groups of trees growing in open space. Extending our operations to confined areas, for
instance descending into and proceeding near and along the periphery of forest openings,
would require much higher navigation precision. Thankfully, obstacle avoidance has been
actively researched and several solutions specific to forested environments have been proposed
[58,59,60,61,62]. In particular, [62] demonstrated full flight control in forested environments
using an UAV platform similar to ours. They used a low-resolution camera mounted on a
quadcopter that was outsourcing via a wireless connection all computationally intensive image
processing to a ground station, a standard laptop computer. Using this setup, they were able to
achieve a constant speed of 1.5 meters per second while avoiding trees. The rapidly expanding
onboard processing capabilities of UAVs suggest the possibility, in the near future, of coupling
the 3D reconstruction methodology proposed here with autonomous flight, thereby eliminat-
ing the need for meticulous mission planning. Extensions of our approach could involve real-
time modeling of terrain elevation [63] or embedded recognition of location [64,65]. The shape
of reconstructed trees could be utilized in view-based 3D object retrieval [66,67].

It is often tempting to acquire images with the highest possible frequency and maximum
overlap. Action cameras similar to those used in this study support high frame rates and carry
ample image storage space without affecting the payload and thus compromising the UAV’s
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flight duration or mission flexibility anyway. Large number of images though requires pro-
longed processing. Our simulations indicate that image field-of-view overlap higher than 70
percent, does not improve the accuracy or completeness of tree reconstructions. Visual assess-
ments suggest that this is also true for actual UAV imagery. Mission planning designed so that
target features are represented in three to four images likely maximizes the information content
present in an acquisition and it is therefore recommended as an initial mission configuration.

Conclusion
Rapid developments in UAV technology and enhancements in structure from motion software
have enabled detailed representation of manmade objects. In this paper, we describe how this
technology can inexpensively be extended to representations of natural objects, such as trees or
groups of trees. After extensive experimentation that involved several UAV platforms, cameras,
mission planning alternatives, processing software, and numerous procedural modifications
and adjustments, our workflow has been proven capable of handling most conditions encoun-
tered in practice to deliver detailed reconstruction of trees. In addition to robust performance,
our imaging system can be employed rapidly in support of time-sensitive monitoring opera-
tions as, for instance, the assessment of forest fire damage or progress of forest recovery from
disturbance. It is also well suited to providing tree dimensionality data through time, a prereq-
uisite for improved models of tree growth and for an accurate assessment of tree competition
and morphological plasticity.
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