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Abstract

Background

Heart failure with preserved ejection fraction (HFpEF) is recognized as a major cause of car-
diovascular morbidity and mortality. Thus, a profound understanding of the pathophysio-
logic changes in HFpEF is needed to identify risk factors and potential treatment targets in
this specific patient population. Therefore, we aimed to comprehensively assess the impact
of left- and right-ventricular function and hemodynamics on long-term mortality and morbid-
ity in order to improve risk prediction in patients with HFpEF.

Methods and Results

We prospectively included 142 consecutive patients with HFpEF into our observational, non-
interventional registry. Echocardiography, cardiac magnetic resonance imaging and invasive
hemodynamic assessments including myocardial biopsy were performed at baseline. We
detected significant correlations between left ventricular extracellular matrix and left ventricular
end-diastolic diameter (r = -0.64;p = 0.03) and stroke volume (r = -0.53;p = 0.04). Hospitaliza-
tion for heart failure and/or cardiac death was observed over a median follow up of 10 months.
The strongest risk factors were reduced right ventricular function (adj. HR 6.62;95%ClI 3.12-
14.02;p<0.001), systolic pulmonary arterial pressure (adj. HR per 1-SD 1.55;95%Cl 1.15-
2.09;p = 0.004) and the pulmonary artery wedge pressure (adj. HR per 1-SD 1.51;95%Cl
1.09-2.08; p = 0.012). The area under the ROC curve for right ventricular function was 0.63,
for systolic pulmonary arterial pressure 0.75, and for pulmonary artery wedge pressure 0.68.

Conclusion

The current study emphasizes the importance of right ventricular function and pulmonary
pressures on outcome in patients with HFpEF providing pathophysiological insights into the
hemodynamic changes in HFpEF.
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Introduction

Heart failure with preserved ejection fraction (HFpEF) has been established as a major cause of
cardiovascular morbidity and mortality. While identification of risk factors and advances in
treatment led to a significant reduction in mortality during the last decades in patients with
heart failure with reduced ejection fraction, the mortality in patients with HFpEF remained vir-
tually unchanged.[1, 2] Thus, a profound understanding of the pathophysiologic changes in
patients with HFpEF is crucially needed to identify risk factors and potential treatment targets
in this specific patient population.

Recently, Paulus and colleagues proposed a novel hypothesis for the development HFpEF,
which identifies a systemic proinflammatory state leading to microvascular endothelial inflam-
mation induced by comorbidities (e.g. obesity, diabetes mellitus, hypertension, chronic
obstructive pulmonary disease), as the cause of myocardial structural and functional alter-
ations.[3] This model of a microvascular inflammatory state driving myocardial remodeling is
further supported by the involvement of other cardiac chambers than the left ventricle in the
progression of HFpEF.[3] There is growing evidence that outcome in patients with HFpEF
strongly relies on pulmonary pressures and right ventricular function.[4-6] Using non-invasive
echocardiographic surrogate measurements, Lam et al. previously demonstrated a significant
prevalence of pulmonary hypertension in patients with HFpEF and a link between systolic pul-
monary artery pressure (SPAP) and mortality.[4] However, in a recent study we could demon-
strate a clear interdependence between the extent of LV extracellular matrix as quantified by
cardiac magnetic resonance (CMR) imaging and parameters of RV afterload and function.[7]

Therefore, we aimed to comprehensively assess the impact of left- and right-ventricular
function and hemodynamics on long-term mortality using invasive hemodynamic assessment,
echocardiography and CMR imaging as well as histologic data obtained by myocardial biopsy.

Materials and Methods

Study Population

We prospectively included 142 consecutive patients diagnosed with HFpEF referred to the
Department of Cardiology of the Medical University of Vienna between December 2010 and
July 2013 into our observational, non-interventional registry. The Medical University of
Vienna is a tertiary care center with a high-volume cardiac catheterization unit. The study pro-
tocol complies with the Declaration of Helsinki and was approved by the Ethics Committee of
the Medical University of Vienna (EK #796/2010). Written informed consent was collected
before study enrollment in all patients.

Clinical Definitions

Diagnosis of HFpEF was defined according to the current consensus statement of the European
Society of Cardiology [8] and the ACCF/AHA task force.[9] For the diagnosis of HFpEF all

of the following diagnostic criteria had to be fulfilled: 1. clinical symptoms of heart failure
(NYHA stage > II) 2. an echocardiographic left ventricular ejection fraction >50% and a left
ventricular end-diastolic volume index < 97ml/m? 3. evidence of abnormal left ventricular
relaxation, filling or diastolic stiffness as previously described [7]. Pulsed-wave Doppler and
Tissue Doppler Imaging were performed to obtain the ratio of early transmitral blood velocity
(E) to early diastolic mitral annular velocity (¢”). HFpEF was considered likely in patients with
an E/e’ ratio >15 and unlikely in patients with an E/e’ < 8. In intermediate cases with 15 >
E/e’ > 8, serum NT-proBNP levels were determined and if NT-proBNP levels exceeded 220pg/
ml, HFpEF was considered. If HFpEF was expected after transthoracic echocardiography and
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N-terminal pro-brain natriuretic peptide assessment, right heart catheterization was per-
formed. The diagnosis of HFpEF was established if the pulmonary artery wedge pressure
(PAWP) was > 12mmHg.[10]

The presence of cardiovascular risk factors such as hypertension, diabetes mellitus, current
smoking status, and lipid disorders, was recorded according to the respective guidelines. Fur-
thermore, antecubital venous blood samples were drawn and analyzed directly without freezing
according to local laboratory standard procedure.

Exclusion criteria were significant valvular or congenital heart disease, a significant coro-
nary artery disease requiring percutaneous coronary intervention or aorto-coronary bypass
surgery, and severe congenital abnormalities of the lungs, thorax or diaphragm as previously
described.[7]

Study Endpoints and Follow-up

Patients were prospectively surveyed in six-months-intervals by outpatient visits or telephone
calls in cases of immobility. The primary study endpoint was a combined measure consisting
of hospitalization for heart failure and/or death for cardiac reason.

Imaging Modalities

All patients underwent a conventional transthoracic echocardiography (Vivid 5 and 7, General
Electric Inc.) according to the guidelines of the American Society of Echocardiography.[11]

Two independent observers blinded to clinical data assessed RV function semi-quantita-
tively. An additional board-certified senior physician was consulted in case of disagreement.
Right ventricular function was categorized semi-quantitatively into normal, mildly reduced,
moderately reduced and severely reduced. Significantly impaired right ventricular function was
defined as > moderately reduced right ventricular function. End-diastolic and end-systolic vol-
umes were used to calculate the ejection fraction using the Simpson’s biplane method on the
apical four- and two-chamber views.[11]

Furthermore, all patients without contraindications underwent a CMR study on a 1.5-T
scanner (Avanto, Siemens Medical Solutions, Erlangen, Germany). Studies consisted of func-
tional and late gadolinium enhancement imaging, according to standard protocols.[12] Post-
contrast T1 mapping was done 15 minutes after injection of 0.1mmol/kg gadolinium-DTPA
[Gadovist 1.0 macrocyclic; Bayer Vital GmbH, Leverkusen, Germany]. A multiple breath-hold
ECG-triggered segmented inversion recovery spoiled gradient echo sequence (fast low-angle
shot) was used to acquire a stack of 8 images in the middle short-axis slice over a range of
increasing inversion times from 115 to 900 ms as previously published [7]. Images were then
transferred to an external computer for off-line T1 time analysis (cmr42; Circle Cardiovascular
Imaging, Calgary, Canada).

Invasive hemodynamic assessment was performed in all study participants for a definite
diagnosis of HFpEF. Hemodynamic measurements were performed using a 7F Swan-Ganz
catheter (Edwards Lifesciences GmbH, Austria) via a jugular or femoral access. Pressures were
documented as average of eight measurements over eight consecutive heart cycles using
CathCorLX (Siemens AG, Berlin and Munich, Germany). In addition to PAWP, the systolic
(sPAP), diastolic (dPAP) and mean (mPAP) PA pressures were documented. Cardiac output
(CO) was measured by thermodilution. Furthermore, the transpulmonary gradient (TPG) and
diastolic pulmonary vascular pressure gradient (DPG) were calculated as previously described
[13]. TPG was computed by subtracting PAWP from mPAP; DPG was calculated as the differ-
ence between dPAP and PAWP during a pull-back; pulmonary vascular resistance (PVR) was
calculated by dividing TPG by CO; pulmonary pulse pressure (PPP) was calculated as the
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difference between sPAP and dPAP; pulmonary arterial compliance (PAC) as the ratio of
stroke volume (CO/heart rate) to PPP. Besides, coronary angiography was performed in all
patients in order to exclude coronary heart disease. Additionally, 16 patients agreed to an endo-
myocardial biopsy taken from the left ventricle utilizing a Bipal biopsy forceps (Cordis Corpo-
ration a Johnson & Johnson Company, New Jersey, USA).

Histochemistry and TissueFAXS Analysis

Myocardial biopsy samples were immediately fixed in 7.5% buffered formalin for at least 24
hours. Afterwards samples were dehydrated with an ascending ethanol row, embedded in par-
affin and cut at 3um using the Leica RM 2255 Microtome (Charleston, USA). The formalde-
hyde-fixed 3pum paraffin sections were stained with a modified trichrome stain according to a
standardized protocol for further histochemical analysis.[14] Stainings were recorded by using
a Zeiss Observer Z1 microscope (Carl Zeiss Microsocopy GmbH, Jena, Germany) and the Tis-
sueFAXS software (Version 3.5.5, TissueGnostics, Vienna, Austria) and then automatically
analyzed using the HistoQuest software (TissueGnostics). Results were given as percentage
extracellular matrix per mm? of total heart area.

Statistical Analysis

Continuous data were presented as median and interquartile range and discrete data were pre-
sented as counts and percentages. Cox proportional hazard regression analysis was applied to
assess the effect of the respective variables on event-free survival. A multivariate model was
adjusted for established cardiovascular risk factors in order to account for potential confound-
ing. Adjusted hazard ratios were obtained by including the clinically established risk factors
that were significant in our univariable analysis i.e. diabetes, COPD, and NT-ProBNP in our
multivariate analysis. Estimated GFR was calculated using the Cockcroft-Gault formula. The
correlations between the histological and imaging results were assessed using the Spearman
correlation coefficient. Kaplan-Meier analysis (log-rank test) was applied to verify the time-
dependent discriminative power of the respective variable. Receiver operating characteristic
(ROC) analysis and Harrel’s C-statistic were used to assess the predictive value of the respective
variables for the primary outcome. Continuous variables were divided into two groups using
the median of the respective variable as cut-off value. Two-sided P-values <0.05 were used to
indicate statistical significance. SPSS 18.0 (IBM SPSS, USA) and STATA 11 (StataCorp LP,
USA) were used for all analyses.

Results
General Characteristics

The median age of HFpEF patients was 71 years (IQR 66-76), 70% of patients were female. We
observed a high prevalence of previously established risk factors for HFpEF in our study popu-
lation e.g. arterial hypertension (98%), diabetes (37%), chronic obstructive pulmonary disease
(COPD, 36%) and a relatively high BMI with a median of 30 kg/m2 (IQR: 24-34). Sixty-two
percent of HFpEF patients (n = 88) were in atrial fibrillation and NT-proBNP levels were ele-
vated with a median of 1169 ng/L (IQR: 557-2024). Detailed baseline characteristics are dis-
played in Table 1. During a median follow-up time of 10 months (IQR: 5-19 months), 30% of
patients (n = 43) reached the primary endpoint. Of these, 6 patients died due to cardiac causes.
No patients were lost to follow-up.
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Established Risk Factors and Qutcome

We assessed the long-term effect of previously established risk factors for the development of
HFpEF on hospitalization for heart failure and/or death for cardiac reason. Among these diabe-
tes (HR 3.15, 95%CI 1.69-5.86; P<0.001) and COPD (HR 2.09, 95%CI 1.19-4.94; P = 0.02)
were significantly associated with the primary outcome in the unadjusted analysis. Further-
more, increased NT-proBNP was a significant risk factor with an HR of 1.29 per 1 standard
deviation (SD) increase (95%CI 1.07-1.56; P = 0.009). No significant association with outcome
was detected for female sex (P = 0.29), age (P = 0.10), BMI (P = 0.22), and heart rate (P = 0.25).

Non-invasive Imaging Measurements and Outcome

Among non-invasively measured parameters, the strongest univariable risk factors were
reduced right ventricular function measured by echocardiography (HR 4.51; 95%CI 2.28-8.91;
p<0.001) or CMR (right ventricular ejection fraction <35%: HR 8.11; 95% CI 2.37-27.75;

p =0.001) and sPAP using echocardiography (HR per 1-SD 1.76; 95%CI 1.34-2.32; p<0.001).

Table 1. Baseline characteristics of patients with HFpEF (n = 142). Continuous variables are given as
medians and inter-quartile ranges. Counts are given as numbers and percentages.

HFpEF patients (n = 142)

Age, median years (IQR) 71 (66-76)
Female gender, n (%) 99 (70%)
BMI, kg/m? (IQR) 30 (24-34)
Systemic hypertension, n (%) 139 (98%)
Current smokers, n (%) 55 (39%)
Atrial fibrillation, n (%) 88 (62%)
COPD, n (%) 51 (36%)
Diabetes mellitus, n (%) 52 (37%)
Hbaic, % (IQR) 5.9 (5.6-6.5)
NYHA class
NYHA II, n (%) 42 (30%)
NYHA I, n (%) 87 (61%)
NYHA IV, n (%) 13 (9%)
6-min walking test, meter (IQR) 330 (240-418)
NT-proBNP, ng/L 1169 (557—-2024)
Hyperlipidemia, n (%) 77 (54%)

Total cholesterol, mg/dl (IQR)
Triglycerides, mg/dl (IQR)

169 (144—199)
128 (91-161)

Serum creatinine, mg/dl (IQR) 1.1 (0.9-1.3)
GFR, mL/min/1.73 m? (IQR) 68 (47-84)
C-reactive protein, mg/dl (IQR) 0.44 (0.2—-1.0)
Medication
Beta blocker, n (%) 88 (62%)
ACE inhibitor, n (%) 40 (28%)
Calcium channel blocker, n (%) 40 (28%)
Diuretics, n (%) 91 (64%)
Statin, n (%) 50 (35%)

BMI-body mass index, COPD—chronic obstructive pulmonary disease, NYHA-New York Heart
Association, GFR—glomerular filtration rate, ACE—angiotensin-converting enzyme.

doi:10.1371/journal.pone.0134479.1001
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Table 2. Cox proportional hazard models of non-invasive imaging measurements in patients with HFpEF (n = 142). Hazard ratios (HR) referto a
1-SD increase in continuous variables. HRs are adjusted (adj.) for all variables in the clinical confounder model i.e. diabetes, COPD, and NT-ProBNP.

Median (IQR) Crude HR (95% CI) P-value Adj. HR (95% CI) P-value
Echocardiography
LA diameter, mm (IQR) 62 (58-66) 1.26 (0.97-1.65) 0.09 1.19 (0.88-1.61) 0.26
LV diameter, mm (IQR) 44 (40-47) 0.86 (0.65-1.15) 0.32 0.90 (0.66—1.23) 0.51
LVEF, % (IQR) 58 (65—64) 1.14 (0.79-1.63) 0.49 1.20 (0.81-1.76) 0.37
IVS thickness, mm (IQR) 12 (11-14) 0.88 (0.65—1.20) 0.43 0.79 (0.58-1.08) 0.14
RA diameter, mm (IQR) 62 (58-69) 1.24 (0.92-1.67) 0.17 1.22 (0.89-1.67) 0.23
RV diameter, mm (IQR) 37 (31-42) 1.46 (1.12-1.90) 0.006 1.41 (1.05-1.89) 0.02
Sign. impaired RV function, n (%) 17 (12) 4.51 (2.28-8.91) <0.001 6.13 (2.85-13.16) <0.001
sPAP (echo), mmHg (IQR) 56 (48-71) 1.76 (1.34-2.32) <0.001 1.44 (1.07-1.95) 0.017
Cardiac magnetic resonance
LA area, mm? (IQR) 31 (26-35) 1.41 (1.03-1.95) 0.04 1.42 (1.03-1.97) 0.04
LVEDD, mm (IQR) 47 (44-50) 0.80 (0.55-1.19) 0.27 0.68 (0.44—-1.06) 0.09
LVEDV, ml (IQR) 120 (102-139) 0.84 (0.55-1.27) 0.49 0.82 (0.54-1.25) 0.36
LVSV, ml (IQR) 76 (59-90) 0.74 (0.44-1.26) 0.27 0.77 (0.46-1.28) 0.31
LVEF, % (IQR) 62 (55-71) 1.10 (0.74-1.64) 0.64 1.14 (0.77-1.68) 0.53
IVS thickness, mm (IQR) 11 (10-13) 1.06 (0.75-1.50) 0.73 0.88 (0.62—1.25) 0.48
LV mass, g (IQR) 111 (92-138) 0.98 (0.64-1.49) 0.91 0.80 (0.52-1.23) 0.32
RA area, mm? (IQR) 28 (24-35) 1.12 (0.76-1.64) 0.58 1.27 (0.81-2.00) 0.30
RVEDD, mm (IQR) 40 (36—44) 1.33 (0.92-1.91) 0.13 1.33 (0.88-2.01) 0.17
RVEDV, ml (IQR) 142 (116-172) 0.95 (0.63-1.43) 0.79 0.88 (0.60—1.29) 0.88
RVSV, ml (IQR) 75 (61-99) 1.01 (0.68-1.50) 0.94 0.97 (0.62-1.50) 0.88
RVEF, % (IQR) 51 (46-60) 0.73 (0.48-1.11) 0.14 0.75 (0.50-1.14) 0.18
T1 time myocardium, ms (IQR) 381 (349-433) 0.62 (0.38-0.99) 0.05 0.85 (0.52-1.38) 0.51
T1 time blood pool, ms (IQR) 272 (248-310) 1.22 (0.81-1.84) 0.35 1.48 (0.94-2.33) 0.09

LA-left atrium, LV—left ventricle, LVEF-left ventricular ejection fraction, IVS—interventricular septum, RA-right atrium, RV- right ventricle, sPAP—systolic
pulmonary artery pressure, LVEDD-left ventricular end-diastolic diameter, LVEDV-left ventricular end-diastolic volume, LVSV-left ventricular systolic
volume, RVEDD-right ventricular end-diastolic diameter, RVEDV-right ventricular end-diastolic volume, RVSV-right ventricular end-systolic volume,
RVEF-right ventricular ejection fraction.

doi:10.1371/journal.pone.0134479.1002

These effects remained virtually unchanged after adjustment for potential confounders
(Table 2). Furthermore, LA area measured with CMR was significantly associated with out-
come with a HR of 1.41 (95%CI 1.03-1.95; p = 0.04) per 1-SD increase. However, this effect
was not persistent in the multivariate Cox regression analysis. Detailed results of the Cox
regression analysis are shown in Table 2.

Kaplan Meier analysis demonstrated a significant increase of the primary endpoint, hospi-
talization for heart failure and/or death for cardiac reason, in patients with significantly
reduced echocardiographic right ventricular function (14; P<0.001, log-rank test). In detail,
freedom from the primary outcome in patients with significantly reduced right ventricular
function was present in 25% vs. 74% after 1 year (Fig 1A). The area under the ROC curve
(AUC) in regard of the primary outcome was 0.63 for right ventricular function, with compara-
ble results using Harrel’s C-statistic with a C for right ventricular function of 0.62.

Invasive Hemodynamic Measurements and Outcome

Numerous invasive hemodynamic measurements were associated with the primary outcome,
hospitalization for heart failure and/or death for cardiac reason, in the univariate Cox
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Fig 1. Kaplan-Meier estimates of primary endpoint (hospitalization for heart failure and/or death for
cardiac reason) according to echocardiographic right ventricular function (normal and mildly
reduced vs. significantly reduced. 3A; P<0.001, log-rank test), according to invasively measured systolic
pulmonary arterial pressure (3B; cut-off = median; P = 0.001, log-rank test), and according to pulmonary
artery wedge pressure (3C; cut-off = median; P = 0.006; log-rank test).

doi:10.1371/journal.pone.0134479.g001

regression analysis and are displayed in detail in Table 3. In brief, in the univariate analysis
invasively measured sPAP displayed a HR per 1-SD of 1.68 (95%CI 1.32-2.14; p<0.001),
PAWP a HR of 1.56 (95%CI 1.18-2.06; p = 0.002), PVR a HR of 1.52 (95%CI 1.16-1.99;

P =0.002), and TPG a HR of 1.52 (95%CI 1.17-1.97; P = 0.002). These effects remained virtu-
ally unchanged after adjustment for potential confounders. Detailed results of the Cox regres-
sion analysis are shown in Table 3. Kaplan Meier analysis demonstrated a significant increase
of the primary endpoint, in patients with increased sPAP (Fig 1Bj; cut-off = median; P = 0.001,
log-rank test), and increased PAWP (Fig 1C; cut-off = median; P = 0.006; log-rank test). In
detail, freedom from the primary outcome in patients with increased sPAP was present in 51%
vs. 83% after 1 year (Fig 1B) and in patients with increased PAWP in 52% vs. 81% after 1 year

(Fig 1C). The AUC was 0.75 for sPAP, and 0.68 for PAWP with corresponding C-statistics of
0.72 and 0.63, respectively.

Fibrosis, LV Diameter and Stroke Volume

We detected significant correlations between left ventricular extracellular matrix and invasively
measured stroke volume (r = -0.53; p = 0.04; Figs 2 and 3). Interestingly, we could not detect
any significant correlations between left ventricular extracellular matrix and PAWP (r = -0.02;
p =0.99) or sPAP (r = 0.16; p = 0.52). Moreover, we did not observe a correlation between
extracellular matrix and LV mass (r = 0.05, P = 0.89) by MRI or the thickness of the
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Table 3. Cox proportional hazard models of invasive hemodynamic measurements in patients with HFpEF (n = 142). Hazard ratios (HR) referto a
1-SD increase in continuous variables. HRs are adjusted (adj.) for all variables in the clinical confounder model i.e. diabetes, COPD, and NT-ProBNP.

Median (IQR) Crude HR (95% CI) P-value Adj. HR (95% CI) P-value
SBP, mmHg (IQR) 136 (122-151) 0.77 (0.55-1.08) 0.13 0.77 (0.51-1.07) 0.11
Stroke volume, ml (IQR) 69 (56-85) 1.23 (0.90-1.68) 0.20 1.18 (0.86-1.62) 0.32
Cardiac output, /min (IQR) 5.1 (4.3-6.2) 0.98 (0.70-1.37) 0.91 0.96 (0.69-1.35) 0.82
SPAP, mmHg (IQR) 51 (41-59) 1.68 (1.32-2.14) <0.001 1.51 (1.15-1.98) 0.003
dPAP, mmHg (IQR) 22 (17-26) 1.74 (1.32-2.29) <0.001 1.49 (1.10-2.03) 0.01
mPAP, mmHg (IQR) 33 (27-38) 1.71 (1.30-2.25) <0.001 1.54 (1.13-2.10) 0.006
mRAP, mmHg (IQR) 12 (8-16) 1.68 (1.24-2.28) 0.001 1.60 (1.15-2.22) 0.005
PAWP, mmHg (IQR) 19 (16-23) 1.56 (1.18-2.06) 0.002 1.30 (0.98-1.71) 0.06
PPP, mmHg (IQR) 30 (21-37) 1.55 (1.22-1.97) <0.001 1.41 (1.09-1.82) 0.009
PVR, dynes.sec/cm® (IQR) 190 (144-272) 1.52 (1.16-1.99) 0.002 1.43 (1.05-1.95) 0.023
PAC, ml/mmHg (IQR) 2.4 (1.9-3.1) 0.60 (0.37-0.97) 0.04 0.66 (0.41-1.08) 0.10
TPG, mmHg (IQR) 13 (9-17) 1.52 (1.17-1.97) 0.002 1.47 (1.09-1.98) 0.012
AvDO,, ml O,/ 100ml (IQR) 4.9 (4.3-5.6) 1.24 (0.94-1.63) 0.13 0.97 (0.72-1.30) 0.83

SBP-systolic blood pressure, sPAP-systolic pulmonary artery pressure, dPAP—diastolic PAP, mPAP—mean PAP, mRAP—-mean right atrial pressure,
PAWP—pulmonary artery wedge pressure, PPP- pulmonary pulse pressure, PVR—pulmonary vascular resistance, PAC—pulmonary arterial compliance,
TPG—transpulmonary gradient, SaO, —arterial O, saturation, SvO, —central venous O, saturation, AvDO, —arterio-venous O, difference.

doi:10.1371/journal.pone.0134479.1003

interventricular septum measured by MRI (0.36, P = 0.25), or echocardiography (r = 0.18,
P =0.49). Additionally, we did not detect substantial differences in baseline characteristics
between patients with and without myocardial biopsy (data not shown).

Discussion

The current study demonstrates the importance of right ventricular performance on outcome
in patients with HFpEF. We detected a strong association between right ventricular function as

Fig 2. Left ventricular myocardial biopsies from HFpEF patients. Panel A shows a representative myocardial biopsy from a patient with a normal stroke
volume (70ml) and a small extent of extracellular matrix (12%/mm?). In contrast, panel B shows a representative myocardial biopsy from a patient with a
lower stroke volume (51 ml) and a significant amount of extracellular matrix (57%/mm?). Trichrome stain. Extracellular matrix stains blue-purple or green.

doi:10.1371/journal.pone.0134479.9002
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Fig 3. Correlation between the extent of left ventricular extracellular matrix and invasively measured stroke volume (r =-0.53; p = 0.04). Four
patients with myocardial biopsy were not eligible for CMR study due to pacemakers.

doi:10.1371/journal.pone.0134479.9003

well as pulmonary pressures and hospitalization for heart failure and/or death for cardiac rea-
son. These associations were independent of the utilized method (i.e. echocardiography, CMR
and invasive hemodynamic measurement) and even more pronounced after adjustment for
potential confounders. There was also an association between left ventricular filling pressures
and outcome. Moreover, we detected a significant correlation between the extent of extracellu-
lar matrix obtained by left-sided myocardial biopsy and stroke volume.

HFpEF and Right Ventricular Performance

The fact that right ventricular performance is crucial of prognosis in heart failure has been pre-
viously demonstrated by Ghio et al., who followed 377 heart failure patients with reduced ejec-
tion fraction and identified both sPAP and RV systolic function as independent prognostic
predictors.[15] Furthermore, Burke et al. demonstrated that beyond remodeling of the RV
decreased LV compliance, measured as reduced LV end-diastolic volume at an idealized LV
end-diastolic pressure of 20 mm Hg, was the pathophysiologic marker most predictive of
worse outcomes in HFpEF.[16] More recently, Melenovsky et al. showed that RV dysfunction
was the strongest predictor of death in HFpEF.[5] Mohammed et al. acquired similar results
using semiquantitiative echocardiographic assessment of right ventricular function and the
tricuspid annular plane systolic excursion.[6] In contrast to the aforementioned studies, our
RV functional assessment is not solely based on echocardiography but further confirmed by
CMR and most importantly complemented by the availability of invasive hemodynamic
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measurements. While Lam and co-workers [4] have clearly demonstrated that echo Doppler
estimates of sPAP predict outcome in HFpEF, the anatomical sites involved in pressure eleva-
tions have not been studied. In fact, the differentiation between pre- and postcapillary PH can
only be obtained by RHC. Besides elevations in PAWP, we found that the presence of pulmo-
nary vascular disease as reflected by increased PVR and TPG predicts outcome in HFpEF.

Moreover, recent autopsy studies demonstrated significant cardiac hypertrophy, coronary
microvascular rarefaction and myocardial fibrosis in patients with HFpEF compared to con-
trols.[17] We further extend these previous results by adding information on LV myocardial
structure obtained by myocardial biopsy. We found a strong inverse correlation between the
extent of the left ventricular extracellular matrix and the invasively measured stroke volume. In
fact, structural changes in both heart chambers seem to independently predict outcome: left
ventricular remodeling processes with stiffening, filling impairment and consecutive rise in left
ventricular filling pressures on one hand and right ventricular systolic dysfunction due to an
increased afterload with variable degrees of pulmonary vascular remodeling on the other hand
are major determinants of the clinical course [13]. Thus, estimates of sSPAP by transthoracic
echocardiography together with a visual assessment of the RV may be appropriate to predict
prognosis in HFpEF patients. Interestingly, we did not observe a significant correlation
between LV filling pressures or LV mass and myocardial fibrosis obtained by myocardial
biopsy. This may suggest that myocardial fibrosis although a significant driving force in the
development of HFpEF might not be the sole trigger for an increase in LV filling pressures in
the pathogenesis of HFpEF. Recent data by Zile et al. suggests that myocardial stiffness in
patients with HFpEF not only depends on the extent of extracellular matrix, but also on myo-
cardial titin homeostasis, which might explain our findings [18]. However, our results need
to be interpreted with caution since our number of LV biopsies is rather small and our histol-
ogy-based analysis should be more considered as hypothesis-generating and foster future
investigations.

Among known clinical risk factors for the development of HFpEF, only atrial fibrillation
and COPD were associated with adverse outcome. Zakeri et al. propose that atrial fibrillation
serves as a marker of disease severity in patients with HFpEF and demonstrated a significant
association between atrial fibrillation and exercise capacity [19]. Moreover, atrial fibrillation
has been demonstrated to be a potent risk factor for adverse outcome in a contemporary cohort
of HFpEF patients.[20, 21] Our results confirm previous findings by revealing a significant
association between atrial fibrillation and hospitalization for heart failure and/or death for
cardiac reason. In congruence, left atrial diameter as determined by echocardiography was
identified as a useful imaging parameter of significant predictive value. We further found an
association between BMI and poor outcome, however only borderline statistical significance
was reached. This finding is compatible with previous observations made by Kapoor et al, who
described a U-shaped relationship between obesity and survival in HFpEF patients.[22]
Furthermore, we were able to confirm previous results indicating a significant association
between COPD and outcome in patients with HFpEF in our well-characterized study popula-
tion.[23, 24]

Clinical Implications

Our findings suggest that outcome in patients with HFpEF strongly depends on both the sys-
temic as well as the pulmonary vascular system. Moreover, accumulation of extracellular
matrix in the LV wall with consecutive stiffening and reduction in stroke volume seems to be
the central pathobiological change in HFpEF. Progression of the disease is accompanied by
progressive remodeling of the pulmonary vasculature, increased RV afterload, and finally RV
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failure. Although therapeutic interventions targeting the pulmonary vascular system might be
promising, a more profound understanding of the mechanisms underlying LV and pulmonary
vascular disease in HFpEF and time course of the remodeling processes will be necessary to
develop and apply disease state-specific drugs. Interestingly, recent data by Andersen and
Hwang et al. determined that pulmonary vascular dysfunction in early stage HFPEF is partly
reversible and responsive to B-adrenergic stimulation [25]. This might suggest that the pulmo-
nary vasculature in HFpEF is not fully vasodilated at rest, and that interventions to enhance B-
receptor activation in the pulmonary vasculature may be a therapeutic target. Additionally,
RV-PA coupling was altered together with RV systolic dysfunction, even in the absence of
structural remodeling, providing further support for therapies targeting RV and pulmonary
vascular function as novel approaches to improve outcomes in HFpEF [25].

Study Limitations

One potential limitation of our study is that our data reflect the experience of a single tertiary
care center. Therefore, a center-specific bias cannot be excluded, and all results and conclusions
should be interpreted with caution. However, the major advantages of limiting data collection
to a single center are inclusion of a homogenous patient population, adherence to a consistent
clinical routine, as well as a consistent quality of imaging procedures and right heart catheteri-
zation. Furthermore, our patient population represents a more advanced spectrum of patients
with HFpEF, which is supported by the high prevalence of atrial fibrillation (62% in our cohort
versus 19% in the CHARM HFpEF cohort [26]), the large extent of myocardial fibrosis and rel-
atively high pulmonary pressures. However, the inclusion of patients in more advanced stages
of disease progression might ease the identification of disease specific pathophysiologic
changes since they might appear more pronounced. Furthermore, the small number of events
and the low number of deaths might limit the ability to discern whether the observed factors
are truly independent. Another potential limitation is that myocardial biopsies were only
available in sixteen patients. However, considering the invasive character and the potential
complications of this procedure, the obtained number of histologic samples is still unique in
prospectively enrolled patients complemented by invasive, echocardiographic and CMR mea-
surements. We could not find a correlation between the extent of extracellular matrix and
parameters reflecting LV filling pressures. In addition to structural changes in the LV, patients’
actual volume status is a crucial determinant of filling pressures. We did not systematically
perform bioimpedance measurements to determine fluid status at right heart catheter, which
could have complemented our histologic data on tissue composition and the understanding

of LV hemodynamics. Further, we did not invasively measure LV compliance [27]. Therefore,
the relation between extent of extracellular matrix and LV diastolic distensibilty remains
unknown.

Conclusions

The current study emphasizes the importance of right ventricular function and pulmonary
pressures on outcome in patients with HFpEF providing pathophysiological insights into the
hemodynamic changes in HFpEF. Our results were independent of the imaging method and
complemented by histological data. Furthermore transthoracic echocardiography appears to
be an easily available method to identify high-risk patients in HFpEF.
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