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Abstract

Agri-food is one of the most important sectors of the industry and a major contributor to the
global warming potential in Europe. Sustainability issues pose a huge challenge for this sec-
tor. In this context, a big issue is to be able to predict the multiscale dynamics of those sys-
tems using computing science. A robust predictive mathematical tool is implemented for
this sector and applied to the wine industry being easily able to be generalized to other
applications. Grape berry maturation relies on complex and coupled physicochemical and
biochemical reactions which are climate dependent. Moreover one experiment represents
one year and the climate variability could not be covered exclusively by the experiments.
Consequently, harvest mostly relies on expert predictions. A big challenge for the wine
industry is nevertheless to be able to anticipate the reactions for sustainability purposes.
We propose to implement a decision support system so called FGRAPEDBN able to (1)
capitalize the heterogeneous fragmented knowledge available including data and expertise
and (2) predict the sugar (resp. the acidity) concentrations with a relevant RMSE of 7 g/I
(resp. 0.44 g/l and 0.11 g/kg). FGRAPEDBN is based on a coupling between a probabilistic
graphical approach and a fuzzy expert system.

Nomenclature

Table 1 describes the name and the meaning of variables required in our study.
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Table 1. Name and description of variables.

Name of the Description Unit

variable

T sum of average daily temperatures on a week °C

RH Mean ambient relative humidity on a week %

Ins Insolation duration on a week h

PI Rainfall on a week mm

Tmeanday Mean temperature on a day °C

Tmaxday Maximal temperature by day °C

RHday Mean relative humidity of a day %

Insday Insolation duration on a day h

Plday Rainfall on a day mm

S Sugar concentration. Mean concentration measured on 200 grape g/L
berry

Ac Total acidity. Mean concentration calculated on 200 grape berry g/l Eq

H2S04

doi:10.1371/journal.pone.0134373.t001

Introduction

Agri-food is one of the most important sectors of the industry [1] and an important contribu-
tor to the global warming potential in the world. Sustainability issues pose a huge challenge for
this sector. In this context, a big issue is to be able to predict the multiscale dynamics of those
systems using computing science. Nevertheless mathematicians facing up to several bottle-
necks: the variety of scales, the uncertainties, the out-of-equilibrium states, the complex quanti-
tative and qualitative factors, the availability of data. We propose a methodology to implement
robust predictive mathematical tools applied to this sector. More specifically it is applied to the
wine industry but could be generalized to other agri-food applications. The wine industry
involves a major part of SMEs (small and manufacturing enterprise) that should integrate
innovation and are a strong support from regional and (inter-)national policies. The starting
point of the quality and signature of the wine is the grape berry quality. Our study is focused
on the prediction of the dynamics of the variables involved in the construction of this quality.

Grape berry quality depends on physiological and biochemical reactions taking place essen-
tially from veraison to the harvest of grapes. Grape maturity is described by several variables,
berry size, grape color, concentration of total soluble solids, acidity, phenolic compounds,
anthocyanin contents. These variables guide the harvesting date which influence the quality of
the wines [2,3,4,5]. Climate and weather conditions affect their evolutions [6,7].

In this context, it is relevant to propose decision support systems able to calculate reliable
predictions of berry composition according to the meteorological conditions. Air temperature,
rain fall, relative humidity, sunshine hours are well known to affect the grape ripening, mainly
sugar concentration [8] and total acidity [7]. Anthocyanins level [9] are also important to pre-
dict but not measured by winegrowers inside the vineyard.

The decision of the optimal time to harvest mostly relies on the expert knowledge and the
evaluation of the grape maturity [5]. In a context of optimization and sustainable “consider-
ations” a big challenge for such an agri-food system is to propose robust mathematical predic-
tive tools relying on knowledge integration [10]. Nevertheless it is not an easy task as regards to
this specific domain. Indeed difficulties remain to develop and implement integrative mathe-
matical tools for several reasons detailed in [11]. In the case of grape maturity, above the com-
plexity of the reactions involved, several factors are to be emphasized: Data handling is time
consuming and limited (one year for one experimental condition), available knowledge is
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fundamental to handle but expressed in different forms (equations, expert opinions,

databases. . .), different formats (numeric, symbolic, linguistic. . .) and at different scales
(microbiological, physicochemical, organoleptic. . .). To answer to this problematic, we pro-
pose, in the idea of coupling formalisms [12, 13], a decision support system combining a
dynamic Bayesian network [14] with a fuzzy expert system [15] formalizing the available scien-
tific and practitioners knowledge on the system.

DBNss are an extension of Bayesian networks (BNs) [16,17] that rely on the probabilistic
graphical models where the network structure provides an intuitively appealing interface by
which humans can model highly-interacting sets of variables and provides a qualitative repre-
sentation of knowledge. Uncertainty pertaining to the system is taken into account by quantify-
ing dependence between variables in the form of conditional probabilities using experimental
data available [18].

Fuzzy logic is a convenient mathematical approach to cope with applications where exper-
tise is present [19]. This theory is particularly well adapted for dealing with symbolic data
manipulated by experts [11]. It has been successfully applied for decision support in vine appli-
cations essentially for two purposes. A first category is dedicated to unsupervised clustering
approaches. For example, Urretavizcaya et al., [20] have implemented a fuzzy Cmeans for a
precision viticulture purpose. Post-veraison information is used to define zones within the
vineyard. A zoning procedure is achieved with criteria differentiating « top class » grape zones
and standard ones. Tagarakis et al., [21] have used a fuzzy unsupervised method to delineate
management zones using fuzzy clustering techniques and developing a simplified approach for
the comparison of zone maps. Morari et al., [22] couple geo-electrical sensors and fuzzy clus-
tering approaches to help in the delineation of zones upon the soil constitution.

A second category is about the development of fuzzy expert systems. For example, Fragoulis
et al., [23] have developed a fuzzy expert system based on expert knowledge. It calculates an
Environmental indicator Impact of Organic Viticulture and propose a decision support. Gil
et al., [24] used a linear multiple regression and a fuzzy logic inference model to evaluate the
effects of micrometeorological conditions on pesticide application for two spray qualities (fine
and very fine). None of them propose a mathematical formalism able to exploit the two types
of knowledge available in this domain: data and expertise and cope with their different type of
uncertainties. An interesting study is proposed by Coulon et al., [25] that develop an expert
model for environmental purposes. The aim is to predict the vine vigor level according to the
most influential variables. It is based on a fuzzy expert system set up using data available,
under restrictions proposed by experts. Nevertheless it is developed for classification purposes
and not kinetic reconstruction and prediction.

We propose in this article to develop a decision support tool, based on new trends crossing
over recent developments in computing science and food science. It is based on a coupling
between a dynamic Bayesian network [14] and a fuzzy expert system [15]. The innovation and
interest of the methodology is to be capable of sharing different sources of heterogeneous and
fragmented information. It is done by the way of a coupling between mathematical approaches.
Those approaches are selected upon the format of knowledge available and the advantage of
each method. Dynamic Bayesian networks allow to represent and simulate complex stochastic
dynamical systems. However, this formalism requires substantial knowledge to define the spe-
cific parameters (i.e. conditional probability distributions) which is a clear bottleneck in our
domain. Experiments led along one year provide only one local climatic condition. In parallel,
experts are capable of providing a macroscopic view of the system and expressing it by means
of qualitative heuristics. Those experts have memorized in a symbolic way, the impact of differ-
ent climatic conditions on the grape maturity along years of practice. It can not be directly
used to set the conditional probabilities of the DBNs but can be easily handled using fuzzy
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logic. Once it is formalized in the form of fuzzy rules, the output can be easily projected on a
numeric space using fuzzy membership functions. We thus propose to integrate inside DBN's
the results of the simulations of the fuzzy expert system allowing a coupling between local and
global knowledge. The paper is organized as follows. After a description of the material and
methods, including a presentation of the mathematical concepts underlying the decision sup-
port tool, the decision support system so called FGRAPEDBN is described. Results and their
analysis are presented in the next to finish by a conclusion and future works.

Materials and Methods
Experimental data

The study was conducted in 2006, 2007, 2008 and 2009 during the four or five weeks before the
haverst on 28 parcels in different locations of Loire Valley (14 in Tours region and 14 in Angers
region), the authorities IFV Tours and IFV Angers, Institut Frangais de la Vigne et du vin—
Tours and Angers and the Chambre d’Agriculture d’Indre et Loire (represent the union of
wine producers for the Loire Valley), gave us the necessary permissions and authorizations for
each location. A whole of 456 points are treated including 4 or 5 points by kinetics for each par-
cel. During 2006, only the parcels of Tours region were included in the study. Temperature
(°C), rainfall (mm) and relative humidity (%) were supplied by Meteo France meteorological
stations located near and/or on the parcels. Solar radiation (in hours) was only given by one
meteorological station located at Montreuil-Bellay, in the center of the area of study.

Each week, two lots of two-hundred berries of Cabernet Franc, with pedicels, were randomly
picked up from each parcel at each ripening stage according to the method of Vine and Wine
French Institute (ITV-France) [26] in order to limit the effects of the grape heterogeneity.

With a lot of two-hundred berries of each sampling, a crushing was realized with a blender,
the must was then filtered through a Whatman paper filter. Reducing sugar concentration (g/1)
was measured with a refractometer; total acidity (g/l Eq H,SO,) by the titration method.

Knowledge handling

Knowledge has been formalized on the basis of a synthesis made by the scientists and the
industry (Syndicats of Loire wine who have supported this study) in previous work and reports.
Two types of experts were involved for this synthesis: 4 scientists and 5 winegrowers working
on the two areas considered in this study.

Models based on Gaussian process

Non parametric approaches relying on the Gaussian process such that Gaussian process latent
variable, (swithching)-Gaussian process dynamic model are efficient tool for solving regression
problem and are widely used in speech recognition, motion tracking efc where data are sub-
stantial and trajectories are well known [27, 28]. Assuming that an output Y follows a Gaussian
process GP(u,R), the idea is to learn a mapping y = f(x) from a training sample {X,Y} = {x;,

Yili - 1.. ~ by maximizing the conditional probability:

Argmax, ,P(Y,, ..., Y |X,0,B) = Argmax, N(Y,, ..., Yy |p,(X), Ry (X, X)) (1)
where N(Y|us(X),Rg(X,X)) is a multivariate Gaussian distribution with a mean function y(X)

which has to be defined according to the available knowledge (e.g. linear, non linear function,
moving average . . .) and a covariance matrix Rg(X,X) whose entries my be given by the kernel
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function:

R,(x, %) = Oy sl 2)
Once the parameters learnt, given a new observation x*, the prediction of y* is estimated by
means of the distribution [27]

P()/*|x*, Y7X767ﬁ) :N(M(x*)vaQ(x*)) (3)
where

u(x) = (X)) + [Y =y (X)'Ry(X, X) "Ry (", X) (4)

o(x') = R,(x',x) — Ry(x', X)'R,(X, X) "R,(x', X) (5)

This approach may be extended for dynamic model by puting Y = [y,,. . ,yn] and X =
[Yl)- . -)YN—I]'

Dynamic Bayesian networks

A Bayesian Network [16,17] is a graph-based model of a joint multivariate probability distribu-
tion that captures properties of conditional independence between variables. On one hand, it is
a graphical representation of the joint probability distribution and on the other hand, it
encodes independences between variables. Formally, a Bayesian network is a directed acyclic
graph (DAG) whose nodes represent variables, and whose missing arcs encode conditional
independences between the variables. This graph is called the structure of the network and the
nodes containing probabilistic information are called the parameters of the network. Dynamic
Bayesian networks (DBN5s) are an extension of Bayesian networks [14] in which nodes X(f) =
(X1(8),. . . X,(1)), representing discrete random variables, are indexed by time t and provide a
compact representation of the joint probability distribution P for a finite time interval [1,7].
That means that, the joint probability distribution P may be written as the product of the local
probability distribution of each node and its parents as follows:

P(X(1), -+, X(7)) = [T T PG (DI U(D)) (6)

where Uj(.) denotes the set of parents of a node X;(.) and P(X,(.)|Uy(.)) denotes the conditional
probability function associated with the random variable X;(.) given Uj(.). X(¢) is called a
“slice” and represents the set of all variables indexed by the same time t. This factorization of
the joint probability distribution, based on graphical information, facilitates the representation
and use of large models. It represents the beliefs about possible trajectories of the dynamic pro-
cess. DBNs assume the first-order Markov property which means that the parents of a variable
in time slice t must occur in either slice #-1 or t. Moreover, the conditional probabilities are
time-invariant (first order homogeneous Markov property) meaning that P(X(£)|U(¢)) = P(X(2)|
U(2)) for all ¢ in [1, o]. Hence to specify a DBN, we need to define the intra-slice topology
(within a time slice), the inter-slice topology (between two time slices), as well as the parame-
ters (i.e. conditional probability functions) for the first two time slices. The structure of a
model can be explicitly built on the basis of knowledge available in the literature and parame-
ters can be automatically learned without a priori knowledge on the basis of a dataset (known
as parameter learning).

The techniques for learning DBNs are generally extensions of the techniques for learning
BNs. Different methods exist to learn about the structure or the parameters from substantial
and/or incomplete data [29, 30]. In our work, the topology of graph is obtained from scientific
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knowledge and the most commonly used and simplest method to estimate parameters consist
in compute the occurrence rate in the training data.

The use of such DBNs consists in “query” expressed as conditional probabilities. The most
common task we wish to solve is to estimate the marginal probabilities known as Bayesian
inference:

P(X(1)[O(t) = o(t), V' €[1,1]) (7)

where X is a set of query variables, and O is a set of evidence variables (for example, in food
processing, X might be the variables representing the physicochemical properties of a product
and O might be the variables representing the observed environmental conditions). In general,
DBN inference is performed using recursive operators and Bayes’ theorem (given a way of cal-
culating P(X(#)|O(t")) from the knowledge of P(X(#)|O(t)), [14]) that update the belief state of
the DBN as new observations become available [14].

Fuzzy logic theory

Fuzzy logic was proposed by Zadeh in 1965 [31]. It is an extension of the set theory by the
replacement of the characteristic function of a set by a membership function whose values
range from 0 to 1. Soft transitions between sets are thus obtained and allow the representation
of gradual concepts as well as the representation and the inference of linguistic rules stemming
from expertise. It is particularly adapted for taking human linguistic and reasoning processing
into account [32, 33]. Fuzzy models can be written in an easy form to understand linguistic
rules. Those rules link at a symbolic level the inputs to the outputs of a physical system [11].
For example a rule like: “a high mean day temperature combined with other factors potentially
increases the sugar concentration in a grape berry” can be processed by such a system. Simi-
larly, an essential fuzzy notion is the fuzzy membership function. A fuzzy set E in universe of
discourse U can be defined by Eq 8:

E = {(upg(w)\u € U}

b U= [0.1] ®

yg is thus the membership function of set E. It represents the set of membership grades pz(u)
of a numerical variable u mapped to a fuzzy set E. It allows the linking of real numerical vari-
able to a given linguistic variable. The value of the membership grade is a real number within
the interval [0,1]. For example Fig 1a represents a projection of the mean day temperature mea-
surements in °C versus the linguistic term quantifying the impact of it as regards to the grape
maturity through symbols “low”, “middle” and “high”.

This notion gives the way to link a numeric variable to a linguistic variable often manipu-
lated by the operators. In fact fuzzy memberships are used to describe how much an object
belongs to a linguistic notion. Going back to Fig 1a, a mean day temperature of 10.5°C belongs
to “low” with a membership degree of 0.5 and to “middle” with a membership degree of 0.5. It
means that its impact on the maturation will be mitigated.

0 (x<a)
U (g, <x<ay)
4H =
n =4 2 9)
- (az =x< a3)
B3 — A
0 (a, <x)
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n

LA ;
«low»  «middle » « high » « middle »
|
o >
a2
al=7 a2=14 a3=21 Mean day i - B o Mean day
temperature (°C) temperature (°C)
-1b-

-la-

Fig 1. Fuzzy linguistic functions. -1a- example of the linguistic variable of a mean day temperature defined on triangular functions; -1b-An example of a

trapezoidal function for the symbol “middle”.

doi:10.1371/journal.pone.0134373.g001

Membership functions can be expressed through various representations. The representa-
tions most widely used are triangular (Eq 9) for a given triplet series of parameters a;, a,, as,
represented in Fig 1a for the mean day temperature quantification. Trapezoidal functions using
four parameters are also regularly used defined then with 4 parameters a, to a, (see Fig 1b).
Rules are computed using the direct application of Zadeh’s compositional rule of inference pre-
sented in Perrot and Baudrit [34]. Triangular norms and conorms manipulated in this model
are respectively the bounded sum and the product. An activated grade oy is calculated for each

rule R; of the knowledge basis using this compositional rule. Suppose for example rules R, j = 1
to n with n the total number of rules, involving 2 variables A and B (for example A can be the
mean day temperature in °C and B the day rainfall level in mm). Each variable is associated to

a linguistic notion i, (for example “high”) for A and i, for B (for example “low”). (g, (A))

noted a, and (i, (B)) noted b, are the membership degrees to those symbols. The activated

grade for a rule R; involving i; and i, for A and B (for example if A is i; and B is i, then the

class is Cj for the rule j and the output k), is T(a; , b, ) with T the triangular conorm. oy i then

equal to a, X b, for a product selected as Tconorm. Each rule R; is associated by the experts to

a class for each output k (for example a class of impact on the total sugar concentration upon a
given mean day temperature and a given day rainfall level). The equation applied to calculate
the resulting impact Pclass for each output Cy. (pclass) for k = 1...m crossing over all the rules

is then (Eq 10):

where Py is the conclusion of the rule j for the class C and k = 1 to m, m equal to 2 in our

Pclass(C,) =

o
Zj K

paper (sugar concentration and total acidity).

E Op X P.
jRj Jjk

PLOS ONE | DOI:10.1371/journal.pone.0134373 July 31,2015

7/21



@’PLOS ‘ ONE

A Decision Support System for the Grape Berry Maturity

Integrate fuzzy logic inside Dynamic Bayesian network
Assume that X(t) are all categorical variables and let Glfjk be the probability that Xi(t) = x, given

that its parents Uj(f) have possible values x; (corresponding itself to a vector where j represents
the vector of parents of i), i.e.

i=1,...,n
0, = P(X,(t) = x|U(t) = x) for { j=1,....c (11)
=1,...,r

where 7; is the number of values that node i can take and ; is the number of distinct configura-
tions of Uj(t). As DBNs assume the first-order homogeneous Markov property (i.e. P(X;(t+1) =
x| Ui(t+1) = x) = P(X(t) = x| U(t) = x;) leading to ijk = 0y for all t€[1,7]. The used method

ji» - - -+ 05, ) consists in using the conjugate

to estimate and update DBN parameters 0, = (0
prior multinomial probability distributions known as Dirichlet distributions 6;; ~ Dir

(oz,.j17 ey ocl.jri) [29,30]. If we have an available experimental database in which event (X;(f) = x|
Ui(t) = x;) occurs Ny times, the posterior variable (6;;|database) then follows a Dirichlet distri-
bution (6;|database) ~Dir(N;; + o, ..., N;, + o;, ) and the expected a posteriori gives as esti-
mation:

0. — N + o
ijk T
2o Ny + 0t

(12)

where a;j = 1/r; inducing an uniform prior distribution over 6;; allowing to take into account
the lack of data. Parameters may be then updated with a simulated database stemming from
the results of the previous fuzzy model simulation, i.e (see [18]):

S /
9 N, i 1 %

= 13
" 2N, it “:jk (13)

! .
where o, corresponds to the previous sum of Nj-+ax and Ny, corresponds to the number of

occurrences inside simulated database.

Validation of the decision support system

A cross-validation methodology is achieved to validate the decision support system. The vali-
dation of the model is based on a 10-fold cross-validation [35]. The set of all parcels for the
four vintages from 2006 to 2009 has been randomly partitioned into ten equal size subsamples.
From the ten subsamples, a subsample is retained as the validation data for testing the model,
and the remaining nine subsamples are used for the parameter learning of DBN. This process-
ing is then repeated ten times.
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el e
@ ' PLOS ‘ ONE A Decision Support System for the Grape Berry Maturity

Validation of the model is achieved using the RMSE (Root Mean Square Error calculus), Eq
14. and the correlation coefficient R Eq 15.

i

1 ‘
RMSE(X) = [ (xmodel — yoxperiment 2 14
N &
i=1

E (x;nodel _ xiexperiment)z

x€X

Z(X o xfxpcriment)z

x€X

R=1-

(15)

The maximal error of prediction for the sugar concentration is fixed at 8.5 g/L by experts,
equivalent to an error of 7.5% on the total possible variation (126 to 139 g/L). It is indeed
directly linked to the alcoholic degree of the wine legally controlled (8.5 g/L is equivalent to 0.5
alcoholic degree). The acceptable error is also fixed by experts to 7.5% of the maximum scale
deviation for the others outputs. It is equivalent to 0.41g/L for the acid concentration.

The decision support system for grape berry maturity prediction

Two models are developed and coupled to integrate the maximum of knowledge available. A
first expert model so called FGRAPE formalized the expert memory of what happens during
the ten past years and its consequences on the grape berry maturity kinetics. It is then coupled
to a dynamic Bayesian network (DBN) expressing the dynamic of the system on the basis of
conditional laws extracted from the data basis representing 4 years of climatic conditions. DBN
parameters are updated using the results of simulation of FGRAPE. It is achieved using Eqs 12
and 13 presented above. It leads to the decision support tool proposed in this paper and so
called FGRAPEDBN.

Gaussian and DBN model

The modelling has been done for the two physico-chemical indicators of maturation namely
sugar, total acidity measured every week by the winegrowers. The retained environmental vari-
ables are temperature (T), sun exposure (Ins), relative humidity (RH), pluviometry (P1). The
aim is to develop a mathematical model capable of describing the behavior of sugar, total acid-
ity concentration over the maturation step regarding environmental conditions according to
available knowledge.

In the formalism of Gaussian process, we assume that the couple (Acg;1, St41) ~ GP(pp(Xo),
Rp(XX()) where X = (Ac,,S,, T, Ins,RH;,Ply). According to Eq 1 and available data, the objective
is to maximize the conditional probability

Argmaxo,ﬁP( Y|X,0,p)
— Argmax, N (¥, |1, (X), Ry(X, X)) x N (¥, (X), R,(X. X)) (16)

where Y; = [Ac,,.., Acyl, Y = [S,,.., S, and X is a 6xXN-1 matrix. Mean functions ps(X) will be
estimated from training data [mAct,S,, T\, Ins,RH,,Pl;] where m, corresponds to a moving
average over Y. (i.e m has a form equal to m = 1/NxXy Y, ).

Regarding the formalism of DBN Fig 2 displays the structure of the model making it possi-
ble to represent the coupled dynamics of maturity indicators [Ac] and [S] influenced by envi-
ronmental climatic conditions HR, T, Pl and Ins. Table 2 displays the ranges of values of each
variables.
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[Ac(n]

o
> A Sew

[S(]

Time slice ¢ Time slice ¢ +1

Fig 2. Dynamic Bayesian network representing the coupled dynamics of maturity indicators [Ac]
(total acidity) and [S] (sugar) influenced by environmental climatic conditions RH, T, Pland Ins A
denotes variation.

doi:10.1371/journal.pone.0134373.9002

FGRAPE

FGRAPE represents the technological knowledge about the macroscopic behavior of the grape
wine memorized by the experts during their years of practice. It is only built on what they have
observed and measured: climate, sugar mean concentration (S) and total acidity (Ac). Fuzzy
logic is used for expert knowledge computation. Fig 3 displays the inputs/outputs of the system.

Table 2. Lower and upper bounds of variables.

Variable Bounds
T (F) [60, 175]
Ac (g/L) [2.9, 8.4]
Ins (h) [0,80]

HR (%) [50, 100]
Pl (mm) [0,100]

S (g/L) [106, 237]
Ag (g/L) by week [-14, 36]
Apc (g/L) by week [-2.2,0.4]

doi:10.1371/journal.pone.0134373.t002
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Tmeanday

Tmaxday

Insday

Plday

RHday

Fig 3. Inputs/outputs of FGRAPE.

doi:10.1371/journal.pone.0134373.9003

Index (class) of the day for
Sugar prediction

FGRAPE
43 fuzzy rules

Index (class) of the day
for Acidity prediction

The output is expresses in terms of four indexes of day for sugar and acidity predictions, so a
total of 8 indexes for the two outputs predicted upon the climatic conditions.

Table 3 presents the experts explanation of those indexes. It involves five inputs combina-
tions: Tmeanday, Tmaxday, Insday, RHday and Plday. Table 4 illustrates combinations driving
the outputs towards an index of day equal to 2. The parameters defining the fuzzy membership
functions of each input are presented Table 5. 43 fuzzy rules are defined aggregating the
3x3x3x2x4 = 216 possibilities. For example a day with a Tmeanday middle, a Tmaxday low,
Plday low and Insday low, whatever RHday takes a value of 1 for the index while a day with a
Tmeanday middle, a Tmaxday low, Plday low, Insday middle and a low RHday takes a value of
2. An example of composition is detailed in Table 4.

The resulting output calculated for a week by FGRAPE is computed Eq 17.

Output,(week,) = Output,(week, ) + k x Z Index,,, . FGRAPE(day) (17)

outputi
j=1,7TonAt

Where Z Index,,,,, ,FGRAPE(day) is the sum on the 7 days contained in the week t of the

N outputi
values of the index predicted day by day by the fuzzy rules of FGRAPE for each output i (sugar
or acidity) and k is a constant adjustment parameter fixed for each year based on expert criteria
about soil considerations and global climatic impacts (equal to 0.8 for 2006, 1 for 2007, 0.9 for
2008 and 0.7 for 2009).
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Table 3. Description of the indexes related to day climatic conditions for the two outputs of FGRAPE: sugar concentration and total acidity.

Index Sugar evolution Description for the sugar Acidity evolution  Description for the acidity

levels per day (g/L) per day (g/L)

0 -1 Bad climatic conditions. Generally a high +0.3 Bad climatic conditions for the maturation.
pluviometry with a dilution effect in the berries Not enough water

1 +1 Not favorable climatic conditions. Limiting conditions 0 Not favorable climatic conditions. Limiting
for one input or a combination of inputs. conditions for one input or a combination of

inputs.

2 +3 Standard day for the region. -0.2 Standard day for the region.

3 +5 Exceptional day for the grape maturity. High -0.4 Exceptional day for the grape maturity. High
increase of sugar. It can be induced by a consumption of malic acid or dilution
concentration phenomenon phenomenon

doi:10.1371/journal.pone.0134373.t003

Table 4. Example extract for 6 rules of FGRAPE driving towards a day index of a value 2.

Rule Tmeanday Tmaxday Insday Plday RHday

1 middle low middle low low

2 middle low high low Low or middle or high

3 middle low middle middle low

4 middle low high middle Low or middle or high

5 middle middle middle low Low or middle or high

6 middle middle high low middle

doi:10.1371/journal.pone.0134373.t004

A coupling between DBN and fuzzy logic: FGRAPEDBN

DBNs are very useful when few things are known about the phenomena of system but they
need substantial database to estimate parameters. In our application, this database is really
hard to acquire (1 year, 1 kinetic) which is generally the case in our domain. Fuzzy logic is then
used to translate another source of knowledge, the expert knowledge expressed in the form of
qualitative heuristics, into a data basis directly usable by the DBN. FGRAPEDBN represents
the scientific knowledge about the principal conditional links that can be established between
the grape maturity indexes studied and the climate conditions.

The prediction of the decision support tool starts by an initialization of S and Ac on the
basis of measurements achieved during the first week of the maturation, followed by simula-
tions week by week of the dynamic Bayesian network based on predictions of the outputs for
the week-1 (see Fig 4).

On the basis of the conditional probabilities learnt using the data basis presented in Eq 12,
FGRAPE is used to update the parameters of the DBN model upon a methodology proposed in

Table 5. Fuzzy membership parameters of FGRAPE.

Variable Linguistic variables Parameters

Tmeanday « low »; « middle »; « high » (-00, 7, 13]; [7, 13, 15, 21]; [15, 21, +0)

Tmaxday  «low »; « middle »; « high » (-o0, 26, 30]; [26, 30, 32, 35]; [32, 35, +0)

Insday « low »; « middle »; « high » (-00, 4.5, 5.5]; [4.5, 5.5, 7.5, 8.5]; [7.5, 8.5, +00)

RHday « low »; « high » (-00, 70]; [85, +00)

Plday « low »; « middleminus »; « middleplus », « (-0, 4, 6]; [4, 6,13, 17], [13, 17, 25, 35]; [25,
high » 35, +00)

doi:10.1371/journal.pone.0134373.t005
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Fig 4. diagram of FGRAPDBN prediction.
doi:10.1371/journal.pone.0134373.9g004

Eq 13. For example Fig 5 displays the occurrences learnt by the DBN for the sugar concentra-
tion. If around 80 samples lead to a sugar concentration of 184-192 g/L, far less samples have
been learnt for lower sugar concentrations on the four years of observations included in the
data basis. The aim is the enrichment of the observations by a parameter upgrading of DBN

20 40 60 80

— e — i [

120-128 136-144 152160 168-176 184-192 200-208 216-224 232-240
Sugar

Occurences learnt in the data basis
0
|

Fig 5. Occurrences of sugar found in the data basis (4 years) and learnt by the DBN over the whole duration of the maturation experiments.

doi:10.1371/journal.pone.0134373.9005
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Table of
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Fig 6. Model coupling diagram.

doi:10.1371/journal.pone.0134373.g006

using FGRAPE. The final purpose is to propose a robust decision support tool able to cover a
large spectrum of climate conditions.

100 different random configurations are generated and predictions of FGRAPE are used to
upgrade the DBN parameters (Fig 6). Climate conditions for one day are approximated on the
basis of the conditions measured for one week divided by 7. Tmaxday is also estimated by add-
ing an aleatory increment to Tmean selected in the range [Tmean, Tmax] on the selected week.
An example of upgrade is presented in Fig 7 where equiprobability is upgraded by results pro-

posed by FGRAPE. It is for conditions never encountered in the data basis (sugar(¢-1) low or
high and P1 high).
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Fig 7. An example of knowledge integration through parameters updating using FGRAPE predictions.
An equiprobability for high conditions of rainfall has been replaced by a higher probability for low
concentration of sugar when rainfall is high (0.8 low and 0.2 high replace 0.5 low and 0.5 high before update).

doi:10.1371/journal.pone.0134373.g007

Results
DBN predictions

The aim is to test the representative and predictive character of the model. The mean value
— X has been chosen as the post-processing in order to predict final results, i.e:

X(t) =X xP(X(t) = x|{O(t') = o(t), V¥ € [1,1]}) (18)

where P(X(t) = x[{O(t') = o(t'),Vt'€[1,7]}) are marginal probabilities, ¢ is on the order of week, X
is total acidity (resp.sugar) and Ac(1),S(1) are initial concentrations;, O(t) = {HR(¢),PI(t),Ins(t),
T()}, t€[1,7] are observed environmental conditions from time 1 to 1. All DBN parameters are
initialized and updated by means of Eq 12, from an experimental database containing the mon-
itoring of maturation from 2006 to 2009 on 26 parcels. Model simulations may then be
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Table 6. Root mean square error (RMSE) relative to variables total acidity and sugar concentrations
measuring the differences between values predicted by the dynamic Bayesian network (DBN), Gauss-
ian process model (GP) and the raw measurements.

Error Measure Sugar (g/L) Total acidity (g/L)
RMSE (DBN) 7,9 g/L 0,48 g/L
RMSE (GP) 10 g/L 1g/L

doi:10.1371/journal.pone.0134373.t006

compared to sugar and total acidity concentrations measured inside berry grapes over the mat-
uration period for different parcels and different vintages.

The validation of model is based on a 10-fold cross-validation. A good root mean square
error (see Table 6) is obtained for total acidity and sugar concentration that shows the accuracy
of the model.

In order to compare our approach with the results of the Gaussian process model, we have
estimated the hyper parameters (3,0) according to Eq 16 leading to obtain unsatisfying predic-
tions (see RMSE (GP) in Table 6). The inaccuracy of gaussian process model may stem from
several reasons:

1. the assumption of the normality of studied processes,
2. the choice of the covariance matrix R,
3. the objective function is non-convex being able to lead to local minima in Eq 16

The formalism of Dynamic Bayesian Networks permits to relax these constraints.

FGRAPE predictions

Before coupling the two models, the relevance of FGRAPE was tested. Table 7 presents the
results of simulations and Fig 8 an example of errors for the sugar predictions on one appella-
tion area.

It shows a good relevance of the expert rules computation applied on the years studied in
the data basis even if RMSE for those specific years are slightly above the limit fixed for Ac pre-
dictions (cf. cross validation section). It can be explained by a generic knowledge covering a
large spectrum of climatic conditions (R2 relatively good) with a counterpart of a loss in accu-
racy for specific conditions (see for example points for the Tour region in Fig 8 with errors
greater than 8.5 g/1). It nevertheless validates the approach. Moreover this macroscopic model
can be generalized to broader climate variations than those registered in the data basis. For
these reasons, it has been used to complete the conditional laws set up in FGRAPEDBN only
based on the memory of four years.

Decision support tool FGRAPEDBN predictions

Predictions of FGRAPEDBN are presented in Table 8. Results of simulation are in good ade-
quacy with the observations, with a RMSE below or near the sensitivity threshold fixed for
sugar and acidity prediction, respectively 8.5 g/L and 0.41 g/L.

Table 7. Results of prediction of FGRAPE.

Error Measure Sugar (g/L) Total Acidity (g/L)
R? 0.88 0.74
RMSE 6.11 0.55

doi:10.1371/journal.pone.0134373.t007
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Fig 8. Scatter plot of the errors of prediction of FGRAPE for the data of the Tours appellation.

doi:10.1371/journal.pone.0134373.9008

Results are in accordance with the reality. It can be depicted in Fig 9 for four dynamics of S
and Ac on 2 areas and two years and in Table 6 for the global results of validation. Indeed a
good prediction is observed for the experimental kinetics all along the weeks. Quantitative
errors are very low for the sugar with more significant ones for Ac, for example on the third
week for RAH. It is also interesting to notice the difference of dynamics according to the differ-
ent years for a same area and the different dynamics for two areas during the same year which
are globally well reproduced trough the FGRAPEDBN predictions. For example in 2009 the Ac
evolution in the area CHAL starts at 5.3 g/L by comparison to an Ac for the RAH area which
starts at 6 g/L. Moreover the slope in the two first weeks is divided by two for the CHAL parcel.

Discussion

Fig 10 depicts the value added of our approach of knowledge integration as regards to the
results reached for example for the total acid prediction. After coupling, results are globally
more correlated to the experiments with a scatter plot more compact around the correlation
line. The RMSE for Sugar predictions, is 7.9g/1 before coupling (prediction of the DBN alone)
and 7g/1 after coupling. It means that the coupling between the FGRAPE model and the DBN
model well improves the final model. Even if the RMSE of sugar concentration resulting from
the FGRAPE model seems to be better than the DBN’s one (6.11g/1 to be compare to 7g/1), the
FGRAPE model predictions of the total acid concentrations along time are lower than the
DBN model predictions and do not allow to include further, variables that could be not mea-
sured by the experts, for example anthocyanins. Moreover the extreme values are better evalu-
ated and some important errors are avoided which ensures more robust predictions. Thus for

Table 8. decision help tool FGRAPEDBN: results of validation.

Error measure Sugar (g/L) Total Acidity (g/L)
Maximal deviation 148-239 2,9-7,5

RMSE 7,0 0,44

R? 0,82 0,77

doi:10.1371/journal.pone.0134373.t008
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Fig 9. Prediction of FGRAPEDBN for two parcels CHAL and RAH during the whole maturation duration for two years 2008 and 2009 for sugar and

Ac.

doi:10.1371/journal.pone.0134373.9009

the Ac predictions the errors above 1 g/L are reduced from 4% to 2%. Same results are reached

for the sugar predictions. This is of crucial importance if we want to propose a robust decision

support system able to accompany the decision even if climatic conditions encountered are not
those capitalized in the data basis.

Our aim is the prediction of the dynamics of the whole system, including the sugar and the
total acid evolution over time. With this in mind, the formalism of DBN presents a very rele-
vant platform, a kind of unifying framework to integrate multi-sources/scales of heterogeneous
knowledge. That means that the concept of DBN's will allow to add new dimensions of repre-
sentation as for instance grapes sensory properties linked to biophysical dynamics. Neverthe-
less, a DBN used alone, would have not predicted with a good accuracy the whole system as
regards to the data available. In this sense, the integration of FGRAPE inside DBN implement-
ing FGRAPEDBN, thus improves the RMSE of the whole coupled system and is a relevant way
to reduce the uncertainty by the way of an integration of qualitative expert knowledge.

Parameter learning in FGRAPEDBN, for a known network structure, performs in polyno-
mial time. However Inference in a dynamic Bayesian networks (see Eqs 7 and 15) is NP-hard
[14]. The computational complexity of FGRAPEDBN does not stem from our methodology
but from the chosen formalism of representation namely DBNs. Moreover, this coupling
approach allows to reduce the uncertainty on the system by knowledge integration.
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Fig 10. Scatter plot of simulations versus experiments for the maturation predictions before coupling—a-and after—b-for Ac.

doi:10.1371/journal.pone.0134373.9010

Conclusion and Future Works

We have presented a way to build a robust decision help tool for grape maturity prediction.
The originality is to associate experts' statements to a base mathematics constituted by the data
of maturity of grapes. A coupling of two mathematical formalisms, fuzzy logic and dynamic
Bayesian networks, is proposed and ensures this knowledge integration. Based on this system,
software has been proposed and was currently used on the spot during last experimentation
campaign. Further studies will focus on the generalization properties of such an approach.

Acknowledgments

We would like to thanks all the experts and winegrowers of Tour and Angers who have partici-
pated to this adventure. We also thanks InterLoire, the Institut Francais de la Vigne et du vin—
IFV Tours, the Institut Francais de la Vigne et du vin—IFV Angers, the Chambre d’Agriculture
d’Indre et Loire—Groupement de Développement Viti-Vinicole (GDVV), the Cellule Terroir
Viticole, the INRA Angers—Unité Vigne et Vin, the ESA Angers—Laboratoire GRAPPE.

Author Contributions

Conceived and designed the experiments: LG DP. Performed the experiments: LG. Analyzed
the data: NP CB JMB PA EG GB DP. Wrote the paper: NP CB PA GB DP. Software develop-
ment: HG BP.

References

1. Lehmann R, Reiche R., Schiefer G., (2012). Future internet and the agri-food sector: State-of-the-art in
literature and research. Computers and Electronics in Agriculture 89, 158—174.

PLOS ONE | DOI:10.1371/journal.pone.0134373 July 31,2015

19/21



@’PLOS ‘ ONE

A Decision Support System for the Grape Berry Maturity

10.

11.

12

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

24.

25.

26.

Pérez-Magarino S, Gonzales-San José M.L., 2006, Polyphenol and colour variability of red wines from
grapes harvested at different ripeness grade, Food Chemistry, 96, 197-208.

Champagnol F., 1984. Eléments de physiologie de la vigne et de viticulture générale. Imprimerie
Dehan, 34000 Montpellier. ISBN 2-9500614-0-0—351pp.

Huglin P., 1978. Nouveau mode d’évaluation des possibilités héliothermiques d’un milieu viticole.
Compte rendu de I'Académie d’Agriculture, 1117—1126.

Coombe B.G., McCarthy M.G., 2000. Dynamics of grape berry growth and physiology of ripening. Aus-
tralian Journal of Grape and Wine Research. 6: 131-135.

Van Leeuwen C., Friant P., Choné X., Tregoat O, Kondouras S, Dubourdieu D., 2004, Influence of cli-
mat, soil, and cultivar on terroir, American Journal of Enology and Viticulture, 55, 207-207.

Barbeau G., Bournand S., Champenois R., Bouvet M.H., Blin A., Cosneau M., 2003, Comportement de
quatre cépages rouges en fonction des variables climatiques, Journal International des Sciences de la
vigne et du vins, 37 (4), 199-211.

Riou C., 1994. Le déterminisme climatique de la maturation du raisin: application au zonage de la
teneur en sucre dans la Communauté Européenne. Commission Européenne, Luxembourg, 322p

Kobayashi H, Suzuki S., Takayanagi T., 2011, Correlations between climatic conditions and berry com-
position of "Koshu" (Vitis vinifera) grape in Japan, 2011, Journal of Japanese Society of Horticultural
Science, 80 (3), 255—267.

Van Mil H.G.J., Foegeding E.A., Windhab E.J., Perrot N., van der Linden E. 2014. A complex system
approach to address world challenges in food and agriculture. 40, 20-32.

Perrot N., Trelea l. C., Baudrit C., Trystram G., Bourgine P., 2011. Modelling and analysis of complex
food systems: State of the art and new trends. Trends in Food Science & Technology 22 (6), 304-314.

Juang C. F., "A TSK-type recurrent fuzzy network for dynamic systems processing by neural network
and genetic algorithms." IEEE Trans on Fuzzy Systems, vol.10, no.2,pp.155-170,2002.

Jiang Y, Chung F L, Ishibuchi H,et al, "Multitask TSK Fuzzy System Modeling by Mining Intertask Com-
mon Hidden Structure", IEEE Transactions on Cybernetics, vol.45, no.3,pp.548-561, 2015.

Murphy, K.P. (2002) Dynamic Bayesian Networks: Representation, Inference and learning. Ph.D. the-
sis, University of California, Berkeley.

Didier Dubois, Henri Prade, (1980) Fuzzy Sets & Systems: Theory and Applications, Academic Press
(APNet), Vol. V.144, 393 p.

Jensen Finn V. and Nielsen Thomas D.. (2010) Bayesian Networks and Decision Graphs, Springer-
Verlag. 464p.

Pearl J. (1988). Probabilistic Reasoning in Intelligent systems: Networks of Plausible Inference. Mor-
gan Kaufmann, San Diego. 552p.

Baudrit C., Wuillemin P.H., Perrot. (2013). Parameter elicitation in probabilistic graphical models for
modelling multi-scale food complex systems" Journal of food engineering, 115(1), 1-10.

Perrot N., loannou I., Allais I, Curt C., Hossenlopp H., Trystram G. 2006. Fuzzy concepts applied to
food product quality control: A review. Fuzzy Sets and systems. 157, 1145-1154.

Urretavizcaya |., Santesteban L. G., Tisseyre B., Guillaume S., Miranda C., Royo J. B. 2014. Oenologi-
cal significance of vineyard management zones delineated using early grape sampling. Precision
Agric. 14:18-39,

Tagarakis A., Liakos V., Fountas S., Koundouras S., Gemtos T. A. 2013. Management zones delinea-
tion using fuzzy clustering techniques in grapevines. Precision Agric. 14:18-39. doi: 10.1007/s11119-
012-9275-4

Morari F, Castrignano A., Pagliarin C. 2009. Application of multivariate geostatistics in delineating man-
agement zones within a gravelly vineyard using geo-electrical sensors. Computers and Electronics in
Agriculture. 68, 97-107.

Fragoulis G., Trevisan M., Di Guardo A., Sorce A., Van Der Meer M., Weibel et al. 2009. Development
of a Management Tool to Indicate the Environmental Impact of Organic Viticulture J. Environ. Qual.
38:826-835. doi: 10.2134/jeq2008.0182 PMID: 19244505

Gil Y., Sinfort C., Guillaume S., Brunet Y., Palagos B. Influence of micrometeorological factors on pesti-
cide loss to the air during vine spraying: Data analysis with statistical and fuzzy inference models. Bio-
systems Engineering. 100 184-197.

Coulon-Leroy C. Charnomordic B., Thiollet-Scholtus M., Guillaume S. 2013. Imperfect knowledge and
data-based approach to model a complex agronomic feature—Application to vine vigor. Computers
and Electronics in Agriculture. 99, 135—145.

Cayla L., Cottereau P., and Renard R. 2002. Estimation de la maturité polyphénolique des raisins
rouges par la méthode ITV Standard. Rev. Frang.Oenol. 193, 10-16.

PLOS ONE | DOI:10.1371/journal.pone.0134373 July 31,2015 20/21


http://dx.doi.org/10.1007/s11119-012-9275-4
http://dx.doi.org/10.1007/s11119-012-9275-4
http://dx.doi.org/10.2134/jeq2008.0182
http://www.ncbi.nlm.nih.gov/pubmed/19244505

@’PLOS ‘ ONE

A Decision Support System for the Grape Berry Maturity

27.

28.

29.

30.

31.
32.

33.

34.

35.

Rasmussen C. E. and Williams C. K. .. 2005. Gaussian Processes for Machine Learning (Adaptive
Computation and Machine Learning). The MIT Press.

Lawrence N.. 2005. Probabilistic Non-linear Principal Component Analysis with Gaussian Process
Latent Variable Models. J. Mach. Learn. Res. 6 (December 2005), 1783-1816.

Geiger D., Heckerman D. (1997) A characterization of the Dirichlet distribution through global and local
parameter independence. The Annals of Statistics 25: 1344—1369.

Heckerman D. (1999) A Tutorial on Learning with Bayesian Networks. MIT Press, Cambridge, MA,
USA, 301-354.

Zadeh L.A. (1965). Fuzzy Sets. Information and control, 8 (3), 338—-353.

Perrot N., Trystram G., Guely F., Chevrie F., Schoesetters N., Dugre E. 2000. Feed-back quality control
in the baking industry using fuzzy sets. Journal of Food Process Engineering, 23(4):249-279.

Perrot N., Agioux L., loannou I., Mauris G. Corrieu G., and Trystram G. 2004. Decision support system
design using the operator skill to control cheese ripening-application of the fuzzy symbolic approach.
Journal of Food Engineering, 64(3):321-333.

Perrot N., Baudrit C. Robotics and automation in the food industry: Current and future technologies
Edited by Caldwell D, Italian Institute of Technology, Italy, 2013 ISBN 1 84569 801 0 Woodhead Pub-
lishing Series in Food Science, Technology and Nutrition No. 236, pp 200-225.

McLachlan G. J.; Do K.A.; Ambroise C. (2004). Analyzing microarray gene expression data. John
Wiley & Sons, 2004, 352 p.

PLOS ONE | DOI:10.1371/journal.pone.0134373 July 31,2015 21/21



