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Abstract

Background

Exergames are becoming an increasingly popular tool for training balance ability, thereby

preventing falls in older adults. Automatic, real time, assessment of the user’s balance con-

trol offers opportunities in terms of providing targeted feedback and dynamically adjusting

the gameplay to the individual user, yet algorithms for quantification of balance control

remain to be developed. The aim of the present study was to identify movement patterns,

and variability therein, of young and older adults playing a custom-made weight-shifting

(ice-skating) exergame.

Methods

Twenty older adults and twenty young adults played a weight-shifting exergame under five

conditions of varying complexity, while multi-segmental whole-body movement data were

captured using Kinect. Movement coordination patterns expressed during gameplay were

identified using Self Organizing Maps (SOM), an artificial neural network, and variability in

these patterns was quantified by computing Total Trajectory Variability (TTvar). Additionally

a k Nearest Neighbor (kNN) classifier was trained to discriminate between young and older

adults based on the SOM features.

Results

Results showed that TTvar was significantly higher in older adults than in young adults,

when playing the exergame under complex task conditions. The kNN classifier showed a

classification accuracy of 65.8%.
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Conclusions

Older adults display more variable sway behavior than young adults, when playing the exer-

game under complex task conditions. The SOM features characterizing movement patterns

expressed during exergaming allow for discriminating between young and older adults with

limited accuracy. Our findings contribute to the development of algorithms for quantification

of balance ability during home-based exergaming for balance training.

Introduction
Appropriate control of posture underlies many motor skills and is an absolute prerequisite for
activities of daily living. Postural control is generally defined as the ability to maintain, achieve,
or restore a state of balance during any posture or activity [1]. It is based on the interaction of
dynamic sensorimotor processes and by integrating information from various sources such as
the vestibular, proprioceptive and visual systems by the central nervous system, which employs
adaptive strategies for orientation and balance control. Adequate postural control results in
dynamically stable but also highly flexible behavior that alters continuously to accommodate
behavioral goals and prevailing circumstances.

Impaired postural control is an important predictor of falls in older adults [2–4]. Deteriora-
tion of postural control in older adults develops either due to a specific pathology affecting a
particular component of the sensory, motor or central processing systems, and/or as a conse-
quence of a more general age-related deterioration of sensory and neuromuscular control
mechanisms [5–7]. It has been shown that deterioration of postural control is characterized by
changes in the complexity of movement dynamics as revealed by poor coordination, increased
sway variability, loss of predictability and complexity, and decreased stability of sway patterns
during standing as well as during dynamic tasks [8–12]. It has been suggested that such
changes reflect changes in motor skills and health, that is, the notion that health is character-
ized by ‘optimal variability’ which reflects the adaptability and flexibility of the underlying con-
trol system, while deterioration of postural control is characterized by a loss of this optimal
state of variability in motor behavior [13–15], rendering the system more vulnerable to pertur-
bations. In line with this view, increased variability and loss of stability of postural control dur-
ing standing and walking, as characterized by numerous quantitative metrics (e.g. fractal
scaling, sample entropy, recurrent quantification analysis, Lyapunov exponents) have been
linked to balance impairments and increased fall risk in the elderly population [16–20].

A rapidly growing number of studies reveal the potential of exergames to train balance in
older adults, and reduce fall risk [21]. The concept of exergames is based on generating a virtual
world that can be controlled through bodily movements in the physical world, measured with
sensors such as the Kinect (Microsoft Corp, Redmond, USA), a commonly available video-game
sensor that captures whole-body position data [22,23]. The Kinect is equipped with a video
camera and an infra-red depth sensor for motion capture, and generates a colored point cloud
of the environment, from which individual body segments are identified [24,25]. The 3Dmove-
ments of these body segments are captured, thereby allowing the player to control the virtual
world. Kinect thus allows capturing real-time whole-body movement data while the user is prac-
ticing balance in a complex game task. In a previous study we showed that by using pattern rec-
ognition methods, such as Principal Component Analysis, we could accurately extract
movement patterns during a weight-shifting ice-skating game, using the Kinect for gameplay
and motion capture [22]. The rationale for capturing multi-dimensional position data, i.e.
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individual body segments, is that weight shifts can be achieved through a wide variety of pos-
tural adjustments, or movement patterns. Observing all individual body segments contributing
to a weight shift rather than only the weight shift itself, for instance by means of measuring the
center of mass, might thus provide additional information about movement patterns expressed
during the execution of exergame tasks. Accurate extraction of movement patterns frommulti-
dimensional Kinect motion capture data is hypothesized to allow quantifying balance ability
while the user is performing complex tasks, thereby quantifying and evaluating differences in
balance ability due to age and due to task difficulty [22]. It is however not known if balance abil-
ity can actually be quantified using whole-body movement data captured during exergaming.

The aim of the present study therefore was to quantify balance ability of young and older
adults using multivariate whole-body movement data, captured with Kinect while they are
playing an ice-skating exergame under conditions varying in task complexity. To examine the
effects of task complexity and age on postural coordination patterns, self-organizing or Koho-
nen maps (SOM), were applied. SOM is an artificial neural network algorithm that is particu-
larly suitable for organizing complex, high-dimensional data [26], thereby enabling
visualization and analysis of human movement patterns in a lower dimension. More specifi-
cally, we first identified coordination patterns and variability thereof as a function of task diffi-
culty (movement frequency and amplitude) and age while the user was performing a weight-
shifting exergame balance task. We anticipated that the dynamic organization of postural con-
trol patterns would be different between young and older persons in terms of the variability of
the extracted movement patterns. Secondly, we tested whether the extracted movement pat-
terns, as represented by the SOM features, could be used to train a classifier to discriminate
postural control patterns of young adults from that of older adults.

Methods

Participants
Twenty older adults (8 women, 12 men; age 71.9 ± 4.0 years) and twenty young adults (11
women, 9 men; age 37.0 ± 16.6 years) participated in this study. Inclusion criteria were as fol-
lows: being physically fit, being able to walk without an aid for at least 15 minutes and being 65–
85 and 18–60 years of age for older and young adults respectively. Exclusion criteria included:
musculoskeletal, visual or neurological impairments, or use of medication that could affect pos-
tural control. All subjects provided written informed consent. The research was approved by the
Medical Ethical Committee, University Medical Center Groningen (approval number: METc
2013/244), in accordance with the ethical standards of the declaration of Helsinki.

Procedure and Instrumentation
Subjects played a custom-made ice-skating exergame in which a challenging balance exercise
consisting of repeatedly swaying the center of mass in both lateral directions was practiced.
This lateral sway movement was chosen because there is substantial evidence that older adults
are particularly vulnerable to lateral instability of postural balance and that these age-associated
impairments in lateral balance may be an important cause of falls [27]. During gameplay, sub-
jects were instructed to keep their feet on the ground in parallel stance within an 80 x 60 cm2

area. The exergame was played in five different conditions: 1) Neutral; sway speed and sway
amplitude were self-selected; 2) In-game skating speed was doubled by increasing the game
speed parameter by a factor of two; 3) Subjects were instructed to sway at maximum sway fre-
quency with a self-selected sway amplitude; 4) During the sway movement subjects had to lift
the leg contra-lateral to the sway direction off the ground; 5) Subjects were instructed to adopt
maximum sway amplitude at a self-selected sway frequency. Trials took about 1 minute to

Quantifying Postural Control Using Exergames

PLOSONE | DOI:10.1371/journal.pone.0134350 July 31, 2015 3 / 17



complete and were performed twice. Each subject thus performed 10 exergame trials in total.
The trial order was randomized, except for trial 1; this was always a ‘condition 1’ trial. The
game was controlled using Kinect, which was positioned 2 m in front of the subject at 60 cm
height. The game was installed on a laptop computer and displayed on a screen (3.55x2.60 m)
2 m in front of the subject.

Using Kinect and OpenNI SDK v1.5.2.23, 3D positions of 15 body segments including
trunk and extremities were obtained at an irregular sample frequency of about 30 Hz. The cap-
tured movement data in the young adults were also used for analysis in [22]. The 3D positions
of the hands, elbows and feet, as well as all body segment position data recorded in the sagittal
plane were discarded, as previous studies showed that these position data are not captured
accurately by Kinect, and they are not crucial for the required movement [22,28]. Postures
adopted during gameplay were quantified using the nine remaining segmental landmarks,
(head, neck, shoulders, lower back, hips and knees). A detailed description of body segment
positions can be found in [22].

Data preprocessing
The position data of the nine body segments, describing the postures adopted during gameplay
in the frontal plane, were resampled at 30 Hz using cubic spline interpolation to account for
intrinsic sample frequency deviations. For all trials of all subjects the first sway cycle was dis-
carded, and the subsequent ten sway cycles were selected for analysis. A sway cycle was defined
as a full left-right-left sway by the shoulders, starting and ending at the outer-most left position
of the shoulder segments in the frontal plane. First, the mean sway amplitude and sway fre-
quency were determined for each exergaming trial. Sway amplitude was defined as the mean
distance covered by the lower back segment in medio-lateral direction, as measured with
Kinect [22]. Sway frequency was defined as the dominant frequency in the power spectrum of
the same body segment. Second, the ten sway cycles were time-normalized to 30 frames per
sway cycle. Note that phase lag between body segments was preserved. The total number of tri-
als recorded was 400 (40 subjects x 10 trials). Nine (x, y) coordinate pairs described the posture
of the subject in a single frame, resulting in an 18-dimensional posture vector p:

p ¼

BodySegment1x

..

.

BodySegment9x

BodySegment1y

..

.

BodySegment9y

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

ð1Þ

From the original 400 trials 22 trials had to be discarded (8 in the young, 14 in the old),
because the number of sway cycles was smaller than ten or because data collection was cor-
rupted, resulting in a total number of 378 trials for analysis. The resulting 378 trials x 300
frames = 113400 posture vectors p (of dimension 18) were organized in a 3-dimensional array
P with dimensions (I x J x K) where I, J and K refer to the total number of trials (378), frames
per trial (300), and body segment coordinates (18) respectively. P consists of elements pi,j,k

Data normalization was performed using a modified version of a normalization technique
employed by [29]. Their method aims to retain variability between posture vectors created
from postural movement, while minimizing the differences between posture vectors caused by
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anthropometric differences between subjects. In the current study differences in sway ampli-
tude did not only stem from anthropometric differences between subjects, but also from the
fact that young adults move closer to the edges of their base of support while swaying than
older adults. Instead of dividing centered posture vectors by the mean vector norm, as Federolf
et al. did, we rescaled centered posture vectors such that all body segments of all subjects have
the same mean amplitude in all trials. Note that differences in range of amplitudes between
body segments are preserved.

In a first step the mean posture vector �pi of the K-dimensional posture vectors Pi,j was com-
puted for each trial i and subtracted from all posture vectors of the corresponding trial, yielding
J = 300 K-dimensional centered posture vectors ci,j for each trial i:

ci;j ¼ pi;j � �pi ¼ pi;j �
1

J
�
XJ

j¼1
pi;j ð2Þ

Second, the mean amplitudes of all body segments were computed for each trial and stored
in a system of vectorsM with dimensions (I x K), where I and K refer to the total number of tri-
als (378) and body segments (18), respectively.

M ¼

m1;1 m1;2 � � � m1;K

m2;1 m2;2 � � � m2;K

..

. ..
. . .

. ..
.

mI;1 mI;2 � � � mI;K

0
BBBBBB@

1
CCCCCCA

ð3Þ

wheremi,k, the mean amplitude of all J = 300 frames of body segment k in trial i, is given by:

mi;k ¼
1

J
�
XJ

j¼1
kci;jk ð4Þ

Third, the mean amplitude over all trials, computed for each body segment k = 1. . .18 was
given by�mk:

�mk ¼
1

I
�
XI

I¼1
mi;k ð5Þ

Where �m with elements �mk for k = 1. . .18, has dimensions (18 x 1). In order to rescale the cen-
tered posture vectors ci,j such that all segments in all trials have identical mean values, a final
step was taken where a matrix F containing scaling factors was computed:

F ¼

f1;1 f1;2 � � � f1;K

f2;1 f2;2 � � � f2;K

..

. ..
. . .

. ..
.

fI;1 fI;2 � � � fI;K

0
BBBBBB@

1
CCCCCCA

ð6Þ

F has dimensions (I x K), where I = 378 trials and K = 18 body segments. fi,k, the scaling factor
for all 300 frames of body segment k in trial i, is given by:

8i 2 ð1 . . . IÞ fi;k ¼ �mk=mi;k ð7Þ

Each centered posture vector ci,j was then multiplied by its corresponding scaling factor fi,k
yielding 300 normalized 18-dimensional posture vectorsCi,j for each trial, again stored in a
3-dimensional arrayC with dimensions (I x J x K).C consists of elementsCi,j,k whereCi,j,k the
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centered, normalized body segment position is defined as:

8j 2 ð1 . . . JÞ ci;j;k ¼ ci;j;k � fi;k ð8Þ

The latter operation is a simple multiplication of each centered posture vector with the cor-
responding scaling factor. The effect of this normalization procedure thus is that the average
amplitude of each body segment is equal for each trial, and thus for each person, but the differ-
ences in movement range of individual segments remain. For example, the mean amplitude of
the vertical movements of the spine thus remains different from the mean amplitude of the
horizontal movement of the shoulder. The centered and normalized posture vectorsCi,j were
concatenated and assembled into one input array with dimensions ((I x J) x K) = 113400 x 18
and used for training a self-organizing map.

Self-organizing maps
The current study aims to identify movement patterns and variability therein in high-dimen-
sional whole body movement data of young and older adults, without providing a priori
information about age-related changes in postural control, as well as to classify movement
patterns as belonging to either young or older adults. This goal can be generalized to unsu-
pervised recognition of patterns in high-dimensional datasets, and for this purpose artificial
neural networks (ANNs) are particularly useful [30]. In the present study we applied a spe-
cific type of ANN; the self-organizing map (SOM) or Kohonen map, to compare and visual-
ize coordination patterns in multi-dimensional data sets. SOM is a data visualization
algorithm that reduces high-dimensional data to a map consisting of only one or two dimen-
sions, while at the same time displaying similarities in the input data by grouping similar
data items together on the map. Input data, in this case the posture vectors, are presented to
the SOM hundreds or thousands of times and after each iteration the organization of the
map changes such that it displays similarities in the data structures more clearly. A SOM
thus allows for learning underlying non-linear patterns in high-dimensional datasets, while
compressing and organizing the information to a low-dimensional mapping [26]. SOMs
have been used for analysis and classification of movement patterns during various activities
including discus throwing [31], walking [32], and cross-country skiing [33]. In the current
study the SOM algorithm was used to organize posture vectors, representing states of coordi-
nation, on a 2D map.

The working mechanism of a SOM can be described in a few rules. A SOM transforms
high-dimensional data, the input vectors, into a low-dimensional discrete map of output
nodes. In the current study, an input matrixC with dimensions ((I x J) x K) = (113400 x 18)
containing all centered normalized posture vectors of all trials was used; that is 113400 input
vectors, each with a dimensionality of 18. The output nodes, which define the map, are orga-
nized in a 25 x 25 square lattice. Each of the 25x25 = 625 output nodes has an associated
weight vector, of which the dimensionality is equal to that of the posture vectors, which is 18.
During initialization the output nodes have random weights, therefore the map containing
the output nodes can be viewed as a grid with 625 random posture vectors. The SOM working
principle is based on competitive learning. In an iterative process each 18-dimensional input
vectorCi,j is presented to the SOM. First, the Euclidian distances between the input vector
and all output nodes are computed and the output node with the shortest distance to an input
vector is declared the best matching unit (BMU). In a second step, the weight vector of the
BMU and the output nodes in the proximity of the BMU are updated to match the input vec-
tor more closely. Given weight vector wx,y(t) of output node (x,y) at iteration t, the updated
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weight vector wx,y(t+1) is defined by [26]:

wx;yðt þ 1Þ ¼ wx;yðtÞ þ hx;yðtÞZðtÞðψ i;j � wx;yðtÞÞ ð9Þ

where hx,y(t) is the neighborhood function describing the area around the BMU that is
updated, which decreases with increasing t. η(t)is the learning parameter, which also shrinks
with increasing t. For further details concerning the mathematical formulas see [26]. The effect
of this update rule is that as more and more posture vectors are presented, the topology of the
SOM changes such that similar posture vectors are grouped together on the SOM. When all
posture vectorsCi,j have been presented, a second iteration starts, where all posture vectors
again are presented to the updated SOM. The effect of the BMU on its neighboring output
nodes decreases in each iteration, as specified by hx,y(t), resulting in fine-tuning of the SOM
after a large number of iterations. Starting from an initial state of disorder, the SOM thus grad-
ually shapes into an organized representation where all similar posture vectors are grouped
together. In this study, default values from the Matlab 2013b SOM toolbox were used for the
neighborhood function and learning-rate parameter. The number of iterations was set to 1000.

Movement variability
To test the hypothesis that the dynamic organization of postural control patterns would be
qualitatively different between young and older persons in terms of the variability of the
extracted movement patterns, these patterns were visualized using SOM. Due to the self-orga-
nizing nature of the SOM, BMUs of similar input posture vectorsCi,j, representing states of
coordination, are grouped together on the lattice of output nodes. Moreover, states of coordi-
nation subsequently adopted during an exergame trial form a trajectory of BMUs with a
smooth structure on the output lattice as shown in Fig 1. This movement pattern, identified in
one trial consisting of ten sway cycles, comprises 300 BMUs. To quantify variability in the
movement pattern identified from one exergame trial, the variability in the trajectories formed
by connecting subsequent BMUs, was computed using a method proposed by Lamb et al. [33].
They computed ‘total trajectory variability’ (TTvar) in three steps. First, the Euclidian distance
dE between al ten sway cycles compared at each BMU b was computed. For example, let matri-
ces A and B represent two K-dimensional trajectories of length s = J/10, that is 30 frames per
sway cycle. The Euclidian distance compared at node b, dEAbBb

, is then given by:

dEAbBb
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXK

K¼1
ðAbk � BbkÞ2

q
ð10Þ

Second, �dEy
, the average Euclidian distance between all ten sway cycles in BMU b, was com-

puted for each BMU b. Finally, the TTvar was computed by summing all 300 entries of �dE .

TTvar was computed for all 378 trials.
To evaluate the distribution of variability over the course of the sway trajectory, the trajec-

tory was first split in two phases; the ‘sway endpoint phases’ and the ‘sway traveling phases’,
corresponding with the turning points, i.e. outer left and outer right part of the sway, and the
part between the turning points respectively. The sway endpoint- and traveling phases con-
sisted of 14 and 16 nodes respectively. The variability per BMU was computed and displayed in
Fig 1 as blue ellipses. Secondly the horizontal and vertical component of the variability were
computed, as represented by the vertical and horizontal radius of the ellipses. The area repre-
senting the variability of the nodes as well as the vertical and horizontal components of the var-
iability, were then averaged for both sway phases, thereby enabling evaluation of phase-related
differences in variability.
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Statistical analyses
Statistical analyses were performed using SPSS 20. First, age- and condition effects on sway
amplitudes and sway frequency were evaluated using Repeated Measure Analysis of Variance
Analyses (RM ANOVA). When main effects of age and condition were observed, a post-hoc
analysis using a Bonferroni correction was applied. Secondly, the age- and condition effects on
TTvar scores were evaluated. Because assumptions for normality were not met, as assessed by a
Shapiro-Wilk test [34], differences between young and older adults were non-parametrically
evaluated using a Mann-Whitney U test [35]. Third, the age-, phase- and condition effects on
the area and horizontal and vertical component of the variability per node were evaluated,
again using RM ANOVA with a Bonferroni correction.

Classification of BMU trajectories
The second aim of the current study was to train a classifier that allows for discriminating
between postural control patterns of young and older adults, based on the SOM features. These

Fig 1. Average sway trajectory of a single subject on the trained SOM. The Best Matching Units (BMUs)
of input posture vectors subsequently adopted during an exergame trial form a trajectory of BMUs on the
output lattice of a SOMwhich is trained with movement data of all test subjects. The average sway trajectory
of ten sway movements is shown for one older adult playing the ‘maximum sway amplitude’-condition. Blue
circles indicate the standard error of the mean for each BMU position. Stick figures are shown for illustration
purposes and indicate the average adopted postures 1, 2, 3 and 4 captured at 1%, 25%, 50% and 80% of the
time of the sway movement, respectively.

doi:10.1371/journal.pone.0134350.g001
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features are here defined as the sequences of consecutive BMUs shown as trajectories on the
SOM, which can be considered a representation of the movement coordination displayed by
subjects during gameplay. To study the possibility of classifying subjects as either young or
older adult, based on the BMU-trajectories on the SOM, these trajectories were used to train a
second SOM. For each exergame trial, the x and y coordinates of each BMU on the first SOM
were stored in a vector s with dimensions (2 J x 1):

s ¼

BMU1x

..

.

BMU300x

BMU1y

..

.

BMU300y

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

ð11Þ

The 600-dimensional vectors s of the trials where the groups differed in TTvar were orga-
nized in a matrix S with dimensions (I x 600), which was used as the input matrix for the sec-
ond SOM. The output layer again consisted of 625 output nodes with a dimensionality of 600,
organized in a (25x25) lattice. In this SOM the BMUs on the output layer can be considered
representations of movement coordination of the young and older adults. A k-nearest neighbor
(kNN) algorithm [36] was used to identify clusters of these representations of movement coor-
dination of young and older adults on the second SOM. The number of nearest neighbors, k,
was set to 5, 70% of the data were used for training the classifier, while 30% was used for test-
ing. Testing was performed 100 times where samples for training and testing were randomly
selected in each run.

Results

Sway amplitudes and dominant sway frequencies
Fig 2 displays the sway amplitudes and sway frequencies of young and older adults under the
five task conditions. RM ANOVA showed significant main effects of age and condition on
sway amplitude and sway frequency (p<0.01). An age�condition interaction effect was
observed for sway amplitude (p<0.01), but not for sway frequency. Post-hoc analysis revealed
significant age effects on the conditions ‘maximum sway frequency’ and ‘maximum sway
amplitude’ (p<0.01) for both measures, indicating that sway frequency and amplitude were
indeed adjusted as a result of these game conditions.

Movement variability
Comparison of postural control patterns of young and older adults under various task com-
plexity conditions showed significant effects of group on TTvar for the exergame trials where
subjects were instructed to sway at maximum sway frequency and maximum sway amplitude
(Fig 3). Older adults displayed higher values for TTvar than young adults in these two condi-
tions (7.0 vs 5.5, p = 0.01 and 5.6 vs 4.4, p = 0.02 resp.), indicating that the sway cycles per-
formed by the older adults are more variable than those of young adults, as illustrated in Fig 4.
No significant group effects were found for the conditions ‘Neutral’ (p = 0.66), ‘Increased game
speed’ (p = 0.31), and ‘Leg lifted’ (p = 0.53). Evaluation of the distribution of variability over
the two phases of the trajectory showed a condition effect (p<0.01) on the variability per
BMU, but no main effects of age or sway phase. When the variability was split in a vertical and
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horizontal component (Fig 5), an effect of condition and sway phase on both the vertical and
the horizontal component of the variability was observed (p<0.01).

Classification of BMU trajectories
The BMU-trajectories of young and older adults of the trials where the groups differed signifi-
cantly in TTvar, which were used for training the second SOM, are not spread homogeneously
on the lattice, as shown in Fig 6. Moreover, trials performed by young and older adults appear
in clusters connected by regions consisting of a mixture of BMUs associated with young and
older adults. The kNN classifier correctly classified 65.8% of the samples.

Discussion
The main aim of the current study was to examine the differential effects of age and task com-
plexity on movement coordination patterns displayed while the subject is controlling an exer-
game using weight-shifts. A second aim was to train a classifier that allows for discrimination
between young and older adults based on these expressed movement coordination patterns. In
the present study, movement patterns and the variability thereof were identified from whole-

Fig 2. Sway amplitudes and frequencies under different game conditions. Sway amplitudes (top panel) and sway frequencies (lower panel) of young
(light bars) and old (dark bars) adults in each game condition. Error bars indicate 1 SEM.

doi:10.1371/journal.pone.0134350.g002
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body movement data, captured during exergaming, using a feature extraction method, i.e. self-
organizing maps (SOM). SOM was applied because of its ability to learn underlying non-linear
patterns in high-dimensional datasets, while compressing and organizing the information to a
low-dimensional visual representation.

In general, analysis of sway characteristics first confirmed that young adults adopted larger
and faster sway movements than older adults and that the game conditions had an effect on
sway behavior. Secondly, the results showed that older adults display more variability in their
movement coordination patterns than young adults under complex task conditions, i.e. in the
tasks that required participants to adopt maximum sway frequency and maximum sway ampli-
tude. In the other tasks, where participants performed sway movements at their own comfort-
able sway speed, i.e. ‘neutral’, ‘increased in-game skating speed’, and ‘leg lifted during sway’, no
significant age effects were found in terms of the variability of the identified movement pattern.
In the subsequent analyses, a kNN classifier was trained using the movement patterns
expressed by the participants during the ‘maximum sway frequency’ and ‘maximum sway
amplitude’ conditions, as identified with SOM. The classifier achieved a mediocre accuracy of
65.8% for discriminating between young and older adults.

Fig 3. Total trajectory variability (TTvar) of young and older adults in exergame tasks of varying
complexity. Total trajectory variability (TTvar) of young and older adults in the five different exergame tasks
are displayed by the grey and white boxes, respectively. The line inside the box indicates the median of the
sample while the first and third quartile are indicated by the lower and upper part of the box. The error bars
represent the size of the range of the total sample, with the exception of outliers, which are indicated with a
circle, and defined as samples that are further away from any end of the box than 1.5 times the interquartile
range. Tasks on which the groups differ significantly are indicated with an asterisk. Note that TTvar is a
measure of distance related to the nodes on the SOM, hence TTvar has no units.

doi:10.1371/journal.pone.0134350.g003
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Our finding that older adults display more variability while performing complex tasks than
young adults is consistent with results of previous studies showing that age-related deteriora-
tion of postural control is linked with increased movement variability under complex task con-
ditions [16,37,38]. More specifically, the high TTvar score of older adults in the ‘maximum
sway frequency’ condition is in line with results of Hernandez et al. and de Vries et al. [37,39]
showing that rapid weight shifts are associated with an increased number of submovements as
well as decreased fluency and accuracy in the elderly population.

We hypothesized that a trained classifier allows for discriminating between individuals with
good and deteriorated postural control, i.e. young and older adults. Although Fig 6 shows that
young and older adults seem to cluster on different sides of the map, the classifier achieved an
accuracy of only 65.8%, indicating that on an individual level a subject cannot be classified very

Fig 4. Average BMU trajectories of young and older adults in ‘neutral’ and ‘maximum sway frequency’ conditions. Average sway trajectories
displayed by connecting BMUs of subsequent input posture vectors of all young and older adults (upper and lower panels, respectively) in the neutral game
condition and maximum sway frequency condition (left and right panels respectively). Blue circles indicate standard errors of the mean of BMU positions.
Stick figures indicate the average adopted postures 1, 2, 3 and 4 captured at 1%, 25%, 50% and 80% of the time of the sway movement, respectively.

doi:10.1371/journal.pone.0134350.g004
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accurately as either young or old. Fig 6 shows indeed that the age groups seem to behave as a
continuum, rather than as clear clusters. This finding could be explained by the broad age
range of the young adults; the upper age limit of the young adults was 60, which is close to the
lower age limit of the older adults, which was 65 years. Thus, although on an individual level

Fig 5. Sway variability and its vertical and horizontal components in different sway phases. Blue and red bars indicate the variability in the Sway
Endpoint Phases (SEP), and Sway Traveling Phase (STP) respectively. Light and dark bars indicate young and older adults respectively. Error bars indicate
1 SEM. Note that the variability is a measure of distance related to the nodes on the SOM, hence variability and its vertical and horizontal components are
unitless.

doi:10.1371/journal.pone.0134350.g005

Fig 6. Self-organizingmap, trained using the movement patterns of participants under complex
exergaming task conditions. Self-organizing map (SOM) trained using the x and y coordinates of
consecutive best matching units (BMU) on the first SOM for the trials where young and older adults differed
significantly in TTvar. Trajectories of trials of young and older adults were presented to the trained SOM as a
single input vector containing all ten sways performed in that trial. The BMU’s matching the trajectories of
young (blue x) and older adults (red o) are not spread homogeneously on the map; the lower left corner
constitutes of predominantly older adults, whereas many of the trials performed by young adults are
organized on the right side of the map.

doi:10.1371/journal.pone.0134350.g006
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the classification accuracy is only 65.8%, the position of a subject’s movement pattern on the
continuum on the SOM holds information about the extent to which the movement pattern
expressed during exergaming belongs to the young or to the older group. The accuracy of the
kNN classifier could possibly be improved by using more training data. Additionally, the cur-
rent kNN analysis is only a first step in classification of exergaming movement patterns. Other
more advanced classifiers such as Support Vector Machine [30] might further improve the
classification accuracy. Moreover, future work should aim at validating the position of move-
ment patterns on the SOM using validated clinical balance measures, thereby enabling more
reliable quantification of balance control during exergaming.

Quantification of balance control at short time scales, as endeavored in the current study,
opens the door for adjusting the exergame content to the individual users, while they are playing
the exergame. Performance-based feedback can then be consistently and systematically altered
to create the most appropriate and personalized learning game environment [40]. This principle
is generally referred to as Dynamic Difficulty Adjustment (DDA) and is known to facilitate
learning and improve motivation to continue playing [41]. Although providing feedback while
training motor function is known to improve learning rate and training adherence [42,43], for
exergaming positive effects of feedback on motivation and functional outcome have only been
reported in a limited number of studies [44–46] and type and frequency of feedback needs to be
assessed in future studies. Feedback could also be provided over longer time scales. For instance,
improvement of balance ability over days or weeks can be monitored and compared with that of
peers, which allows creating competition and setting personal goals, thereby again improving
motivation. These extensive monitoring and feedback possibilities contribute to the notion that
exergames are particularly suitable for training balance ability in the home environment.

We trained a SOM using 40 participants performing five different task conditions to test for
age and task effects. A consequence of the relatively large number of participants and conditions
is that a large number of unique poses are captured, which all have to be assigned to nodes on
the SOM. As a result, the space on the map occupied by the average sway trajectories seems rela-
tively small (Fig 3), thus these trajectories become coarse. Consequently, subtle differences in
TTvar might remain hidden. The current study also showed that the distribution in vertical and
horizontal components of variability in sway phases was not equal for the sway phases. The verti-
cal component of the variability is larger in the endpoint phase of the sway, whereas the horizon-
tal component is larger in the traveling phase of the sway. The higher vertical component of
variability in the endpoints phase of the sway could be explained by the broader variety in pos-
tures that are adopted when getting closer to the limits of stability. The higher horizontal compo-
nent could be explained by the relatively short amount of time that is spent in the traveling phase
of the sway, which results in a coarser representation of the sway trajectory in these phases. A rel-
atively small temporal difference in sway timing thus already leads to a relatively large shift on
the map in horizontal direction. Increasing the number of output nodes on the map would pro-
vide more detailed information about movement variability. This however, would considerably
increase computing time, especially when increasing the amount of data used for training. Since
we aimed to develop a balance quantification algorithm for whole-body movement during exer-
gaming, more computing time poses a limitation to the time scale over which the output can be
calculated, which has an effect on the time scale on which feedback can be provided.

It should be noted that more space on the SOM is assigned to poses more frequently
adopted, at the expense of uncommon poses. Consequently, tasks that require uncommon
poses occupy relatively little space on the map, which might result in relatively low values for
TTvar, due to the low number of BMUs that define the trajectory. The property of SOM that it
can zoom in on frequently adopted poses can be considered a drawback in a research setting
aiming at quantification of task effects, but in a clinical setting it is an important advantage.
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When training a SOM with movement data of large numbers of older adults, it is beneficial to
assign little space to very uncommon poses, because many different people can display many
different uncommon poses, which would then occupy a lot of space on the map. SOM reduces
the impact of uncommon poses, thereby leaving more space on the map for the more regularly
adopted poses, which understandably results in a higher resolution (number of nodes) of the
BMU trajectories that do not include uncommon poses. When a trajectory occupies more
nodes, the subtle changes of this trajectory over time (caused for instance by an improved bal-
ance ability of the user) can be observed in more detail, which thus provides more information
about changes in movement coordination displayed by the user over time.

In the current study we identified movement patterns and variability therein using SOM.
There is however a large body of literature describing other types of computational pattern rec-
ognition, including support vector machine [30], deep learning [47], extreme learning
machines [48] and many others. We opted for SOM, an unsupervised learning algorithm,
because of its ability to structure unlabeled data and because the method is well-evaluated.
SOM however holds the downside that it cannot be directly implemented for online monitor-
ing of balance during exergaming. Further development of these pattern recognition algo-
rithms is therefore needed to utilize the full potential of exergames, which can be found in
dynamic difficulty adjustment and providing targeted feedback to the user. At that stage of
development, exergames might enable older adults to train balance at home, while the system
evaluates their balance ability and adjusts the training accordingly by changing difficulty and
providing feedback, thereby optimizing the training program on an individual level.

Conclusions
In this study high dimensional whole-body movement data captured during exergaming were
used to identify movement coordination patterns and therewith quantify balance control and
train a kNN classifier, able to discriminate between young and older adults. It was found that
older adults display more variability than young adults in movement coordination patterns,
expressed while performing complex exergame tasks, and that the kNN classifier allows for dis-
criminating between young and older adults based on the movement patterns identified. Our
findings contribute to the development of algorithms for quantification of balance ability of
older adults during home-based exergaming for balance training. Further development of these
algorithms unlock valuable possibilities for adapting exergames to the balance capabilities of
individual older adults.
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