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Abstract

Background

Cardiac output (CO) is a major diagnostic and prognostic factor in pre-capillary pulmonary

hypertension (PH). Reference methods for CO determination, like thermodilution (TD),

require invasive procedures and allow only steady-state measurements. The Modelflow

(MF) method is an appealing technique for this purpose as it allows non-invasive and beat-

by-beat determination of CO.

Methods

We aimed to compare CO values obtained simultaneously from non-invasive pulse wave

analysis by MF (COMF) and by TD (COTD) to determine its precision and accuracy in pre-

capillary PH. The study was performed on 50 patients with pulmonary arterial hypertension

(PAH) or chronic thrombo-embolic PH (CTEPH). CO was determined at rest in all patients

(n = 50) and during nitric oxide vasoreactivity test, fluid challenge or exercise (n = 48).

Results

Baseline COMF and COTD were 6.18 ± 1.95 and 5.46 ± 1.95 L�min-1, respectively. Accuracy

and precision were 0.72 and 1.04 L�min-1, respectively. Limits of agreement (LoA) ranged

from -1.32 to 2.76 L�min-1. Percentage error (PE) was ±35.7%. Overall sensitivity and speci-

ficity of COMF for directional change were 95.2% and 82.4%, (n = 48) and 93.3% and 100%

for directional changes during exercise (n = 16), respectively. After application of a correc-

tion factor (1.17 ± 0.25), neither proportional nor fixed bias was found for subsequent CO
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determination (n = 48). Accuracy was -0.03 L�min−1 and precision 0.61 L�min−1. LoA ranged

from -1.23 to 1.17 L�min−1 and PE was ±19.8%.

Conclusions

After correction against a reference method, MF is precise and accurate enough to deter-

mine absolute values and beat-by-beat relative changes of CO in pre-capillary PH.

Introduction
Pre-capillary pulmonary hypertension (PH) is a haemodynamic condition that may lead to
right heart failure, and that is defined by an increased resting pulmonary artery mean pressure
(mPAP) due to elevated pulmonary vascular resistance (PVR) [1]. Consequently, cardiac out-
put (CO), is a key diagnostic parameter and a major prognostic factor in diseases like pulmo-
nary arterial hypertension (PAH) and chronic thromboembolic pulmonary hypertension
(CTEPH) [1, 2], both characterized by such a condition.

Classical methods for CO measurement require right heart catheterisation (RHC) where the
reference method is the direct Fick, although thermodilution (TD) or indirect Fick methods
are widely preferred because of their relative simplicity in the clinical setting [1]. Hence, the
availability of new, simple, reliable and non-invasive method for CO determination at rest and
for CO changes in response to pharmacological interventions or during metabolic and volemic
changes is desirable.

A promising technique for this purpose called Modelflow (MF) [3], relies on arterial pulse
pressure wave analysis. Once corrected against a reference method, MF was shown to be a reli-
able and accurate procedure in healthy humans [4], requiring only the application of a finger
plethysmographic cuff to the patient for the continuous monitoring of pulse pressure profiles,
thus being simpler than any other method proposed so far.

To the best of our knowledge, the accuracy and precision of MF was never assessed in pre-
capillary PH. This study aims to evaluate MF in PAH and CTEPH patients, by comparing CO
values obtained by MF (COMF) with values simultaneously determined on the same patients by
TD (COTD) during RHC procedures.

Materials and Methods

Study population
Seventy consecutive patients from the outpatient clinic and who underwent RHC for suspected
or diagnosed pre-capillary PH within their routine workup were invited to participate (Fig 1).
Patients with cardiac shunts were excluded, TD being potentially inaccurate in this condition.
Patients with PH due to left heart disease (diagnostic Group 2 according to WHO classifica-
tion, post-capillary PH) or PH with unclear or multifactorial mechanisms (diagnostic Group 5)
were also excluded. In order to assess a homogeneous population, patients with PH due to lung
disease were excluded because the physiopathology of pre-capillary PH is different in this
group (diagnostic Group 3). 2 patients were also excluded from the study due to poor or no fin-
gertip pulse pressure signal due to systemic sclerosis. Screening was not proposed to patients
hospitalized in intensive care unit with acute right heart failure, haemodynamic shock or other
life threatening condition. Analyses was finally performed on fifty patients with PAH (diagnos-
tic Group 1, n = 30) or CTEPH (diagnostic Group 4, n = 20). This study was approved by a
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local ethics committee (comité de protection des personnes, Ile de France VIII, Hôpital
Ambroise Paré, Boulogne-Billancourt, France) and was performed in the French reference
centre for severe PH in Paris. All patients gave written informed consent.

Right heart catheterisation
Haemodynamic evaluation was performed in a supine position. Electrocardiogram and arterial
oxygen saturation (pulse oximetry) were monitored continuously. Mean systemic arterial pres-
sure (MAP) was measured at the brachial artery (Dynamap 1800; Critikon, Tampa, FL, USA).
RHC was performed using the modified Seldinger technique with an 8F sheath inserted in the
jugular, basilic or cephalic vein. The Swan-Ganz catheter was a 7F, two-lumen, TD and pres-
sure-measuring tipped catheter (Corodyn TD; Braun Medical, Bethlehem, PA, USA). The
zero-level reference was determined at mid-thoracic line. Resting haemodynamic evaluation
included measures of right atrial pressure (RAP), mPAP, pulmonary artery wedge pressure
(PAWP), COTD. PVR was calculated as (mPAP–PAWP)/ COTD, and systemic vascular

Fig 1. Study profile. PH: Pulmonary hypertension; LHD–PH: PH due to left heart disease; ILD–PH: PH due to interstitial lung disease; PAH: Pulmonary
arterial hypertension; CTEPH: Chronic thromboembolic PH.

doi:10.1371/journal.pone.0134221.g001

Non-Invasive Cardiac Output in Pre-Capillary Pulmonary Hypertension

PLOS ONE | DOI:10.1371/journal.pone.0134221 July 30, 2015 3 / 14



resistance as (MAP–RAP)/ COTD. Cardiac index was calculated as CO divided by body surface
area. Fluid challenge was performed by infusion of 500 ml of isotonic saline solution in five
minutes, and haemodynamic parameters reassessed afterward. Vasoreactivity test was per-
formed with inhaled nitric oxide according to current recommendations [1] prior to haemody-
namic reassessment.

Cardiac output by thermodilution
In each patient, the positioning of the Swan-Ganz probe was confirmed by fluoroscopic con-
trol. COTD was determined by injection of 10 ml of iced-cold sterile, isotonic glucosaline solu-
tion through the proximal catheter’s lumen. The time course of temperature changes was
recorded by the thermistor at the distal end of the probe. Three consecutive bolus injections
were performed for each condition. The mean value of the three measurements was calculated
if the difference between highest and lowest values was� 10%. Otherwise, two more measure-
ments were performed, the highest and lowest values were deleted, and the mean value of the
three remaining measurements was calculated.

Cardiac output by Modelflow
COMF was determined from continuous non-invasive recording of arterial pulse pressure
profiles by a Portapres system (TNO-TPD, Amsterdam, The Netherlands). The photoplethys-
mographic cuff of Portapres was positioned on the index or middle finger contralateral to the
vascular lines. The zero-level reference was placed according to the manufacturer’s instruc-
tions. From pulse pressure profiles, beat-by-beat heart rate (HR) and stroke volume (SV) were
calculated with the MF model, using the Beatscope 1.1a software (TNO-TPD, Amsterdam, The
Netherlands) developed for this purpose.

The MF method for the beat-by-beat assessment of CO makes it possible to reconstruct
aortic blood flow by simulating a three-element non-linear and time varying model of aortic
compliance [3]. Numerical integration of flow during systole then yields SV. COMF is finally
computed as SV times the corresponding HR.

The COMF value in each condition was the mean value calculated over 100 consecutive
beats, starting simultaneously to the first of each series of COTD procedure. Individual correc-
tion factors were calculated with the resting (basal) values as described elsewhere [4] and used
to recalculate COMF (COMFcorr.) in other conditions.

Exercise haemodynamics
Exercise haemodynamic evaluation was performed supine on an electromagnetically-braked
cycle ergometer (Cycline 100; Tecmachine, Andrezieux-Boutheon, France) secured to the cath-
eterization table. Prior to exercise, 5 min of rest with feet installed on the bicycle (raised legs)
were observed to ensure haemodynamic steady state after the expected increase of blood
venous return to the heart (considered as “bicycle rest”). Then the patient pedalled at 60 rpm,
the workload being increased stepwise by 20 W every 3 min from freeload cycling to a maxi-
mum of 60 W, depending on patient’s functional tolerance. CO was determined during the last
minute of each exercise level. All measures were obtained at steady HR and pulmonary artery
pressure.

Statistics
Data are given as mean ± standard deviation (SD), unless otherwise stated. Data comparisons
were performed by t-test for paired observations. Differences were considered significant when
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p< 0.05. Coefficient of variation was calculated as mean divided by SD for baseline CO values.
Linear relationships were analysed by linear regression, accounting for the error on both X-
and Yaxis. The York algorithm [5] implemented under Matlab (version 7.13.0.564, Math-
Works, Natick, MA, USA) was used, allowing calculation of confidence intervals for intercept
(a ± 1.96�SD) and slope (b ± 1.96�SD), and estimation of proportional bias (a significantly dif-
ferent from 1) and fixed bias (b significantly different from 0) between the two methods.
Bland–Altman analyses [6] were performed to determine the degree of agreement between
COMF and COTD and between COMFcorr. and COTD. The mean bias (accuracy), precision, 95%
limits of agreements (LoA) and percentage error (PE) were calculated. Sensitivity and specific-
ity of COMF for directional COTD increase or decrease in response to any procedure were deter-
mined. A directional change was considered false-negative when an increase of COTD � 10%
was not accompanied by a COMF increase� 10%. A directional change was considered false-
positive when a COTD increase< 10% or any COTD decrease was accompanied by an increase
of COMF � 10%.

Results
The clinical and haemodynamic data at baseline are shown in Tables 1, 2 and 3. The conditions
and number of simultaneous COTD and COMF measurements are shown in Table 4. Baseline
uncorrected COMF and COTD were 6.18 ± 1.95 and 5.46 ± 1.95 L�min-1, respectively, (p<0.05,
Fig 2A). The coefficients of variation were 10.63% and 5.66% for COMF and COTD, respectively
(p<0.01). The Bland–Altman plot for baseline CO values appears in Fig 2B. Accuracy and pre-
cision were 0.72 and 1.04 L�min-1, respectively. LoA ranged from -1.32 to 2.76 L�min-1. PE was
±35.7%. The relationships between COMF and the corresponding COTD are reported in Fig 3A,
3B and 3C. For CTEPH (n = 43), PAH (n = 55) and overall (n = 98), the intercept a was
0.207 ± 0.336, 0.516 ± 0.294 and 0.493 ± 0.209, respectively. Corresponding slope b was
1.167 ± 0.062, 1.082 ± 0.043 and 1.095 ± 0.034 L�min-1, respectively. A proportional bias was
found for CTEPH (Fig 3A). Merging groups implied both proportional and fixed bias (Fig 3C).

Table 1. Baseline characteristics of the study population.

PAH (n = 30) CTEPH (n = 20)

Not operated (n = 14) Operated (n = 6)

Age yrs 48.7 ± 15.6 64.3 ± 11.0 56.2 ± 19.8

Female % 60.0 57.1 66.7

BMI kg.m-2 25.0 ± 5.1 25.4 ± 4.9 31.5 ± 5.8

BSA m2 1.77 ± 0.19 1.76 ± 0.23 1.89 ± 0.18

MAP mmHg 90.9 ± 14.2 104.3 ± 20.4 95.0 ± 19.5

RAP mmHg 5.8 ± 3.1 7.4 ± 5.2 4.3 ± 3.9

mPAP mmHg 48.6 ± 14.9 43.0 ± 13.0 26.3 ± 7.6

PAWP mmHg 9.2 ± 3.7 6.2 ± 2.4 9.3 ± 3.3

CO L�min-1 6.0 ± 2.1 4.3 ± 1.3 5.5 ± 0.7

CI L�min-1�m-2 3.4 ± 1.0 2.4 ± 0.5 2.9 ± 0.2

PVR WU 7.5 ± 4.4 9.5 ± 4.5 3.2 ± 1.3

SVR WU 15.9 ± 6.1 24.7 ± 10.1 17.1 ± 5.8

Data are presented as mean ± SD unless otherwise stated. BMI: Body mass index; BSA: Body surface area; MAP: Mean systemic arterial blood pressure;

RAP: Right atrial pressure; mPAP: Pulmonary artery mean pressure; PAWP: pulmonary artery wedge pressure; CO: cardiac output, determined by

thermodilution; CI: Cardiac Index; PVR: Pulmonary vascular resistance; SVR: Systemic vascular resistance; WU: Wood units.

doi:10.1371/journal.pone.0134221.t001
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The Bland–Altman plot for merged groups is shown in Fig 3D. The accuracy was 1.05 L�min−1

(p<0.01). The precision was 1.20 L�min-1. LoA ranged from -1.30 to 3.40 L�min-1. PE was
±37.9%. The overall sensitivity and specificity of COMF for directional change in response
to any of the experimental manoeuvres (nitric oxide vasoreactivity test, fluid challenge or exer-
cise) were 95.2% and 82.4%, respectively (n = 48). Mean calibration factor for COMF

was 1.17 ± 0.25. COMFcorr. in all conditions except baseline (which was used to determine
the correction factor) are plotted against the corresponding COTD in Fig 4A. The regression
line was characterized by a and b of 0.094 ± 0.254 L�min−1 and 0.990 ± 0.038, respectively. Nei-
ther proportional nor fixed bias was found. The Bland–Altman plot (Fig 4B) showed an

Table 2. Diagnosis and treatment of the PAH population (%).

Subjects 30

WHO diagnostic subgroup

Idiopathic 17 (56.7)

Heritable 2 (6.7)

Drugs and toxin induced 1 (3.3)

Associated# 9 (30.0)

Pulmonary veno-occlusive disease 1 (3.3)

Treatment naive (newly diagnosed§) 7 (23.3)

No specific drug therapy 1 (3.3)

PAH-specific drug therapy 22 (73.3)

ERA 16 (72.7)

PDE5i 12 (54.5)

Prostanoid 7 (31.8)

CCB 1 (4.5)

Monotherapy 11 (50.0)

Double combination therapy 7 (31.8)

Triple combination therapy 4 (18.2)

doi:10.1371/journal.pone.0134221.t002

Table 3. Diagnosis and treatment of the CTEPH population (%).

Subjects 20

Newly diagnosed§ 12 (60.0)

Inoperable** 2 (10.0)

Operated¶ 6 (30.0)

PAH-specific drug therapy 5 (25.0)

ERA 5 (100)

PDE5i 4 (80.0)

Monotherapy 1 (20.0)

Double combination therapy 4 (80.0)

ERA: Endothelin receptors antagonists; PDE5i: phosphodiesterase-5 inhibitors; CCB: Calcium channel

blockers. #Patients with PAH associated to connective tissue disease (n = 1), HIV infection (n = 2), Portal

hypertension (n = 2) and Congenital heart disease after corrective cardiac surgery (n = 4).

§Patients diagnosed at the time of the present study.

**Due to distal lesions.

¶ Patients with persisting hemodynamic impairment at least 3 months after pulmonary endarterectomy

(PEA).

doi:10.1371/journal.pone.0134221.t003
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accuracy of -0.03 l�min−1 (NS). Precision was 0.61 L�min−1. LoA ranged from -1.23 to 1.17
L�min-1. PE was ±19.8%. COMFcorr. values at exercise (n = 16) are plotted against their corre-
sponding COTD in Fig 5A. The regression equation had intercept a and slope b of
-1.093 ± 0.760 and 1.117 ± 0.091 L�min−1, respectively. Neither proportional nor fixed bias was
found. The Bland–Altman plot (Fig 5B) revealed a -0.15 L�min−1 accuracy (NS). Precision was
0.65 L�min−1. LoA ranged from -1.42 to 1.12 L�min-1. PE was ±16.4%. The changes of COMFcorr

(ΔCOMFcorr) from baseline for each subject are plotted against the corresponding ΔCOTD in
Fig 5C. The sensitivity and specificity of COMF for directional change in response to exercise
were 93.3%. and 100%, respectively (n = 16). In one case, a COMF decrease< 10% (-0.22
L�min-1) did not accompany a COTD increase� 10% (+0.70 L�min-1) and was considered a
false negative.

Table 4. Conditions and number of simultaneous COTD and COMF measurements.

n Rest (baseline) NO testing Fluid Challenge Bicycle rest Bicycle exercise Total

PAH 30 7 4 5 9 55

CTEPH 20 9 1 6 7 43

Total 50 16 5 11 16# 98

Repartition of the different single simultaneous COTD and COMF measurements. A total of 98 CO measurements were performed in the 50 patients. Each

COTD is the mean of 3 TD measurements (see Methods). Each COMF is the mean of 100 consecutive beat-by-beat values (see Methods). 26 patients

(PAH n = 12, CTEPH n = 14) had a total of 48 measurements in conditions other than basal (PAH n = 25, CTEPH n = 23). #6 patients performed

incremental exercise (PAH n = 4, CTEPH n = 2) with the workload being increased stepwise by 20 W every 3 min to a maximal workload of 60 W

depending of patient functional tolerance for a total of 16 CO determined during steady exercise (PAH n = 9, CTEPH n = 7). NO: Nitric oxide

vasoreactivity test; Fluid Challenge: CO determined after infusion of 500 ml of isotonic saline solution in five minutes; Bicycle rest: CO determined after 5

min of rest with feet positioned on the pedals with raised legs.

doi:10.1371/journal.pone.0134221.t004

Fig 2. Comparison of baseline values of COMF and COTD. Simultaneous determination of cardiac output by thermodilution (COTD) and Modelflow (COMF)
in 50 patients with pre-capillary pulmonary hypertension. (A) The figure describes median (line), 25th to 75th percentile (box), 5th to 95th percentile
(whiskers) and the dots represent outliers. The mean values for COTD and COMF were 5.46 ± 1.95 L�min-1 and 6.18 ± 1.95 L�min-1, respectively (p<0.05). (B)
Difference between resting COMF and COTD values plotted against their mean. Broken line represents the mean (+ 0.72 L�min-1) and the solid lines the 95%
limits of agreement (-1.32 to + 2.76 L�min-1).

doi:10.1371/journal.pone.0134221.g002
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Fig 3. Relationship between COMF and COTD. COMF determined in 50 patients (98 values) under various conditions (rest, fluid challenge, NO testing and
exercise). COMF values were plotted against the corresponding COTD values for CTEPH patients (A) PAH patients (B) and all 50 patients (C). (D) Difference
between COMF and COTD values plotted against their mean. In (A), (B) and (C), the broken lines correspond to the lines of equality, solid lines are the mean
regression lines and dotted lines delimit the confidence interval of the regression lines. In (D), broken line represents the mean (+ 1.05 L�min-1) and the solid
lines the 95% limits of agreement (-1.30 to + 3.40 l.min-1).

doi:10.1371/journal.pone.0134221.g003
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Discussion
The results of the present study show that MF applied to non-invasive pulse pressure profiles,
once corrected against a reference method, offers a precise and accurate determination of CO
in patients with PAH and CTEPH.

Uncorrected COMF overestimation of COTD was confirmed by the ranges of regression lines
in Fig 3, displaced above the equality line when plotting COMF against COTD in CTEPH and
merging groups. When applied to the PAH group only (Fig 3B), however, linear regression
showed neither fixed nor proportional bias. These results are consistent with previous data,
comparing MF applied to peripheral pulse pressure profiles to different reference methods in
various clinical settings and populations [4, 7, 8] and confirm the need of a correction when
determination of absolute CO values, more than relative changes, is needed. Conversely, when
compared to TD at rest, non calibrated MF applied to pulse waves obtained from intra-arterial
signal in cardiac surgery patients was reliable and superior to other CO monitoring devices,
with acceptable LoA and PE [9]. These results were confirmed by a recent meta-analysis [10].
Another study compared COMF from arterial pulse pressure profiles recorded with Portapres
and from intra-arterial radial catheter in healthy subjects [11]: non-invasive CO was signifi-
cantly and systematically higher than CO from intra-arterial signal. The systematic difference
was attributed to differences in pulse wave between radial and finger arteries. This may also
partially explain the overestimation of COMF as compared to COTD in our study. Here, PE
of COMF slightly exceeded the ±30% limit admitted for allowing interchangeability of a new
technology with TD, as suggested by a meta-analysis of CO validation studies published by

Fig 4. Relationship between COMFcorr. and COTD. COMFcorr. determined in 26 patients (48 values). (A) For each subject, COMFcorr. values were plotted
against the corresponding COTD values. The broken line corresponds to the line of equality, solid line is the mean regression lines and dotted lines delimit the
confidence interval of the regression lines. (B) Difference between COMFcorr. and COTD values plotted against their mean. Broken line represents the mean
(-0.03 L�min-1) and the solid lines the 95% limits of agreement (-1.23 L�min-1 to +1.17 L�min-1).

doi:10.1371/journal.pone.0134221.g004
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Critchley and Critchley [12]. Still, the LoA and PE values of our study were smaller than those
obtained in PH patients for TD against direct Fick [13], thoracic bioimpedance against TD

Fig 5. Relationship between COMFcorr. and COTD during exercise. COMFcorr determined in 6 patients during exercise procedure. (A) For each subject,
COMFcorr values were plotted against the corresponding COTD values. The broken line corresponds to the line of equality, solid line is the mean regression
lines and dotted lines delimit the confidence interval of the regression lines. (B) Difference between COMFcorr and COTD values plotted against their mean.
Broken line represents the mean (-0.15 L�min-1) and the solid lines the 95% limits of agreement (-1.42 l.min-1 to +1.12 L�min-1). (C) For each subject and
workload, the increase (Δ) in COMFcorr from rest was plotted against the same corresponding COTD increase (ΔCOTD). The six different targets correspond to
the six different patients. The broken line corresponds to the line of equality.

doi:10.1371/journal.pone.0134221.g005
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[14] and transthoracic bioreactance against TD or indirect Fick [15]. It is noteworthy that
these two latter alternative methods for non-invasive CO determination are also promising, as
discussed in a recent review that focused its performances in the assessment of fluid respon-
siveness using passive leg raising test and cardiac output response to exercise stress testing [16].
In our study, COMF was not compared with direct or indirect Fick: any assumption of a better
correlation between MF and these methods would be speculative. Previously, determination of
CO changes by acetylene rebreathing showed good correlation with COTD changes in PAH
patients [13]. That technique was considered acceptable in most cases, despite LoA and PE
similar to the present ones. Other promising techniques, such as cardiac magnetic resonance
[17, 18] or echocardiography [19, 20], raise real interest in CO determination but require the
advanced expertise of a dedicated technician and a specific setting.

We didn’t aim at showing whether uncorrected MF could be interchangeable with TD. Pre-
vious studies that addressed this question showed that this is not so [21]. Moreover, contrary
to other clinical conditions, RHC is mandatory for PAH or CTEPH diagnosis [1]. Thus, since
these patients undergo anyway RHC, it would be easy to obtain a correction factor [4, 22] and
calibrate MF with basal TD in order to use the former for subsequent CO determination during
various conditions.

In this study, we also showed that MF detects significant directional changes of CO
associated to vasoreactivity testing, fluid challenge or exercise (Figs 4 and 5). Also transthoracic
bioreactance was claimed to reliably detect dynamic, directional CO changes following vasor-
eactivity testing with a sensitivity and specificity of 88.9% and 100%. Our results are similar to
those reported in this publication [14]. In a consistent manner with previous reports [23], we
assumed that a COTD variation would be significant when�10%, although an actual significant
variation should overtake the magnitude of the least significant change. Thus, the minimum
change that a device must measure to detect a real change is given by the formula: precision
multiplied by

p
2 [24]. From our data, the least significant change corresponded to a 9.2%

change. When applying this limit for calculation of sensitivity and specificity, no value was
reclassified.

The third finding of our study is that, once corrected against a reference method, MF
showed acceptable accuracy and precision in determining CO changes (Figs 4 and 5). In fact,
COMFcorr revealed LoA and PE below the limits for inter-changeability with TD. This suggests
that COMFcorr may constitute an alternative method to TD for serial CO measurements on the
same patient during the same procedure. The range of individual correction factors corre-
sponds to that of healthy subjects [4]. So, MF application may simplify and shorten any RHC
protocol where several CO measurements are required [1, 25]. Moreover, it makes possible to
explore CO changes with a beat-by-beat resolution, allowing opportunities to describe more
precisely cardiovascular adjustments during transients, like exercise onset in PH patients. In
fact, there is a growing interest in exploring exercise haemodynamics in pulmonary vascular
diseases. For instance, the establishment of multipoint pressure-flow (mPAP–CO) relation-
ships during exercise was recently shown to better describe pulmonary vascular resistive prop-
erties than PVR calculated only from resting values [26, 27]. Our group also recently showed
that exercise haemodynamics may also give invaluable information for unmasking pulmonary
vascular disease [28], assessing PAH severity and driving its therapeutic approach [29]. Like-
wise, haemodynamic response to exercise may be useful in patients with high risk of developing
PAH such as relatives of patients with heritable PAH [30] or patients with diseases associated
with high risk of developing PAH or resting mPAP values between 20 and 25 mmHg [31]. Car-
diodynamic exploration with determination of PVR changes at exercise may also help unmask-
ing PH due to left heart disease that could mimic PAH at rest and induce misdiagnosing [32].
Finally, the most recent guidelines for PAH treatment strongly recommend the inclusion of
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patients in supervised exercise rehabilitation programmes [2], where the possibility of easy-
access non-invasive monitoring of CO changes is desirable.

This study has several limitations. TD is not the gold standard for CO determination: the
comparison with the direct Fick method may provide different results. Yet, TD reflects every-
day clinical reality and common practice in PH reference centres and we aimed at comparing
MF to routine procedure. MF is unusable in patients with poor finger pulse-wave signal, as it
was the case in the present study for two patients with PAH associated to connective tissue dis-
eases (CTD). This may be an issue in centers were PAH associated to CTD is the most repre-
sented population. It is also unsure if MF and TD correlation would be different in patients
with cardiac arrhythmias, which was not the case for the patients included in our study. Finally,
it is still uncertain that the validity of the individual correction factor determined during RHC
persists over time or in different clinical testing. To date, individual correction of MF needs to
be determined against a reference method at every new exploration. That said, our data still
confirm that MF is reliable for relative CO changes even if no correction factor is applied. It is
also noteworthy that the model of aortic compliance used to compute COMF was developed
from data obtained on healthy subjects [3]. So it may be that the characteristics of aortic com-
pliance in PAH or CTEPH patients are different, inducing here a potential bias. In our study,
this issue was counterbalanced by the individual correction factors. Yet it may well impair the
utilization of a population correction factor, which moreover would have been unwise to use in
our study, considering the size of the study population and the variables to be included in the
analysis. We acknowledge that this may be seen as a limitation of our study. Nevertheless, the
mean correction factor determined in the present work was similar to those obtained previ-
ously in healthy subjects against another reference method [4].

Conclusions
MF is a simple and reliable method for detecting CO changes in pre-capillary PH. Once cor-
rected against a reference method, it is precise and accurate enough to evaluate absolute CO
changes in response to exercise, fluid challenge or vasoreactivity testing. MF may simplify hae-
modynamic evaluation of pre-capillary PH in clinical practice and widen the range of follow-
up and exploratory opportunities as it could potentially be used to study CO changes outside
the RHC laboratory on a beat-by-beat basis.
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