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Abstract

The purpose of the present study is to confirm the protective effect of berberine (BBR) on
gastrointestinal injury caused by acute heavy alcohol exposure, an effect that has not been
reported previously. Our research details how BBR protects against gastrointestinal injuries
from acute alcohol exposure using both in vivo and in vitro experiments. Acute high alcohol
concentrations lead to obvious damage to the gastrointestinal mucosa, resulting in necrosis
of the intestinal mucosa. Oral administration of BBR was able to significantly reduce this
alcohol-induced damage, inhibit increases of alcohol-induced TNFa and IL-13 expression
in gastrointestinal mucosa as well as their upstream signals TLR2 and TLR4, and regulate
cytokines that modulate tight junctions. Alcohol consumption is a popular human social
behavior worldwide, and the present study reports a comprehensive mechanism by which
BBR protects against gastrointestinal injuries from alcohol stress, providing people with a
novel application of BBR.

Introduction

The Chinese medical herb, Coptidis Rhizoma, has a long history of clinic use and use as a food
supplement. In ancient Chinese medical literature, Coptidis Rhizoma was originally recorded
for its applications in the treatment of gastrointestinal dysfunction, including diarrhea, dysen-
tery, and inflammation. Berberine (BBR) is the most abundant active natural compound in
Coptidis Rhizoma and plays a major role in the pharmacological effects of Coptidis Rhizoma,
including anti-cancer, anti-stroke, anti-diabetes and anti-hyperlipidemia effects [1-7]. BBR
was recently reported to exhibit novel anti-inflammatory and anti-oxidant properties as well as
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the ability to inhibit gene transcription [8-11]. Recent studies reported the ability of BBR to
maintain the junctions between intestinal mucosa [12-14], and the efflux pump in the small
intestine mucosa can promote highly regional distribution of BBR in the gastrointestinal
epithelia [15-19]. These findings indicate a potential application of BBR in the prohibition of
gastrointestinal injury by excessive alcohol use. Alcohol consumption is a common social
behavior worldwide. Alcohol use is a part of the culture and daily life of more than 2 billion
people worldwide [20], and can play an essential role in business and social activities. After
alcohol drinking, especially acute and extensive consumption, alcohol stimulates the gastro-
intestinal tract and causes stress to the gastrointestinal mucosa, inducing gastrointestinal bleed-
ing, inflammatory damage, and ulcers due to the upregulation of pro-inflammatory cytokines,
IL-1B, IL6 and TNFa [21-23].

Based on prior studies, we hypothesized and tested the potential application of BBR in pro-
tecting against alcohol stress-induced gastrointestinal injuries. Both in vivo and in vitro experi-
mental models of acute alcohol exposure were used to evaluate the effect of BBR on alcohol
injury. The pro-inflammatory cytokines TNFo. and IL-1p and the TLR2, TLR4, and NOD2
innate immunity signaling pathways were determined to be dynamically involved in gastroin-
testinal alcohol injury. BBR could effectively antagonize the regulation of the proinflammatory
cytokine profile and alter innate immunity signaling downstream of acute extensive alcohol
stress through direct effects on gene transcription. Furthermore, BBR antagonized elevations of
blood alcohol by prohibiting alcohol absorption and up-regulating ADH (alcohol dehydroge-
nase) activity to accelerate the metabolism of absorbed alcohol.

Methods and Materials
Experimental animals, drugs and chemicals

Male ICR mice weighing 18-22 g were purchased from Vital River Laboratories (Beijing,
China). The animals were housed in temperature- and humidity-controlled rooms, kept on a
12 h light/dark cycle and provided with unrestricted amounts of rodent chow and drinkable
water. The laboratory animal facility was accredited by the AAALAC (Association for Assess-
ment and Accreditation of Laboratory Animal Care International), and the IACUC (Institu-
tional Animal Care and Use Committee) of Tsinghua University approved all animal protocols
used in this study (Approval ID: 13-DLJ1).

Berberine hydrochloride was purchased from the Beijing Shuanghe Pharmacy Co. Ltd.
(Batch No. 110905) (Beijing, China). Berberine hydrochloride standards were purchased from
the National Institutes for Food and Drug Control (Beijing, China) (Batch No. 110713-
200609). Isolated alcohol (analytical grade) was purchased from Beijing Chemical Plant
(Beijing, China).

Dosage and use of BBR and alcohol

Based on our prior experiments, BBR was administered orally at 75,150, or 300 mg/kg in saline
vehicle. Three hundred milligrams/kilogram was far from the toxic dosage, and 150 mg/kg is
the equivalent dose of adults in clinic [15].

Sixty percent alcohol (V/V) was employed for the experiments. Alcohol and normal saline
was mixed to a final concentration of 60%. Based on the preliminary experiments, the volume
for oral administration was 15 ml/kg (approximately 7.103 g/kg), and the samples were col-
lected 2 hours after alcohol oral administration. BBR was administered orally 1 hour prior to
alcohol consumption.
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Experimental procedures in vivo

Absorption of alcohol and enzymatic activity. ICR mice were divided into five groups
randomly (six mice in each group). BBR was administered orally to animals in three different
groups. One hour later, 60% alcohol (0.15 ml/10 g body weight) was administered orally. The
normal group was administered saline only, and the model group was administered alcohol
only. After two hours, blood samples were collected through the supraorbital veins, and the
serum was isolated by centrifugation (15000 rcf/g, 10min, 4°C). All samples were stored at
-80°C for alcohol concentration and enzyme activity determination.

Histopathological examination and diagnosis of gastrointestinal mucosa. The mice
were randomly separated into five groups as previously described. Each group was comprised
of six mice. Two hours after the administration of alcohol, the mice were sacrificed for mor-
phological examination. All stomach and intestinal tissues were separated for gene expression
analysis and histological determination. The histopathological diagnoses were performed
through hematoxylin-eosin (HE) staining by two different research scientists independently.
The samples were semi-quantitatively scored according to Shackelford et al [24].

Blood alcohol concentration. Alcohol concentrations were measured in accordance with
the reference values. The reaction system was as follows: 1.5M Tris-HCI buffer (pH 8.8)350 ,
NAD* (10 mg/ml) 100 pl, ADH (200 U/ml) 10 pl and serum samples 1 pl. The samples were
mixed, and the OD value was recorded using a biochemical analyzer (Biosine Bio-technology
and science Inc., China). The tested wavelength was set at 340 nm. The alcohol concentration
is expressed in mg/ml.

ADH activity determination. ADH activity was measured in accordance with the instruc-
tions of the ADH kit (Nanjing Jiancheng Bioengineering Institute, China).The OD value was
recorded using a microplate reader (BioRad, Model 680, USA) at OD4s50nm. The enzyme activ-
ity is expressed in U/ml.

Experimental procedures in vitro

Cell culture and cell viability assay. The Caco2 and 293Tcell lines were obtained from the
Cell Culture Center of Chinese Academy of Medical Science (Beijing, China) and maintained
at 37°C in a humidified incubator containing 5% CO,. The cytotoxicity of BBR and alcohol to
Caco2 cells and 293T cells was evaluated by MTT assay performed according to the method
described in reference [25].

Alcohol-induced responses in the Caco2 cell line. 2 pg/ml BBR (saline used as vehicle)
was added one hour before acute alcohol exposure, and the concentration was maintained
throughout the experiment. Two hours after alcohol administration, protein and RNA samples
were extracted.

Promoter-GFP plasmid construction and transfection. The TLR2-pEGFPN1, NOD2-
PEGFPN1 and pEGFP-N1 plasmids were kindly provided by Dr. Xiao-Jin Yan and Professor
Ye-Guang Chen, School of Life Science, Tsinghua University. The TLR4 gene promoter was
obtained from the mouse genome by PCR. Mouse genomic DNA was extracted from mouse
liver homogenate (TTANamp Genomic DNA Kit, Tiangen Biotech, China). The CMV pro-
moter of the pEGFP-N1 plasmid was replaced by the TLR4 promoter. GFP expression driven
by the TLR2, TLR4 or NOD2 promoter was determined after transfection into the 293T cell
line. The primer sequences of the TLR4 promoter were as follows: sense: 5- AGAACAATGA
AGGGACCCAGTC -3’ and antisense: 5- GGGATTCAAGCTTCCTGGTGT -3’, generating a
1835-bp DNA fragment. The primer sequences of GFP were as follows: 5- GCAGAAGAAC
GGCATCAAGG -3’ and antisense: 5- CGGACTGGGTGCTCAGGTAG -3
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Real time PCR and western blot

mRNA and protein determination was performed using q-PCR and western blot (WB) assay
as described in detail previously [26]. For real-time PCR, all primer sequences were designed
by NCBI GenBank and produced by Sangon Biotechnology Ltd. (Shanghai, China) (S1 Table
and S2 Table). For western blot analysis, primary antibodies against NOD2 (rabbit monoclonal
antibody [EPR16252], ab197030), TNFo (mouse monoclonal antibody [52B83], ab1793), IL-
1B (rabbit polyclonal antibody, ab9722), TLR2 (mouse monoclonal antibody [T2.5], ab16894),
TLR4 (mouse monoclonal antibody [76B357.1], ab22048), Occludin (rabbit polyclonal anti-
body, ab64482) and claudin4 (rabbit polyclonal antibody, ab15104) were purchased from
Abcam (UK). Secondary antibodies of goat anti-mouse IgG-HRP (sc-2005) and goat anti-rab-
bit (sc-2004) IgG-HRP were purchased from Santa Cruz (USA). The targeted proteins were
and visualized with the Super Signal West Femto Chemiluminescent Substrate (Thermo scien-
tific pierce) and the intensity of visualized bands were analyzed by using Quantity One software
(Bio-rad). B-actin was used as an internal control. Data were expressed by the ratio to B-actin.

Data analysis

Data are expressed as the mean + S.D. Data were statistically analyzed using Kruskal-Wallis

test. The test was performed using R software (USA). The non parametric Mann-Whitney U
Test between two groups was performed after Kruskal-Wallis test. P values below 0.05 were

considered statistically significant.

Results

Mouse gastrointestinal mucosal morphology and plasma alcohol
concentration and ADH activity

Two hours after 60% alcohol administration, the alcohol-induced pathological damage was
observed as a congestive and dark red appearance in the duodenum compared with that of nor-
mal mice. High-dose BBR (300mg/kg) effectively inhibited the alcohol-induced morphological
changes of the duodenum (Fig 1A). By light microscopy, congestion, edema, necrosis and shed-
ding of the mucosa from duodenum was observed in alcohol-treated mice (Fig 1B and 1D).
BBR was able to effectively antagonize the alcohol-induced pathological changes in the duode-
num, which was indistinguishable in morphology from the saline group. Unlike the small
intestine, the gastric mucosa exhibited minor pathological changes among the different groups
(Fig 1C). It has previously been reported that 100% alcohol can cause erosion in rat stomach
mucosa and can up-regulate the mRNA expression of c-fos, c-jun and HSP70 in the damaged
epithelium; however, the necrosis in the stomach was less severe than in the small intestine
[27], suggesting that the small intestines were more sensitive to alcohol damage.

The blood alcohol concentration (BAC) after alcohol consumption is the major factor caus-
ing drunkenness and body damage. Pretreatment with BBR before alcohol administration sig-
nificantly reduced the BAC in mice even at the lower doses (Fig 2A). Furthermore, the plasma
ADH activity was remarkably increased in the group treated with high-dose BBR, suggesting
that in addition to the protective duodenum effect, BBR could protect mice from alcohol injury
through decreased blood alcohol concentration and enhanced metabolism of alcohol by
increased ADH activity (Fig 2B).
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Fig 1. General observation and morphology of gastro-intestines after acute alcohol exposure (H.E.
staining). Berberine (BBR) was administered at three different doses of 75, 150 and 300 mg/kg. A 60% alcohol
was employed. The alcohol was administered at dose of 0.15 ml/10g body weight. The arrows indicate
congestive necrosis places. (A): Observation of stomach and small intestines. Intestinal congestion occurs in
the duodenum in model mouse. (B): Morphology of small intestines after alcohol administration. In the mouse
model, small intestinal mucosa appears necrosis. BBR could prevent alcohol injury from the intestines. (C):
Morphology of stomach after alcohol exposure. (D): Mucosa of small intestines (magnified 200 times). Alcohol
causes gastric mucosal injury, edema with light staining. (E): Statistical score of the histopathological diagnoses
for small intestines injury after alcohol consumption. Kruskal-Wallis chi-squared = 24.0696, df =4, P = 7.735e-
05. Data are expressed as the mean + S.D. from six different mice. ###, vs. normal mice, P <0.001. **, vs.
model mice, P <0.01.

doi:10.1371/journal.pone.0134044.g001
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Fig 2. The concentration of alcohol and activity of ADH enzyme in blood of mice. (A): Alcohol, Kruskal-
Wallis chi-squared = 26.6366, df = 4, P = 2.354e-05. (B): ADH. Kruskal-Wallis chi-squared = 14.0461, df = 4,
P =0.007149. Data are expressed as the mean * S.D. from six different mice. #, ## vs. normal mice, P < 0.05,
P <0.01. *, ** ys. model mice, P <0.05, P <0.01.

doi:10.1371/journal.pone.0134044.9002

Effect of BBR on the pro-inflammatory cytokines profile and pattern
recognition receptors in mouse stomach after acute alcohol exposure

To understand the inflammatory response and abnormal expression of pattern recognition
receptors (e.g., Toll-like receptors (TLRs) and NOD2) accompanying the ethanol-induced gas-
trointestinal mucosal injury, we studied the expression of TLR2, TLR4 and NOD?2 and their
down-stream effectors TNFo and IL1-B in mouse stomachs after acute alcohol exposure by
q-PCR and western blot. The results revealed that acute alcohol exposure could significantly
up-regulate the transcription and protein level of TNFa, IL1-B, TLR2, and TLR4, and these
alcohol-dependent enhancements were antagonized by BBR administration (Fig 3). Only one
BBR dose group exhibited decreased expression of NOD2 protein as well as consistent q-PCR
results, suggesting that BBR exhibits a greater effect on TLR2 and TLR4 compared with NOD2
in the stomach mucosa. Occludin and claudin4 are major components of tight conjunctions in
the gastrointestinal epithelium and act to regulate intestinal epithelial permeability. Acute high
alcohol exposure can up-regulate occludin and claudin4 expression. However, alcohol-induced
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Fig 3. The expressions of inflammatory cytokines of mouse stomach after acute alcohol exposure.
The concentration of alcohol was 60%. (A—G): mMRNA expressions using real time PCR assay. (H-N): The

expressions of protein using western blot assay. Berberine (BBR) was administered at three different doses
of 75,150 and 300 mg/kg. Data are expressed as the mean + S.D. from six different mice. ## vs. normal mice,
P <0.01. *, ** vs. model mice, P <0.05, P < 0.01.

doi:10.1371/journal.pone.0134044.g003
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expression profile changes could be antagonized by BBR, which attenuated occludin and clau-
din4 expression (Fig 3F and 3G & 3M and 3N).

Effect of BBR on the pro-inflammatory cytokines profile and TLRs and
NOD2 in mouse small intestine after acute alcohol exposure

Consistent with the studies in stomach, acute alcohol administration significantly increased
the expressions of TNFa, IL1-B, TLR2, and TLR4 at the mRNA and protein level (Fig 4), and
BBR dose-dependently inhibited alcohol-induced changes. However, inconsistent with NOD2
expression in the stomach, BBR inhibited the mRNA and protein upregulation of NOD2
caused by alcohol (Fig 4C& 4]), suggesting the greater sensitivity of the NOD2 response of the
small intestinal mucosa to alcohol stress. The expression of other proteins was consistent with
the mRNA results. In the small intestine, alcohol administration suppressed the expression of
occludin but increased the expression of claudin4. BBR enhanced occludin expression and
attenuated claudin4 expression (Fig 4F and 4G & 4M and 4N).

Effect of BBR and alcohol on the Caco?2 cell line in vitro after alcohol
exposure

To verify the effect of alcohol on small intestinal mucosal injury, we performed in vitro experi-
ments using Caco2 cells, a human colon adenocarcinoma line exhibiting differentiation of
small intestine epithelial cells [28]. Alcohol up-regulated the mRNA expression of the pro-
inflammatory cytokines IL-18 and TNFo. as well as the expression of the innate immune recep-
tors TLR2, TLR4 and NOD2, which is consistent with the results observed in mice. BBR effec-
tively decreased the expression of these genes, with the exception of NOD2 (Fig 5A-5E). In
Caco2 cells, BBR exhibited little effect on NOD2 (Fig 5C). Similar results were observed at the
level of protein expression (Fig 5F-5]). BBR down-regulated the protein expression of TLR2,
but the trend did not reach statistical significance (Fig 5F). A 2% concentration of alcohol was
administered (348 mmol/L) because the safety dosage for alcohol cytotoxicity was determined
to be 696 mmol/L using the MTT assay (Fig 5K). BBR was administered at a dose of 2 ug/ml
(5.95 pmol/L) in the experiments, which is far lower than the cytotoxic dosage of 37.2 umol/L.
The cytotoxicity of alcohol and BBR in Caco2 cells was measured using MTT assay (Fig 5L).

Effect of BBR on TLR2, TLR4 and NOD2 promoters in vitro

To acquire a more thorough understanding of the effect of BBR on TLR2, TLR4 and NOD2
expression, three promoter-driven expression plasmids were constructed (Fig 6A). Instead of
CMYV promoter, the TLR2, TLR4 or NOD2 promoters were used to drive the expression of
green fluorescent protein (GFP). The expression of GFP was detected using q-PCR and WB
assays. Alcohol promoted the mRNA expression of GFP downstream of the TLR2, TLR4 and
NOD2 promoters. BBR was able to attenuate these stimulations and suppressed the up-regu-
lated GFP mRNA expression driven by the TLR2 and TLR4 promoters (Fig 6B and 6C). How-
ever, BBR was unable to down-regulate GFP mRNA expression driven by the NOD2 promoter
(Fig 6D). The protein expression of GFP in the TLR2 and TLR4 promoter plasmids were also
inhibited by BBR, consistent with the results of mRNA expression (Fig 6E and 6F). Although
the GFP protein expression of the NOD2 promoter plasmid exhibited a trend of down-regula-
tion, it failed to reach statistical significance (P = 0.079) (Fig 6G). Therefore, we suggest that
BBR suppresses alcohol-induced TLR2/TLR4 expression by interaction with their promoters.
In these experiments, cells were treated with 44 mmol/L alcohol and 0.5 ug/ml (1.49 umol /L)
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Fig 4. The expressions of inflammatory cytokines of mouse small intestines after acute alcohol exposure. The concentration of alcohol was 60%. (A—
G): mRNA expressions using real time PCR assay. (H-N): The expressions of protein using western blot assay. Berberine (BBR) was administered at three
different doses of 75,150 and 300 mg/kg. Data are expressed as the mean + S.D. from six different mice. ## vs. normal mice, P <0.01. *, ** vs. model mice,
P <0.05,P<0.01.

doi:10.1371/journal.pone.0134044.9004
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doi:10.1371/journal.pone.0134044.9005

BBR, based on the results of a safety dose of alcohol of less than 87 mmol/L and a safety dose of
BBR of less than 2.94 umol/L in 293T cells (Fig 61 and 6]).
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Fig 6. Effect of berberine (BBR) on the transcriptions of TLR2 and TLR4 on 293T cells. (A): Constructions of TLR2, TLR4 and NOD2 plasmids. (B-D):
mRNA expression of GFP. (E-G): Protein expression of GFP promoted by TLR2, TLR4 and NOD2. (H): Lanes of protein expression detected using western
blot assay. (1): Cellular viability after alcohol exposure. (J): Cellular viability after BBR administration. NS: no significance. Alcohol was used at concentration
of 44 mmol/L. BBR was administered at concentration of 1.49 ymol/L. Data are expressed as the mean + S.D. from three independent experiments. #, ## vs.
the control, P <0.05, P < 0.01. ** vs. the model, P <0.01.

doi:10.1371/journal.pone.0134044.9006

Discussion

Alcoholic beverages have been consumed worldwide since the very beginning of recorded his-
tory [29]. Long-term or extensive drinking can cause harmful stresses to the central nervous
system (CNS), cardiovascular system, immune system, liver, pancreas, gastrointestinal system,
etc.[30, 31]. Thus, developing a strategy to alleviate alcohol consumption-related injury is pur-
sued by many research groups worldwide.
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In our preliminary experiments, alcohol induced the upregulation of inflammatory cyto-
kines and the innate immunity response receptors TLR2, TLR4, and NOD?2 in a dose-depen-
dent manner and sixty percent alcohol could significantly alter the molecular profiles in vivo
(Figures A and B in S1 File). Sixty percent alcohol-containing beverages are widely available on
the market and are popular among alcohol consumers. Thus, 60% alcohol was selected to study
the protective effect of BBR on alcohol-induced injury of the gastrointestinal system.

In some cases, extensive alcohol consumption is followed by inflammation [32, 33]. Alco-
hol- mediated inflammation signals are caused by the increased production of pro-inflamma-
tory cytokines. In the present research, both in vivo and in vitro experiments revealed that
alcohol could significantly promote the expression of the pro-inflammatory cytokine TNFo.
and IL1-B, which subsequently evokes inflammation. BBR antagonized alcohol-induced
inflammation via suppressing the expression of pro-inflammatory cytokines.

Pattern recognition receptors act as the signaling molecules upstream of pro-inflammatory
cytokines, such as IL-1f and TNFa [34-36]. The TLR4/MyD88 pathway had been confirmed
as a target of alcohol-induced brain injury [37, 38]. TLR2 is an important mediator of inflam-
mation in the airway epithelium induced by acute alcohol consumption [39].The present
results revealed that alcohol could induce TLR2, TLR4 and NOD2 upregulation, and pre-treat-
ment with BBR was able to antagonize the alcohol-enhanced expression of TLR2 and TLR4.
Experimental results from recombinant plasmids studies indicated that gene transcription ini-
tiation is the direct target of BBR with respect to its antagonistic role on alcohol-regulated gene
expression profiles. However, the antagonistic effect of BBR on alcohol-induced NOD2 signal
pathway alternations was not obvious, indicating that the involvement of the NOD2 pathway
in alcohol-induced inflammation differs somewhat from TLR2 and TLR4 and remains to be
elucidated.

Occludin and claudins are the main proteins responsible for the gastrointestinal tract epi-
thelial tight junctions (TJs) and the regulation of intestinal epithelial permeability [40, 41].
Occludin knockout mice exhibit decreased density and poor organization of the tight junctions
in the intestinal mucosa as well as functional defects [42, 43]. The claudin super family plays
critical roles in barrier formation and the selective permeability in tissues [44-48]. In the pres-
ent study, acute heavy alcohol consumption resulted in an abnormal expression profile of
occludin and claudin4 in the gastrointestinal mucosa, and BBR antagonizes these profile
changes. Interestingly, we observed that alcohol could stimulate occludin downregulation and
claudin4 upregulation in the small intestines, which has been previously reported [49].BBR
was able to down-regulate claudin4 and up-regulate occludin, returning levels to homeostasis,
suggesting that BBR’s potential effect on intestinal permeability altered alcohol-induced dam-
age. Taken together, our results showed that alcohol could not only lead to an inflammatory
reaction, but also affect mucosal permeability by modulating occludin and claudin4 expression.
It was reported that TLR2 could influence the tight conjunction barrier in epidermal keratino-
cytes or cerebral endothelial cells [50-51]. BBR could inhibit the expression of TLR2, which
would be involved in the mechanism of BBR on claudin4 and occludin. These putative mecha-
nisms warrant further study.

Studies have demonstrated that inflammatory disorders induced elevated levels of IL-13
protein, followed by inhibition of the expression of occludin mRNA and enhanced intestinal
mucosal permeability of TJs [52-54].According to these reports, high alcohol consumption can
promote intestinal permeability [55].The present results revealed that acute high alcohol intake
could cause injury of the mucosal layer of mouse small intestines, which was associated with
up-regulated IL-1P expression and occludin suppression. BBR exhibited a consistent inhibitory
effect on IL-1p expression, correlating with occludin expression up-regulation. TNFa is
believed to be important in the incidence and development of inflammatory intestinal disease.
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Targeting TNFo can inhibit intestinal inflammation and improve intestinal permeability [56].
Our data demonstrates that high alcohol intake can increase the expression of TNFo in the
duodenum and that BBR can reduce the upregulation of TNFa, suggesting that inhibition of
TNFo expression is involved in the effects of BBR on acute heavy alcohol consumption-
induced damages.

European men are reported to consume more than 0.72 g/kg alcohol daily, and women con-
sume more than 0.65 g/kg [57]. On average, the daily normal alcohol consumption among
Europeans is 60 g and 30 g for men and women, respectively. In addition, the maximum aver-
age daily intake of ethanol can reach 150 g [58-60]. Approximately 7.103 g/kg alcohol was
administered in the present study, which is equivalent to a human dosage of 0.7805 g/kg [15].
Based on the average body weight of 70 kg, the total amount of alcohol scales to 54.638 g in the
present study, which is close to the amount of alcohol reported earlier. BBR is able to prevent
the damage inflicted at high doses, demonstrating that it could be used potentially as an effec-
tive therapy in clinical practice.

Conclusions

In summary, this is the first report comprehensively demonstrating that pretreatment with
BBR before acute alcohol consumption protects the gastrointestinal mucosa from alcohol inju-
ries. The oral administration of BBR could effectively prevent gastrointestinal damage. The
mechanism by which BBR conferred protective effects included the regulation of inflammatory
cytokine profiles by directly targeting gene transcription, including the genes encoding TLR2
and TLR4. This work provides a reasonable therapeutic strategy to protect against gastrointes-
tinal damage induced by acute heavy alcohol consumption.
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