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Abstract
The problem of power and performance management captures growing research interest

in both academic and industrial field. Virtulization, as an advanced technology to conserve

energy, has become basic architecture for most data centers. Accordingly, more sophisti-

cated and finer control are desired in virtualized computing systems, where multiple types

of control actions exist as well as time delay effect, which make it complicated to formulate

and solve the problem. Furthermore, because of improvement on chips and reduction of

idle power, power consumption in modern machines shows significant nonlinearity, mak-

ing linear power models(which is commonly adopted in previous work) no longer suitable.

To deal with this, we build a discrete system state model, in which all control actions and

time delay effect are included by state transition and performance and power can be

defined on each state. Then, we design the predictive controller, via which the quadratic

cost function integrating performance and power can be dynamically optimized. Experi-

ment results show the effectiveness of the controller. By choosing a moderate weight, a

good balance can be achieved between performance and power: 99.76% requirements

can be dealt with and power consumption can be saved by 33% comparing to the case

with open loop controller.

1 Introduction
In large scale computing systems, like data centers, huge power has been consumed and the
consumption is increasing greatly each year([1]). This gives rise to heavy pressure on environ-
ment and resource. Thus performance and power management has become more and more
important and captured growing research attention in both industrial and academic fields.

As an advanced technology, virtualization can provide a promising approach to save power
([2]) and has become a basic architecture in most data centers today. In the virtualized systems,
the services are enclosed in the virtual machines (VM). Many VMs can be hosted on one physi-
cal machine (PM) and the VMs can be created or destroyed or migrated between different PMs
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at little cost. Then, by consolidating many VMs to few PMs, the PMs with low workload, utili-
zation or frequency can be shut down and power consumption can be reduced. Hence, in the
virtualized computing systems, more control actions is feasible, including turning on/off the
PMs, turning on/off the VMs, migrating the VMs between PMs, regulating the frequency of
processor etc.. Additionally, control actions often have time delay. For example, turning on/off
the PM needs several minutes and thus will influence performance and power consumption
greatly. These factors make it complicated to design sophisticated and fine control to manage
performance and power consumption.

Because of the significance and difficulty, researchers have been trying to solve the problem
from different aspects. Usually, the first step is to build a model of energy consumption(called
power model below for simplicity). In the literature, linear power model is often adopted. How-
ever, modern machines show significantly nonlinear features, which can be caught from data
(see Section 2). Other modelling include fuzzy model etc., see e.g. [3, 4]. A review for power
metering can be seen in [5]. With power model, the problem can be formulated in several
ways. For example, we can maximize performance under power budget(e.g. [6]) or minimize
power consumption when tracking performance or load balance between VMs (e.g. [7] ), or
optimize a newly defined objective, which integrates performance, power and the balance
between different machines(e.g. [3][8]).

Based on the formulations, different kinds of solutions have been proposed, see [9] for a
review of energy-efficient algorithms. Next we describe several specific ways. In [3][10], the
authors use reinforcement learning, and in [3] the reinforcement learning method is used
together with fuzzy rule bases to achieve a defined objective, which shows robust performance
improvement. In [11], the authors take advantage of the min-max and shares features inherent
in virtualization technologies to allocate resources to a VM based on available resources, power
costs, and application utilities. In [12], a temperature-aware workload placement is proposed
in data centers. In [13], game theory is applied to formulate the problem and optimize power
and performance at each level of the hierarchy while maintaining scalability.

Since it can provide a unified framework as well as rigorous controller design and can deal
with dynamic and uncertain environment, control theory has been applied more and more to
solve the problem. For example, in [7], the self-tuning regulator(which is an adaptive control-
ler) is utilized to track performance and then optimize the energy assumption based on linear
power model; in [8] the authors designs optimal controller by integrating the SLA function,
and introduces a two-level control with one level being faster and the other being slower; in
[14] Kalman filter is introduced to track the CPU utilizations and update the allocations of
CPU resources to VMs accordingly; in [15] PID controller is proposed to manage power con-
sumption and CPU utilization; in [16] MPC controller is designed; in [6] both PID controller
and MPC are adopted at the same time; in [17] the authors compare effects of different control-
lers and find that predictive controller performs better and has some self-learning behavior.
Other recent related papers are referred to [18–22].

This paper aims to provide a predictive controller for the virtualized computing systems
with significantly nonlinear features on power consumption. First, significant nonlinearity on
energy consumption of newer servers are discovered from data. Especially, we find that the
max utilization/workload does not correspond to the max performance-power ratio. This
announces invalidation of linear power model, which was commonly adopted in the literature.
To deal with the nonlinear features, we build a discrete system state model as well as the state
transition graph. Then, performance and power, especially power, is defined on each state,
which is more accurate than linear power model. Furthermore, turning on/off a PM becomes
feasible control actions, and the time-delay effect can also be taken into account. Based on the
discrete model, we design a predictive controller naturally and minimize the quadratic cost
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function (which integrates both performance and power) dynamically by searching on the fea-
sible state space. During the control process, the time-varying workload is predicted using an
AR model. By choosing a moderate prediction horizon, the search approach becomes feasible.
Experiment results validate effectiveness of the controller: by choosing a moderate weight, per-
formance requirement can be satisfied for more than 99% times; meanwhile, the power con-
sumption can be saved by 33% compared to the system without predictive controller. Part of
this paper is presented in [23].

The paper is organized as follows. After a brief review on power models, Section 2 shows
novel features on energy consumption in modern machines, which make linear power model
not suitable any more. Section 3 formulates the problem by building a discrete state model. Sec-
tion 4 describes the design of predictive controller. Section 5 validates the effectiveness of the
controller by experiments. And finally, Section 6 concludes the paper with some remarks.

2 Novel Features on Power Consumption

2.1 Linear Power Models in the Literature
In order to save power, a suitable power model, which catches the relationship between energy
consumption per time unit (power, kilo � hour)) and physical parameters when running the
machine, needs to be built. In the literature, linear power model is commonly adopted for sim-
plicity and convenience, in which power consumption is modeled as a linear function with
respect to certain system parameters, like CPU utilization, CPU frequency or number of VMs.
Below we give some typical examples.

In [6], the VM’s power PVM is assumed to be PVM = cfreq�ucpu, where PVM denotes VM’s
power, ucpu is CPU utilization of the VM, and cfreq is a model parameter which is dependent on
processor frequency.

In [8], the power (kilo � hour) is assumed to be Power = Pidle + α � Ucpu, where Pidle denotes
the power consumption at idle state, Ucpu denotes CPU utilization and α is a parameter which
is dependent on the specific machine and application.

In [24], the speed(or frequency) of the server s(GHz) is assumed to be s = sb + α(P − b),
where sb(Hertz) denotes the speed of a fully utilized server running at bWatts, P (Watts)
denotes the power allocated to the server, while the coefficient α (units of GHz per Watt) is the
slope of the power-to-frequency curve, which can be obtained by experiment.

In [25], the processor power is modeled as an approximately linear function with respect to
the DVFS level within the limited DVFS adaptation range available in real multi-core proces-
sors, i.e., cp(k) = a(f(k + 1) − f(k)) + cp(k − 1), in which cp(k) denotes power consumption of
the entire chip in the k-th control period, f(k) denotes total aggregated frequency of all cores on
the chip in the kth control period and a denotes a generalized parameter that may vary for dif-
ferent chips and applications.

In most practical cases, linear power model is suitable and can provide convenience for utili-
zation, see [8]. This causes nonlinear power models rare to be studied in the literature. How-
ever, linear power model has a defect, which can be seen from Fig 1. For the server Sun Netra
x4250 and IBM x3450, power can be approximated by a linear function with respect to CPU
load, where the positive power value when load equals zero denotes the idle power. However,
when the machine is turned off, the system load is also zero, but the power value now is zero
rather than idle power. Thus, linear power model cannot distinguish the state when the PM is
shut down from the state when it holds zero workload, which makes turning on/off a PM
deleted from the optional control action set in most previous work. As we have stated in Sec-
tion 1, this does not fit the virtualized computing systems.
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2.2 Nonlinear Features of NewMachines
In recent years, server technology has developed swiftly, making processors more and more
advanced. Along with the progress, linear power model encounters new problems, making it
unable to reflect novel features of new machines, as stated below.

First, a significant progress is the considerable reduction of idle power. Meanwhile, other
parameters, such as power at big load, do not change with it. This makes linear power model
no longer accurate, as shown in Fig 1.

In Fig 1, power curves for the servers Sun Netra x4250 and IBM x3450 are basically in accor-
dance with a line. However, for the server IBM x3650M2, the idle power is reduced signifi-
cantly (from 86 to 75 in fact), which is far below the line while other points still fit with it.
Apparently, linear power model is no longer suitable now and thus management based on lin-
ear model is no longer optimal.

On the other hand, power saving is far from being the sole objective or even a prior objec-
tive. A good performance-power ratio(performance obtained per unit of power) makes more
sense, since in practice it is more important to complete a job in the given time or satisfying
other requirements.

Fig 1. Linear model cannot reflect the reduced idle power of newmachine.

doi:10.1371/journal.pone.0134017.g001
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From this point of view, in a linear power model, the performance-power ratio peaks at
100% load: assume

Power ¼ Pidle þ a � Load;

then the performance-power ratio

Perf
Power

¼:
Load
Power

¼ 1

aþ Pidle

Load

is a strictly increasing function with respect to Load and peaks when Load = 100%.
However, the real case is different for new servers, as shown in Fig 2 below. Fig 2 draws the

curve of performance-power ratio(defined as the requirements number that can be dealt with
using one unit of power) with respect to load for the server IBM x3300M4 (data come from [26]).

From Fig 2, we can see that the biggest performance-power ratio occurs when the load is
nearly 80% for some servers. Apparently, linear power model is not suitable any more and if
we still use linear power model to simulate a modern server, we will miss the best choice. To
deal with this, we will build a discrete-state-based power model in next section, which can
include these nonlinear features.

Fig 2. Performance-power ratio not peaks at 100% load.

doi:10.1371/journal.pone.0134017.g002
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3 Discrete State Model
In a virtualized computing system, there are some physical machines(PMs), denoted by PMi,
i = 1,2, ..., n, which are homogeneous or heterogeneous. Virtual machines(VMs) are hosted on
each PM and can be immigrated between different PMs. In this paper, we assume that at most
one VM can be hosted on one processor of a PM.

Generally, the state of a PM describes whether the PM is turned on or off, the running fre-
quency of its processors, and the VM number hosted on it. Thus, we define the state of PMi as

Si ¼ ½on; vms; freq�;

in which the variable on is taken as on or off, corresponding to PMi being turned on or turned
off, vms stands for the number of VMs running on PMi, and freq represents the current fre-
quencies of the running processors(so freq here is not a scalar).

In most situations, jobs allocated to one PM has the same type. Then, all influential factors
are included in the state vector of a PM to complete the job. When different jobs are allocated
to a PM, more factors, such as the architecture among the cores, must be considered, which is
beyond the focus of this paper.

The time varying strength of a job is called workload and denoted by λ(k) at time k. Suppose
at time k, the state is Si(k), then the performance of PMi, denoted by perfi(k), is defined to be
themaximal workload which can be dealt with by PMi. Obviously, if the allocated computing
resource is not sufficient, it can happen that perfi(k)< λ(k). Here we assume that a requirement
will be abandoned if it cannot be dealt with immediately, i.e., no aggregation effect exists here.

On the other hand, at time k, the power consumption of PMi, denoted by poweri(k), also is
mainly determined by Si(k). In the experiment, poweri(k) can be measured at each time.

Apparently, there is a tradeoff between high performance and low power consumption.
Thus in practice, we usually aim to get a good balance between them. To this end, we will build
a discrete state model of the system and then design predictive controller.

To simplify but without loss of generality, we describe the discrete model as we do in experi-
ment. Let For PMi, Si = [on, vms, freq] to be discrete and taken out of the following 6 typical
values:

s0 ¼ ½off ; 0; null�; s1 ¼ ½on; 0; null�;
s2 ¼ ½on; 1; 1VM  on  low  frequency�; s3 ¼ ½on; 1; 1VM  on  high  frequency�;
s4 ¼ ½on; 2; 2VMs  both  on  low  frequency�; s5 ¼ ½on; 2; 2VMs  both  on  high  frequency�

which are abbreviated as Turn off, Turn on, 1VM low frequency, 1VM high frequency, 2VM
low frequency, 2VM high frequency respectively. Then, by regulating resource, one state can
be transformed to another, as shown in Fig 3, in which each directed line represents a transition
between the states with positive time delay. Transition without time delay, such as the transi-
tion between s2 and s3, between s4 and s5, are omitted in the figure.

Now, assume that a job J is hosted on some PMs. Then, the performance and power at time
k is defined on the state as

perfiJ Ji ðkÞ ¼ functionðSiðkÞÞ 2 ff JðsqÞ; q ¼ 0; 1; :::; 5g; ð1Þ

poweriJ Ji ðkÞ ¼ functionðSiðkÞÞ 2 fgJðsqÞ; q ¼ 0; 1; :::; 5g: ð2Þ

In practice, the value of perf Ji ðkÞ; powerJi ðkÞ can be learnt by prior experiments.
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For a system with n PMs, define the performance and power at time k as

perf ðkÞ ¼
Xn

i¼1

perfiðkÞ; ð3Þ

powerðkÞ ¼
Xn

i¼1

poweriðkÞ; ð4Þ

which are reasonable in view of the meanings of perfi(k) and poweri(k).
There are several advantages of the discrete state model

1. By defining discrete states and transition between them, turning on/off a PM can be treated
as a control action. To be specific, s0 to s1 stands for turning on the machine and the reverse
stands for turning it off.

2. The idle state is also included in the model by state s1, and thus it can be taken into account.
Accordingly, the performance-power ratio is hidden in the model naturally and can be
reflected in the cost function. Thus the discrete state model overcomes the drawbacks of lin-
ear power model and is suitable for new servers.

3. Time delay effect, which exists during turning on/off a PM, now is taken into consideration.
Time delay effect were often neglected in the literature, partly because it is hard to add into
the model, partly because the PMs are always turned on in the past. Here, by modelling the
system state discretely, time delay can be studied in a straight way.

In fact, the state transition graph builds a Markovian chain between states. This property,
together with time delay effect, leads us to design predictive controller to regulate resources.

Finally, we note that this model is a coarse approximation to the real nonlinear relationship
between performance, power and the system resource allocation. Putting it in a broader back-
ground, the method is commonly used to deal with a significantly nonlinear function. In the
future, it is necessary and possible to make fine solution in which the frequency of each proces-
sor, the share of each virtual CPU, the memory and computing load will be added into the
state.

Fig 3. State transition graph for a single PM.

doi:10.1371/journal.pone.0134017.g003
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4 Model based Predictive Controller

4.1 Controller Design
As we reviewed in Section 1, performance and power management problem can be handled in
different ways: we can minimize power consumption under performance requirement, or we
can maximize the performance within energy budget. Here we will define a quadratic cost
function which combines performance and power together. By optimizing the cost function,
we try to get a good balance between performance and power. To take time delay effect into
consideration, the cost function must cover a time interval, which acquires the controller to
predict the state for several time steps. The model predictive controller can just fit our scenario,
see [24][25] for more introduction on the theory and applications of MPC.

Define the cost function at time k as below:

costðkÞ ¼ costðSðkÞ; uðk þ 1Þ; :::; uðk þ PÞÞ

≜
XP

j¼1

k perf ðk þ jjkÞ � l̂ðkþ jÞ k2Qj
þ

XM
j¼1

k powerðk þ jjkÞ k2Rj

≜
XP

j¼1

k perf ðŜ þ ðk þ jÞjSðkÞÞ � l̂ðkþ jÞ k2
Qj

þ
XM
j¼1

k powerðŜ þ ðk þ jÞjSðkÞÞ k2Rj

ð5Þ

where j = 1, ... P, P> 0 is prediction horizon, 0<M� P is control horizon, u(k + j) is a feasible

control action at time k + j; l̂ðkþ jÞ is predicted workload at time k + j; Ŝðkþ jÞ is predicted
state at time k + j according to Fig 3 if the control actions are take as u(k+1),...,u(k + j) sequen-
tially from the state S(k); perf(k + jjk) and power(k + jjk) are predicted performance and power
at time k + j; Qj and Rj are the weights(matrices if perf(k + jjk) and power(k + jjk) are vectors)
between performance and power. Note that here we assume that there is only one PM and
omit the subscript i in Si(k), perfi(k),poweri(k).

In Eq (5), the first part represents the quality of performance. l̂ðkþ jÞ, the prediction of
workload, is the required performance at time k + j. Because of time delay and uncertainty, it is
possible that current control cannot create the desired effect immediately. Therefore, the differ-

ence perfðkþ j j kÞ � l̂ðkþ jÞ can be treated as performance tracking error. And the quadratic

term kperf ðkþ j j kÞ � l̂ðkþ jÞk2

Qj
is the error with weight Qj. kpowerðkþ j j kÞk2Rj is the

power value with its weight Rj. Here power(k + jjk) contains the switching cost caused by time
delay. For example, the idle power is actually included in Eq (5). The larger Qj and smaller Rj

mean that the controller cares performance more, and vice versa. Obviously, appropriate
choice of Qj and Rj is significant for control, otherwise it cannot lead to a good balance between
performance and power. This point will be discussed in Section 5 with more details.

The predictive controller aims to minimize the cost function at each time while state transi-
tion graph defines constraints for control action u(k + j):

min
fuðkþ1Þ;::;uðkþPÞg

costðkÞ;

subject to that uðkþ jÞ; j ¼ 1; :::; P; coincides Fig:3
ð6Þ

and it works as below. At each time k, the system state S(k) now is known. Then by choosing
control action sequence u(k + 1),...,u(k + P), a predictive controller can predict the virtual state

path Ŝðkþ 1Þ; :::; Ŝðkþ PÞ in the future P steps according to the state model, i.e. Fig 3. Differ-

ent control sequence u(k + 1),...,u(k + P) will lead to different state path Ŝðkþ 1Þ; :::; Ŝðkþ PÞ,
which will lead to different performance and power prediction too. Given the cost function
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defined above, the optimal state path can be found and thus the optimal control sequence can
be determined. Then, the optimal control action u(k + 1),...,u(k +M),M� P, in the futureM
steps can be determined, which will be adopted by PM at time k.

When there are more jobs and more machines, performance and power in Eq (5) can be
defined as a vector. Then Qj and Rj are weight matrices and the element implies the weight
between each job and each machine, which makes the calculation of cost(k) more complicated.
However, the predictive controller can be designed in a similar way.

4.2 Prediction for Workload

From description above, prediction of future workload l̂ðkþ jÞ is needed for the controller to
optimize the cost function. Here we assume that workload cannot wait and accumulate, thus
its prediction is independent of controller. There are certain statistical models in the literature,
in which the typical ones are ANOVA and AR model, or models combined with them. We
refer to [17] for more details.

Briefly speaking, ANOVA model is suitable to analyze data for long time which have repeat-
able pattern, while AR model is suitable for prediction of data for shorter time. Since we only
need the instant prediction and do not focus on data’s pattern, we will apply the AR(Auto-
Regression) model to predict workload in this paper.

For a sequence {x(k)}, an AR model with order r, simplified as AR(r) model, is to utilize lin-
ear combination of history data to fit the sequence and predict future values, i.e., to assume that

x̂ðkÞ ¼
Xr

i¼1

ai � xðk� iÞ þ ek

where ek is noise and parameters ai can be estimated off line or online.

By Eq (5), at each time k, we need to get the prediction l̂ðkþ 1Þ; :::; l̂ðkþ PÞ. Take r = 2 in
the model as an example. Then we have

l̂ðkÞ ¼ a1 � lðk� 1Þ þ a2 � lðk� 2Þ:
The parameters a1, a2 can be estimated by data fitting offline from history data. Then, at time
k + 1, suppose we have λ(1), ... λ(k), predictions for the future P steps are obtained by

l̂ðkþ 1Þ ¼ a1 � lðkÞ þ a2 � lðk� 1Þ;
l̂ðkþ 2Þ ¼ a1 � l̂ðkþ 1Þ þ a2 � lðkÞ;

::::::

l̂ðkþ PÞ ¼ a1 � l̂ðkþ P � 1Þ þ a2 � l̂ðkþ P � 2Þ

ð7Þ

in the order.

4.3 Optimization
At time k, suppose that we have predicted the future workload, we are at the place to choose
control action sequence u(k+1),...,u(k+P) to solve the Eq (6), i.e., to optimize cost(k). Still the
workload is assumed to be abandoned if it is not dealt with at current time. Note that the opti-
mization can not be finished directly by a Matlab function, as [18] did.

Due to the discrete state model, choice of u(k + 1),...,u(k + P) seems a tough task. It is true
for the worst case when the state transition graph Fig 3 is a complete directed graph, i.e., all the
states can be transited to all the states in one step. At this case, the state of a single PM can be

Power Saving in Nonlinear Virtualized Systems via Predictive Control

PLOS ONE | DOI:10.1371/journal.pone.0134017 July 30, 2015 9 / 18



taken from 6 different values, so the state space for P times has a volume of 6P, which will
increase exponentially with state number and thus will be very huge when there are many states
of a PM or CPU.

However, in the scenario of this paper, the state transition must satisfy physical constraints,
which causes that Fig 3 is not a complete digraph and u(k + 1) can only be transited to certain
states. This will shrink the state space greatly. On the other hand, considering the performance
requirement in practice, the control actions which are far from being able to satisfy perfor-
mance requirement, will also be abandoned first.

In this paper, we will search on the state space in the future P times. Then performance and
power and thus the cost function cost(k) for each state path in the prediction horizon can be
calculated according to the model. By choosing the path with minimal cost function, we can
determine the control actions for the futureM times.

Remark 4.1: For optimization Eq (6), another feasible sophisticated approach is to use
dynamic programming. To do this, we need to draw the state transition graph for future P
steps originating from current state, which is actually a tree. When the state space is huge and
P is big, dynamic programming might be computationally efficient.

Remark 4.2: For large scale computing systems covering a large number of processors, e.g.,
more than 1000, the state space will amplify sharply which will result in great challenge on
search algorithms. To deal with this, the usual method is to compute off line based on history
data. On the other hand, there are often several batches of homogeneous machines in real sys-
tems, which can also simplify the problem highly by coarse grained modelling. Surely this
brings about another tradeoff between coarse grained and finer grained modelling, which actu-
ally is a tradeoff between high-cost-optimal-outcome and low-cost-suboptimal-outcome.

5 Experiment Validation
In this section, experiments will be implemented to check the effectiveness of the predictive
controller based on the discrete state model.

5.1 Test Bed
We will take n = 3,m = 2, i.e., the system is composed of 3 physical machines PM1, PM2, PM3,
and at most 2 virtual machines can be hosted on each physical machine. Configuration of the
PMs are listed in Table 1.

The processors of PM1, PM2, PM3 are Core i7, Xeon 5320, Core 2 Quad respectively, the OS
is Fedora 16, and the virtualization software is KVM. Note that these PMs or processors are
chosen to be different, which can happen usually in practice. The heterogeneity on PMs or pro-
cessors can be easily handled in the experiment by choosing appropriate parameters in perfor-
mance and power models; we will see that they will not influence the effectiveness of our
controller, which implies extendibility of the method.

The parameters pertinent to performance and power during control process are measured
from chosen servers and listed in Table 2 below, in which it is set 1T = 5min, and perf, freq are
abbreviations for performance, frequency.

Table 1. Configuration of physical machines.

PM name Core/thread DVFS frequency Idle power(w) Max power(w)

PM3 (s-i7) 4/8 1.60, 2.93GHz 177 229

PM2 (s-cf) 4/4 1.99, 2.49GHz 138 178

PM1 (s-quad) 4/4 2.00, 2.83GHz 115 176

doi:10.1371/journal.pone.0134017.t001
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Then the flow chart with predictive controller in the virtualized computer system is drawn
in Fig 4.

The data of workload in our experiment can be seen in S1 File.

5.2 Choice of Control Parameters
By the definition of cost(k) in Eq (5), four parameters will influence its value: the integers P,M
and the weights Q,R. Hence, they will influence the solution of optimization Eq (6) and thus
the effect of controller. Additionally, P,M influence complexity of the problem more heavily
while Q,R will influence the choice of control actions more significantly.

Now, we decide the prediction and control horizon P andM first. As we have stated above,
long prediction horizon will lead to exponentially increasing search space for predicted state,
which is not bearable for large scale servers. So P cannot be very large. On the other hand, P
must be chosen according to the characteristics of workload so that prediction accuracy can be
assured. With deeper prediction steps, prediction of workload will become less accurate. Based
on these points, we take P = 3 in the experiment.M is taken as 1 as in the literature to avoid the
conflict between control actions at time k and k + 1.

Then, we decide the weights Qj and Rj. First, we set Qj = 1, j = 1,2, ..., P, by which we mean
that the cost resulting from performance tracking at each time are the same.

As to the power saving weight R (denoted by R sinceM = 1), it is important to choose a mod-
erate value for it: different R leads to different cost function and thus different optimal control

Table 2. Parameters of control actions about performance and power.

Possible control action Time delay Power Perf delay

turning off a PM 1T max power 0

turning on a PM 2T max power 0

changing freq by DVFS 0 determined by current freq determined by new freq

turning on a VM 1T power after VM turning on 0

turning off a VM 0 power before VM turning down 0

VM immigration 0 determined by new PM determined by new PM

doi:10.1371/journal.pone.0134017.t002

Fig 4. The architecture and control flow in the virtualized computing system.

doi:10.1371/journal.pone.0134017.g004
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action, and then different performance quality and power consumption. Moreover, it can be
imagined that a moderate value of R is dependent of jobs’ types. In the experiment, we will
choose different R for an identical workload sequence, and compare the results under each R.

5.3 Experiment Results
To test the effectiveness of predictive controller, we will compare performance and power of
the system under control with the case without controller(or equally, with open loop control-
ler). For the system with predictive controller, we will compare experiment results under differ-
ent choice of R.

When the system is managed without controller, all physical machines will be always turned
on so as to guarantee the performance requirement, thus turning on/off a PM is not an option
of control actions in this case. This is just the practice for many data centers today.

We define several criteria as below:

PoU ¼ jfk : perf ðkÞ < lðkÞgj
jkj � 100%;

NNR ¼ meanððlðkÞ � perf ðkÞÞ � 1fperf ðkÞ<lðkÞgÞ;

PoS ¼ 1�

X
k
powerolcðkÞX
k
powerpcðkÞ

0
B@

1
CA � 100%;

ð8Þ

wheremean(x(k)) is average of sequence x(k), powerolc(k) is the measured power without con-
troller, and powerpc(k) is the measured power with predictive controller. It is easy to see that
PoU stands for the percent of times under performance requirement(i.e., the performance is
not satisfied), NNR stands for the number of non-handled-request, and PoS stands for the per-
cent of power saving compared with the open-loop-controller case.

5.3.1 Basic Results. Table 3 below roughly shows the experiments results with different R:
From Table 3, we can see that the predictive controller can save power considerably com-

pared to the system with open-loop controller while the performance tracking result is very dif-
ferent under different R. To be specific,

(1). When R = 5, PoU is very small, being 0.23%, meaning that the performance requirement
can be satisfied for almost all the times. Averagely, 1000 requests cannot be handled at each
time. However, in this case, the power can be saved only by 21%, which is not bad but can be
improved still.

(2). When R = 50, PoU is also very small, being 0.24%, which is almost the same with R = 5
case. And now there are 3478 requests which will be abandoned at each time. On the other
hand, power consumption can be saved by 33%, which is great progress to R = 5 case.

(3). When R = 100, PoU now increases pretty highly, being 38%, implying that for more
than one-third time, the performance requirement cannot be satisfied, which is very bad. And

Table 3. Performance and power criteria under different R.

R PoU NNR PoS

5 0.23% 1000 21%

50 0.24% 3478 33%

100 38.00% 7911 35%

200 50.20% 11854 38%

500 74.48% 35582 51%

doi:10.1371/journal.pone.0134017.t003
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now the amount of requests that cannot be handled at each time is high, being 7911. At the
same time, power is saved by only 35%, which is very near that of R = 50 case.

(4). When R = 200, PoU now becomes 50.2%, implying that performance cannot be satisfied
for more than half of the time, while power is saved by 38%, which is still near that of R = 50
case.

(5). When R = 500, PoU now becomes 74.48%, implying a terrible performance. Power con-
sumption is saved by 51%, which is a great progress to smaller R. Obviously, we cannot choose
such a decision since performance is prior to power.

With respect to increasing R, results in Table 3 coincide with the physical meaning of R:
with R increasing, power saving holds a bigger weight in the cost function, and thus power sav-
ing can become better, while performance becomes worse. We can find that R = 50 is a suitable
weight, which can achieve a good balance between performance tracking (99.76% requirement
can be deal with) and power saving (energy consumption can be saved by 33%).

5.3.2 Control Process in Details. Next, we will present the detailed process of the predic-
tive controller. To this end, curves of the state, performance and power for three PMs are
shown in each of Fig 5, Fig 6, Fig 7 as below, which contains five pictures in them. The data is

Fig 5. Performance, power and state transition in one day at R = 5.

doi:10.1371/journal.pone.0134017.g005

Power Saving in Nonlinear Virtualized Systems via Predictive Control

PLOS ONE | DOI:10.1371/journal.pone.0134017 July 30, 2015 13 / 18



measured for 24 hours every 5 minutes and the weight R is taken as 5, 50, 500 respectively in
three figures.

In Fig 5, Fig 6, Fig 7, the horizontal axis denotes time; the vertical axis of the first picture
denotes number of requirements that are coming and handled; the vertical axes of the second,
third and fourth pictures denote the frequencies of three PMs; the vertical axis of the fifth pic-
ture denotes total power of the system. In the first picture, black curve denotes the coming
requirement while red curve denotes the handle requirement at each time. In the fifth curve,
black curve denotes the power without controller while red curve denotes the power with pre-
dictive controller.

From the curves, control actions can be distinguished from the change of frequencies and
power clearly. When the frequency is zero and the power is smaller than the sum of idle pow-
ers, we can see that PM under observation is indeed shut down. And we can also see that under
open loop control, the power is always maximal.

From Fig 5, Fig 6, Fig 7, when R = 5, the action of turning on/off the PM is used rarely, and
the performance can be satisfied well while power saving is not very good. When R = 500, one
PM is always being turned off, the power saving is good, while the performance tracking is bad.

Fig 6. Performance, power and state transition in one day at R = 50.

doi:10.1371/journal.pone.0134017.g006
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R = 50 is a moderate choice, which can lead to a good balance between performance and
power. Meanwhile, at R = 50, VMs can be migrated between PMs, and power cycling is an
effective control action.

To sum up, the choice of R is very crucial for control. If R can be taken moderately, such as
R = 50, then a good balance between performance and power can be achieved: on one hand,
the performance can be satisfied well; on the other hand, the power consumption can be saved
considerably. In practice, R can be obtained by learning from experience, which depends on
the specific system and jobs.

6 Conclusions and Future Work
In this paper, the power saving problem in the nonlinear virtualized computing system is stud-
ied. First, we present some novel nonlinear characteristics of newer servers which are found
from data. Such nonlinear features make linear power model not suitable again for fine control.
Then, we build a discrete system state model, in which all control actions such as turning on/
off a PM (or a VM) can be included and time delay effect can be reflected too. Then, by defin-
ing a quadratic cost function which involves both performance and power, the predictive con-
troller based on the discrete state model can be designed in a natural way. Thus the cost
function can be optimized by regulating computing resources dynamically. Experimental

Fig 7. Performance, power and state transition in one day at R = 500.

doi:10.1371/journal.pone.0134017.g007
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results show that with an appropriate weight of performance and power in the cost function,
the predictive controller can achieve efficient performance and power management: almost
99.76% requirements can be dealt with and 33% power consumption can be saved compared
with the case without controller.

In practice, the architecture of processors is also important and needs to be taken into
account. Additionally, as we have noted before, the proposed discrete state model in this paper
is still very rough. In order to get better effect, more sophisticated models need to be built so
that more details can be included such as the share of VCPU, the frequency values of proces-
sors and so on. These will be left in the future work.

Finally, new technologies have been booming in control theory, such as the theory on
multi-agent systems, in which massive agents with individual dynamics are contained and the
consensus or special formations are often control objectives([26][27]). It can be surprisingly
correlated with distributed computation, see [28][29]. Will such theory provide some inspira-
tions to problems under study in the current paper? We do not know now while it might be
interesting if new relations can be built.

Supporting Information
S1 File.
(XLS)
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