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Abstract
Allyl-isothiocyanate (AITC) is an organosulfur phytochemical found in abundance in com-

mon cruciferous vegetables such as mustard, wasabi, and cabbage. Although AITC is

metabolized primarily through the mercapturic acid pathway, its exact pharmacokinetics

remains undefined and the biological function of AITC metabolites is still largely unknown.

In this study, we evaluated the inhibitory effects of AITC metabolites on lipid accumulation

in vitro and elucidated the pharmacokinetics and tissue distribution of AITC metabolites in

rats. We found that AITC metabolites generally conjugate with glutathione (GSH) or N-acet-
ylcysteine (NAC) and are distributed in most organs and tissues. Pharmacokinetic analysis

showed a rapid uptake and complete metabolism of AITC following oral administration to

rats. Although AITC has been reported to exhibit anti-tumor activity in bladder cancer, the

potential bioactivity of its metabolites has not been explored. We found that GSH-AITC and

NAC-AITC effectively inhibit adipogenic differentiation of 3T3-L1 preadipocytes and sup-

press expression of PPAR-γ, C/EBPα, and FAS, which are up-regulated during adipogen-

esis. GSH-AITC and NAC-AITC also suppressed oleic acid-induced lipid accumulation and

lipogenesis in hepatocytes. Our findings suggest that AITC is almost completely metabo-

lized in the liver and rapidly excreted in urine through the mercapturic acid pathway follow-

ing administration in rats. AITC metabolites may exert anti-obesity effects through

suppression of adipogenesis or lipogenesis.

Introduction
The glucosinolates are organosulfur compounds that are present in cruciferous vegetables such
as cabbage, kale, and broccoli, with particularly high concentrations found in mustard, horse-
radish, and wasabi [1]. When a plant is mechanically damaged, isothiocyanates are generated
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from glucosinolates as products of hydrolyzation by plant myrosinase [2]. Recent studies show
that glucosinolates are converted to different hydrolysis product by human gut bacteria and
differently metabolized depending on individual gut bacteria composition [3,4]. Isothiocya-
nates such as sulforaphane (SFN), allyl-isothiocyanate (AITC), phenethyl-isothiocyanate
(PEITC), and benzyl-isothiocyanate (BITC) are recognized as phytochemical chemopreventive
agents that have been shown to inhibit proliferation and to induce apoptosis through G2/M
arrest in bladder cancer UM-UC-3 cells [1,5–8]. AITC also induced apoptosis through down-
regulation of anti-apoptotic Bcl-2 and Bcl-xl in PC3 and LNCaP cells [9]. Isothiocyanates have
impressive chemopreventive properties in animal models [10]. Recent epigenetic studies report
that isothiocyanates inhibit histone acetylation in human colon, prostate, and breast cancer
cells [11,12]. In general, epigenetic modifications such as DNA methylation and histone acety-
lation have been associated with various types of cancers. Epidemiological research also sug-
gests that high consumption of cruciferous vegetable is associated with a decreased risk of
cancer [13]. These results suggest that isothiocyanates in cruciferous vegetables could be used
to prevent human cancers. Additionally, isothiocyanates suppress nitric oxide (NO) produc-
tion and NO synthase (iNOS) expression through attenuation of NF-κB activation in lipopoly-
saccharide-treated cells [14–16]. Taken together, these findings suggest that isothiocyanates
may act as anti-inflammatory and anti-cancer agents.

Various drug transporters, such as the ATP-binding cassette (ABC) transporters, play sig-
nificant roles in the absorption and disposition of most drugs. For many years, cancer research-
ers have focused on members of the ABC superfamily that play crucial roles in the
development of resistance by mediating efflux of anticancer agents. Recent studies have indi-
cated that phytochemicals can serve as substrates and modulators of proteins involving in
efflux of anticancer agents. For example, isothiocyanates are rapidly exported as GSH- and
cysteinylglycine-congugated forms by multidrug-resistance-associated protein 1 (MRP1) and
P-glycoprotein (P-gp). These findings suggest that isothiocyante such as AITC could influence
the pharmacokinetics of drug used in anti-cancer therapy by interacting with ABC
transporters.

AITC is known to be responsible for the characteristic pungent aroma of some cruciferous
vegetables, including radish and horseradish. AITC is produced by the hydrolysis of glucosino-
late precursor sinigirin and account for the pungent taste of wasabi (193.78 mg/100 g of fresh
rhizome) and horseradish (165.81 mg/100 g fresh root), in which it is present at high concen-
trations [17]. Due to the potentially beneficial impact of AITC on human health, it has become
a focus of interest in the medical reteach community. However, the beneficial effects of AITC
are dependent on its uptake and disposition in tissues. Previously published work has shown
AITC to be rapidly cleared within 24 h of oral administration of 14C-labeled AITC in rats and
mice, with relatively high deposition in bladder tissue compared to that in other organs [18].
AITC absorbed in vivo is metabolized through the mercapturic acid pathway in the liver, with
the initial conjugation of the–N = C = S group with the cysteine thiol of glutathione resulting
in the formation of a corresponding glutathione conjugate (GSH-AITC), which is further
metabolized to an N-acetyl-S-(N-allylthiocarbamoyl)cysteine (NAC-AITC) conjugate [19,20].
While the formation of AITC metabolites is recognized to proceed through the mercapturic
acid pathway after absorption, the pharmacokinetics of the metabolites has not elucidated thus
far.

Sulforaphane inhibits adipocyte differentiation of 3T3-L1 preadipocytes by blocking clonal
expansion via cell arrest, stimulating lipolysis via hormone-sensitive lipase activation and regu-
lating AMPK signaling [21–23]. A previous study demonstrated that wasabi (Wasabia japonica
Matsum.), which contain several pungent constituents, including AITC, suppressed obesity in
mice on a high-fat diet, possibly due to suppression of lipid accumulation in the liver and white
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adipose tissue [24]. Several studies have shown that AITC increases triglyceride hydrolysis in
the serum and, enhances lipolysis in adipocytes, and improves glucose intolerance in intraperi-
toneal glucose tolerance test (IPGTT) [25,26]. AITC is an attractive candidate agent for cancer
chemoprevention. However, little is known regarding the role of isothiocyanates in lipid
metabolism. We have recently shown that AITC reduces body weight and improves insulin
sensitivity by correcting high-fat diet-induced mitochondrial dysfunction [27]. Despite the
recent interest in the pharmacological activity of AITC, very few studies have focused on the
potential bioactive properties of AITC metabolites. Following, the absorption of an orally
administered dose, AITC is metabolized and the resulting metabolites are distributed through-
out the body. A study evaluating the activity of AITC metabolites and their molecular mecha-
nisms is warranted.

In this study, we first identified AITC metabolites using liquid chromatography-tandem
mass spectroscopy (LC-MS/MS) in plasma following oral administration of AITC. Subse-
quently, we synthesized AITC metabolites to study their pharmacokinetics and biological activ-
ity. We evaluated the anti-lipogenic and anti-adipogenic effects of AITC metabolites in vitro
and investigated the pharmacokinetics and tissue distribution of AITC metabolites in vivo
using high-performance liquid chromatography (HPLC) analysis.

Materials and Methods

Chemicals and reagents
AITC (A33205), phosphoric acid, oleic acid (O03008), isobutylmethylxanthine (IBMX, I7018),
dexamethasone (D4902), insulin (#16634), and Oil Red O (O0625) were obtained from Sigma-
Aldrich (St Louis, MO, USA). HPLC-grade water, acetonitrile, and methanol were purchased
from Fisher Scientific (Pittsburgh, PA, USA). All other reagents were of analytical grade. Anti-
bodies against PPAR-γ (sc-7273), SREBP-1c (sc-366) and secondary antibodies were purchased
from Santa Cruz Biotechnology (Santa Cruz, CA, USA). Antibodies against FAS (#3180), β-
actin (#4967), C/EBPα (#2295s), p-S6K1 (#9205), and S6K1 (#9202) were purchased from Cell
Signaling Technology (Danvers, MA, USA). Dulbecco’s modified Eagle’s medium (DMEM),
fetal bovine serum (FBS), bovine calf serum (CS), sodium pyruvate, and penicillin-streptomy-
cin were obtained from Gibco BRL (Grand Island, NY, USA).

Treatment of animals
Male Sprague-Dawley rats with an average weight of approximately 250 g were purchased
from Orient Bio Inc. (Seoul, South Korea) and acclimatized to the laboratory conditions
(12:12 h light-dark cycle, temperature of 24°C, and humidity of 55%) for 1 week. Animals were
provided the American Institute of Nutrition-93 (AIN-93) diet and water ad libitum during
acclimation. On the dosing day, rats were fasted for 6 h and then administered AITC (25 mg/kg
of body weight) as a suspension (1 mL) in polyethylene glycol using an oral zonde needle. After a
single-dose oral administration of AITC, rats were sacrificed under anesthesia (80 mg/kg keta-
mine + 8 mg/kg xylazine) at different time points after dosing. Blood samples were collected
from the abdominal aorta in heparinized syringes. Samples were immediately centrifuged at
3,000 × g for 10 min and the resulting plasma samples were kept frozen at -80°C until analysis.
The liver, heart, spleen, kidney, and lung were rapidly collected from each animal at different
time points, individually wrapped in aluminum foil, snap-frozen in liquid nitrogen, and stored
frozen at -80°C until use. Animal studies were conducted in accordance with institutional and
national guidelines, and all experimental procedures were approved by the Korea Food Research
Institute Animal Care and Use Committee (KFRI-IACUC, #2013–0018).
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AITC extraction from plasma
Methanol (700 μL) was added to 300 μL of serum and the mixture was mixed by vortexing for
5 min. After centrifugation at 15,700 × g for 15 min at 4°C, the supernatant was collected and
injected onto the HPLC or LC-MS system. The internal standards (synthesized metabolites)
were added to the plasma samples for validation.

Tissue extraction
Dissected tissue was thawed, rinsed with ice-cold saline, blotted dry, and weighed. Each tissue
sample (100 mg) was homogenized in 100 μL phosphate-buffered saline (PBS) using homoge-
nizer (MP Fastprep instrument, MP Biomedical, Solon, OH, USA). The homogenates were
transferred into clean tubes and mixed with 700 μL of methanol by vortexing for 5 min.
Homogenates were centrifuged at 15,700 × g for 15 min at 4°C, and the supernatants were col-
lected and evaporated to dryness at room temperature under a stream of nitrogen gas. The resi-
due was diluted with 100 μL 70% methanol.

LC-LTQ Orbitrap analysis
Chromatographic separation was performed using the Accela ultra performance liquid chro-
matography (UPLC) system (Thermo Scientific, San Jose, CA) with an ACQUITY BEH C18

column (Waters Corporation, Milford, MA, USA; 1.7 μm, 150 × 2.1 mm). The mobile phase
was 0.1% formic acid in water (A) and acetonitrile. The gradient elution was linearly pro-
grammed as follows: 0 min 10% B, 10 min 90% B, 10.1 min 100% B, 12 min 0% B, with the
mobile phase flow rate set at 0.4 mL/min. Mass spectroscopy (MS) analysis was carried out
using an LTQ Orbitrap XL instrument (Thermo Scientific, San Jose, CA). The ionization and
capillary voltages were set to 4.2 Kv and 35V, respectively. The capillary temperature was set at
300°C. MS data were collected in them/z 100–1300 scan range in positive ion mode. Fragment
ions for tandem mass spectroscopy (MS/MS) acquisition were produced by collision-induced-
dissociation (CID) at of 45 eV and data acquisition was performed using the Xcalibur software
(Thermo Finnigan).

HPLC analysis
HPLC analysis was performed using a Jasco HPLC system equipped with a Jasco UV-2089 plus
quaternary gradient pump, a Jasco MD-2010 plus multiple-wave-length detector, and Borwin
chromatography software, version 1.5 (Jasco Inc., Easton, MD, USA). Separation was achieved
using an XTerra RP18 column (4.6 × 250mm, 5 μM,Waters, Milford, MA, USA). Elution was
performed at a flow rate of 1.0 mL/ min at 30°C using 1% (v/v) phosphoric acid (solvent A) and
acetonitrile (solvent B) as mobile phase. The solvent gradient was changed as follows: from 100%
A to 95% A over 10 min, to 85% A over 10 min, to 70% A over 10 min, to 65% A over 5 min, to
90% A over 5 min, and to 100% A over 5 min, followed by 5 min of maintenance at 100% A.

Synthesis of GSH-AITC (S-(N-allylthiocarbamoyl)-L-glutathione)
GSH (6 mg) was dissolved in 0.9mL of 1NHCl and 1N NaOHwas added to adjust the pH to 6.5.
Methanol (1 mL) was added to the solution. AITC (21 μL) was added to the GSH solution with
stirring. The reaction mixture was stirred at room temperature for 3 days. The volume of the
reaction mixture was reduced by half under vacuum and 1ml of tetrahydrofuran (THF) was
added. The precipitate was collected by centrifugation (4000 × g, 1 min) and dried under vacuum.
The product was isolated by flash column chromatography using a mixture of CHCl3 and metha-
nol (1:1) as an eluent. The solvent was removed under vacuum using a rotary evaporator.
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NMR Assignments: 1H-NMR (500 MHz, D2O+DMSO-d6) δ 2.075 (2H, dd, Glu-CH-CH2-
CH2), 2.431 (2H, m, Glu-CH-CH2-CH2), 3.497 (1H, dd, Cys-CH-CH2), 3.703 (1H, t, Glu-CH),
3.844 (1H, dd, Cys-CH-CH2), 3.878 (2H, s, Gly-CH2), 4.262 (2H, d, allyl CH2), 4.724 (1H, dd,
Cys-CH), 5.157–5.191 (2H, vinyl CH = CH2), 5.846 (1H, dq, vinyl CH = CH2). ESI-MS (posi-
tive mode): [M+H]+ = 407.7.

Synthesis of NAC-AITC (N-acetyl-S-(N-allylthiocarbamoyl)- l-cysteine)
NAC (44 mg) was dissolved in 150 μL of 1N NaOH and added to 0.8 mL of water. The pH was
adjusted to 8.0 by adding 1N NaOH. AITC (50 μL in 1 of mL THF) was added to the NAC
solution with stirring. The reaction mixture was stirred at room temperature overnight. Water
(5 mL) was added to the reaction mixture and the pH was adjusted to 3 by adding 0.5N HCl.
The crude product was extracted with ethyl acetate 3 times. The collected ethyl acetate solution
was dried with MgCl2 for 3 h. The solvent of the filtrate was removed under vacuum. The prod-
uct was isolated by flash column chromatography using a mixture of CHCl3 and methanol
(5:1) as an eluent. The solvent was removed under vacuum using a rotary evaporator.

NMR Assignments: 1H-NMR (500 MHz, DMSO-d6) δ 1.833 (3H, S, CH3-CO), 3.325 (1H,
dd, J = 13.5, 9 Hz, Cys-CH-CH2), 3.767 (1H, dd, J = 13.5, 5 Hz, Cys-CH-CH2), 4.220 (2H, m,
allyl CH2), 4.405(1H, ddd, J = 9, 8.5, 5 Hz, Cys-CH), 5.133 (1H, dq, J = 10, 1.5 Hz, cis-vinyl-
CH2), 5.184 (1H, dq, J = 17.5, 1.5 Hz, trans-vinyl-CH2), 5.845 (1H, m, CH2 = CH), 8.282 (1H,
d, J = 8.5 Hz, CH3CONH). ESI-MS (negative mode): [M—H]- = 261.4.

Analysis of pharmacokinetics
Non-compartmental (mode-independent) nutrikinetic parameters were derived using PK
Solutions software version 2.0 (Summit Research Services, Montrose, CO, USA). The maxi-
mum plasma concentration (Cmax), time to maximum plasma concentration (Tmax), and the
elimination half-life (t1/2) were estimated from the plasma concentration-time curve. The area
under the curve (AUC) for the plasma concentration over time was calculated using the trape-
zoidal rule.

Adipocyte differentiation
3T3-L1 pre-adipocyte cells were purchased from the ATCC (Manassas, VA, USA). Cells were
maintained in DMEM supplemented with 10% calf serum (CS), 100 U/mL penicillin and
100 μg/mL streptomycin at 37°C in a 5% CO2 incubator. The cells were seeded onto a 6-well
plate at a density of 4 × 105 cells per well, and cell differentiation was induced. In brief, begin-
ning at 2 days post-confluence (day 0), cells were incubated for 2 days in DMEM containing
0.5 mM 3-isobutyl-1-methylxanthine (IBMX), 1 μM dexamethasone, 1 μg/mL of insulin, and
10% fetal bovine serum (FBS). After induction, the medium was replaced with DMEM contain-
ing 10% FBS and 1 μg/mL of insulin, and the cells were incubated for 2 more days, after which
the cells were maintained in DMEM containing 10% FBS until they reached maturity. From
days 0 to 2, the cells were exposed to the AITC metabolites.

TG accumulation in hepatocytes
HepG2 (human hepatoma cell line) and Hepa 1–6 (mouse hepatoma cell line) cells were
obtained from ATCC (Manassas, VA, USA) and grown in high glucose DMEM supplemented
with 10% FBS, 100 U/mL penicillin, and 100 μg/mL streptomycin. For examination of lipid
accumulation in hepatocytes, the cells were treated with AITC metabolites in presence of
100 μM oleic acid for 24h.
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Oil Red O staining
Oil Red O staining was performed on day 8. Prior to quantification, the cells were fixed in 10%
neutral formalin for 1 h at room temperature, washed with PBS, and stained for 1 h with 0.5%
Oil Red O in 60% isopropanol. After staining, the cells were washed with distilled water and
observed under a fluorescence microscope. The Oil Red O stain was extracted from the cells
with 1 mL of 100% isopropanol for 10 min. The optical density was measured at a wavelength
of 490 nm using microplate reader (Tecan Infinite 200 PRO, Männedorf, Switzerland).

Western blotting
3T3-L1 adipocytes were scraped into a lysis buffer containing 40 mMHEPES (pH 7.4),
120 mM NaCl, 1 mM EDTA, 50 mMNaF, 1.5 mM Na3VO4, 10 mM β–glycerophosphate, and
1% Triton X-100, supplemented with EDTA-free phosphatase and a protease inhibitor cocktail
(#78441; Thermo Scientific, Waltham, MA, USA). Next, the cells were lysed by sonication
twice for 15 sec on ice using a sonicator (Misonix, Farmingdale, NY, USA). After centrifugation
at 10,000 × g for 20 min at 4°C, the supernatants were boiled in sodium dodecyl sulfate (SDS)
loading buffer at 90°C for 5 min, after which they were loaded (20 μg protein per lane) onto 8%
or 12% Tris-glycine gels. Following electrophoresis, the proteins were transferred onto polyvi-
nylidene fluoride (PVDF) membranes, which were blocked using 5% skim milk in TBST buffer
(20 mM Tris, pH 8.0, 125 m NaCl, 0.5% Tween 20) for 1 h. The blocked membranes were incu-
bated with primary antibodies in TBST overnight at 4°C, followed by incubation with second-
ary antibodies for 1 h at room temperature. Finally, the membranes were visualized using a
chemiluminescence reagent (Amersham Bioscience, Piscataway, NJ, USA).

Statistical analysis
Differences between groups were evaluated using one-way analysis of variance (ANOVA) with
Prism5 software (version 5, GraphPad software, San Diego, CA, USA). The Bonferroni post-
hoc correction for multiple comparisons was used when significant differences were identified
using ANOVA (p< 0.05). The data are expressed as mean ± standard deviation (SD).

Results

NAC-AITC and GSH-AITC are the primary AITC metabolites in rat
plasma after oral administration
Identification of AITC metabolites was accomplished by LC-LTQ Orbitrap analysis of plasma
samples collected following oral administration of AITC. We compared blank and post-admin-
istration samples and found 2 candidate compounds that eluted at retention times of 3.58 and
4.67 min, which were considered to represent AITC and its metabolites (Fig 1A). The mea-
sured molecular weights of the 2 metabolites werem/z 407.1056 [M+H]+ andm/z 263.0517
[M+H]+ (Fig 1B). Based on the MS/MS spectra obtained, the proposed chemical compositions
of compounds M1 and M2 were C14H23O6N4S2 and C9H15O3N2S2, respectively, reflecting
metabolism by the mercapturic acid pathway. M1 andM2 were proposed to be GSH-AITC and
NAC-AITC. The proposed structures of the 2 metabolites are shown in Fig 1C. These results
suggest that AITC is metabolized quickly and almost completely after oral administration.

To study the pharmacokinetics and biological activities of the identified AITC metabolites,
we synthesized them according to the procedures described in the Materials and Methods
section. LC-MS data showed that the molecular weights of the synthesized metabolites were
consistent with M1 and M2 (data not shown). Previously reported NMR spectrum data also
supported the identification of one of the synthesized compounds as M2, the NAC conjugate
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of AITC [28]. Although we were unable to find corresponding NMR spectrum data for
GSH-AITC, the other synthesized compound was identified as M1, the GSH conjugate of
AITC, based on its UV absorption pattern and retention time (data not shown).

AITC is quickly absorbed, distributed, and excreted
The concentration of AITC metabolites in the plasma were measured by HPLC following oral
administration of AITC at different time points up to 8 h post-administration. GSH-AITC and
NAC-AITC were found to elute without any interference from endogenous components in the
plasma (Fig 2A). The correlation coefficient of the calibration curve was above 0.99, suggesting
good linearity within the GSH-AITC concentration range of 0.1–4 μg/mL and the NAC-AITC
concentration range of 2.5–60 μg/mL. The inter- and intra-day precision and accuracy were
determined by replicate analysis of the samples at 3 concentrations of each metabolite: 1, 2,
and 4 μg/mL GSH-AITC and 20, 40, and 60 μg/mL of NAC-AITC. The stability of the metabo-
lites was determined at room temperature over 24 h. The precision and accuracy were found to
be well within the acceptance range of 10% and the metabolites in the plasma were found to be
stable for 24 h at room temperature (data not shown).

A validated analytical method was employed to study the pharmacokinetic profiles of AITC
metabolites after oral administration of 25 mg/kg AITC dose to rats. The mean plasma concen-
tration-time curves of the AITC metabolites and the corresponding pharmacokinetic parameters
are shown in Fig 2B and 2C. The pharmacokinetic analysis was performed with PK solution 2.0
software, using a non-compartmental model for data analysis. After oral administration of AITC,
GSH-AITC and NAC-AITC were detected in the plasma. The Tmax values for GSH-AITC and
NAC-AITC were similar at 0.5h. The Cmax values of GSH-AITC and NAC-AITC were 1.47 and
14.03 μg/mL, respectively. The areas under the curve of the concentration-time profile (AUC0-8h)
of GSH-AITC and NAC-AITC were 1.3 and 12.33 μg�h/mL, respectively. These results indicate
that NAC-AITC and GSH-AITC were rapidly formed and widely circulated, with NAC-AITC
being the main metabolite observed following oral administration of AITC.

In addition to our evaluations of plasma levels, we also determined the concentration of
AITC metabolites in urine using HPLC. While NAC-AITC was successfully quantified,
GSH-AITC was not detected in the urine samples (Fig 3A), possibly reflecting a low concentra-
tion of this metabolite in the urine. The mean urine concentration-time profiles of NAC-AITC
are shown in Fig 3B. The NAC-AITC concentration reached a maximum level between 1 and
4 h following administration of AITC, with a Cmax of 2.26 μg/mL. NAC-AITC was mostly
excreted within 8 h (Fig 3C).

To study the tissue distribution of AITC metabolites, rats were sacrificed and their organs
were collected at different time points following oral administration of AITC. The assay dem-
onstrated that the metabolites underwent rapid and wide distribution to tissues within the
studied time period (Fig 4A and 4B). The greatest GSH-AITC deposition by tissue weight was
observed in the liver, followed by the kidney, spleen, heart, and lung, whereas the greatest
NAC-AITC deposition (by tissues weight) was observed in the kidney. These findings indicate
that the metabolites distributed mainly into tissues with abundant blood supply, implying that
the blood flow (perfusion rate) of an organ is the key factor affecting the distribution of AITC
metabolites. Additionally, our observations suggest that AITC metabolites distributed in vari-
ous tissues could have diverse effects on the body.

Fig 1. Analysis of AITCmetabolites in rat plasma following oral administration of AITC using liquid chromatography-tandemmass spectroscopy
(LC-MS/MS). (A) Spectra of blank and AITC-supplemented samples. (B) LC-MS/MS fragmentation. The lines indicate the predicted metabolites composition.
(C) Structures of the identified metabolites.

doi:10.1371/journal.pone.0132151.g001
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AITC metabolites suppress adipocyte differentiation of 3T3-L1 cells
Although it has been shown that AITC reduces high-fat diet-induced obesity [27], active metabo-
lites of AITC were not identified in previous studies, and their potential to inhibit adipogenesis
has not been explored. We performed in vitro analyses to determine whether GSH-AITC and
NAC-AITC inhibit 3T3-L1 pre-adipocyte differentiation. The viability of 3T3-L1 cells was not
affected by exposure to either AITCmetabolite at a concentration of 100 μM (Fig 5A and 5B).
Both metabolites significantly suppressed MDI (3-IBMX, dexamethasone, and insulin)-induced
differentiation of 3T3-L1 preadipocytes in a dose-dependent manner (Fig 5C and 5D). Western
blotting results indicated that GSH-AITC and NAC-AITC reduced levels of PPAR-γ, C/EBPα,
and FAS, proteins known to be up-regulated during adipogenesis (Fig 5E). These results strongly
suggest that GSH-AITC and NAC-AITC suppress the expression of genes related to adipogenesis.

AITC metabolites inhibit adipogenesis through the inhibition of Akt-
mTORC1
The mammalian target of rapamycin complex 1 (mTORC1) plays a critical role in adipogenesis,
because insulin stimulates adipogenesis through the AKT-TSC2-mTORC1 pathway [29,30]. We
therefore investigated the possibility that AITCmetabolites affect mTORC1 activation. Treatment
with either NAC-AITC or GSH-AITC reduced the levels of S6K1 phosphorylation on Thr389,

Fig 2. Pharmacokinetic analysis of GSH-AITC and NAC-AITC in rat plasma. (A) HPLC chromatograms of AITC metabolites in plasma obtained at
different time points following oral administration of AITC obtained by measuring absorbance at a wavelength of 250 nm. (B) Plasma concentration-time
profiles of AITC metabolites. (C) Pharmacokinetic parameters of AITC metabolites in rat plasma following oral administration. Cmax: maximum recorded
concentration; Tmax: time taken to reach Cmax; AUC (area under the curve): a measure of the exposure to the drug; T1/2: elimination half-life. All values are
reported as mean ± SD (n = 5).

doi:10.1371/journal.pone.0132151.g002
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the mTOR-dependent phosphorylation site, during 3T3-L1 adipocyte differentiation (Fig 5F).
The AITC metabolites also inhibited phosphorylation of 4EBP1, a target of mTORC1 [31,32].
Therefore, AITCmetabolites may inhibit adipogenesis by regulating mTORC1 activity.

AITC metabolites reduce oleic acid-induced lipid accumulation
We determined the effects of the identified AITC metabolites on oleic acid (OA)-induced lipid
accumulation in hepatocytes. In our previous study, we showed that AITC supplementation
reduced hepatic steatosis in mice with high-fat diet-induced obesity [27]. Consistent with our
hypothesis that AITC metabolites are responsible for decreased lipid accumulation in hepato-
cytes, we found that incubation with AITC metabolites significantly decreased OA-induced
lipid accumulation in Hepa 1–6 cells (Fig 6A and 6B). In addition, both metabolites decreased
expression of markers hepatic lipogenesis such as fatty acid synthase (FAS) and sterol regula-
tory element binding protein (SREBP)-1 (Fig 6C). AMPK is a central regulator of the lipid bio-
synthetic pathway [33]. The AITC metabolites increased adenosine 50-monophosphate
(AMP)-activated protein kinase (AMPK) activity in both tested cell lines. The viability of Hepa
1–6 cells in this assay was not affected by incubation with either AITC metabolite at a concen-
tration of 100 μM (data not shown). This result suggests that GSH-AITC and NAC-AITC may
play an active role in the prevention of the development of fatty liver.

Discussion
Isothiocyanates, such as sulforaphane (SFN), allyl-isothiocyanate (AITC), phenethyl-isothiocy-
anate (PEITC), and benzyl-isothiocyanate (BITC) possess numerous health-related effects, and

Fig 3. Pharmacokinetic analysis of GSH-AITC and NAC-AITC in rat urine. (A) HPLC chromatograms of AITC metabolites in urine obtained at different
time points following oral administration of AITC. (B) Urine concentration-time profiles of NAC-AITC. (C) Pharmacokinetic parameters of NAC-AITC in urine.
All values are reported as mean ± SD (n = 5).

doi:10.1371/journal.pone.0132151.g003
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these compounds have been shown to inhibit cancer and inflammation and improve insulin
sensitivity [19,27,34]. In this study, we investigated the nutrikinetics and tissue distribution of
AITC metabolites formed following oral administration of AITC and evaluated the lipogenic
and adipogenic effects of AITC metabolites. Isothiocyanates are absorbed across intestinal cell
membranes by passive diffusion and are conjugated to GSH through a process catalyzed by

Fig 4. Tissue distribution of AITCmetabolites after oral administration. Concentration of GSH-AITC (A)
and NAC-AITC (B) were measured in several tissue types following AITC administration. AITC metabolites
were extracted from the tissues at each time point (0.5, 1, 2, 3, and 8 h) and evaluated by HPLC.

doi:10.1371/journal.pone.0132151.g004
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Fig 5. Anti-adipogenic effects of GSH-AITC and NAC-AITC in 3T3-L1 cells.Cell viability following treatment with GSH-AITC (A) and NAC-AITC (B) was
assessed from day 0 to 2 (48h). The cell viability was determined using the cell counting kit-8 (CCK-8). Data are expressed as percentages of the control
values and shown as mean ± SD (n = 3). (C) GSH-AITC and NAC-AITC inhibited differentiation of preadipocytes. 3T3-L1 cells were treated with different
concentration of AITC metabolites and stained with Oil Red O after 8 days of cell differentiation. (D) Quantitative analysis of the relative intensity of the Oil
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glutathione S-transferases (GSTs) [35]. These GSH conjugates are subsequently metabolized
by γ-glutamytranspeptidase (γ-GT), cystinylglycinase (CG), and N-acetyltransferase (AT) to
form N-acetylcysteine conjugates [36,37]. Consistent with previous reports showing AITC to
be metabolized through the mercapturic acid pathway in the liver, we confirmed that AITC is
metabolized quickly and converted to GSH-AITC and NAC-AITC, which are rapidly elimi-
nated. We expected to detect other intermediate metabolites, such as Gly-Cys-AITC or Cys-
AITC, in the liver after oral administration of AITC; however, such intermediate metabolites
were not detected in our study. There are several potential explanations for this result, such as
changes in polarity, rapid metabolism, and low stability. NAC-AITC was only detected in the
kidney, and thus it may account for the inhibitory effects of AITC accumulation on bladder
cancer. AITC metabolites were primarily distributed to organs with an abundant blood-supply,
including the liver, kidneys, and heart, indicating that metabolite distribution may depend on
the blood flow and perfusion rate of each organ. Luang-In and colleagues reported the remark-
able result that human gut bacteria may influence the metabolites that are generated by glucosi-
nolate metabolism. This finding suggests that the profile of glucosinolate-derived metabolites
in humans may be dependent on the strains of bacteria present in the gut [4].

Although the process of biotransformation in the liver generally decreases the biological
activity of compounds, some metabolites retain or gain pharmacological effectiveness [38].
Hepatic phase I (cytochrome P450 (CYP)) and hepatic phase II (UDP glucuronosyl transferase
(UDPGT) and glutathione S-transferase (GST)) enzymes play important roles in xenobiotic
metabolism. Exogenous compounds are often subject to xenobiotic metabolism and generally
have better safety profiles than the parent molecules. Our recent study demonstrates that AITC
supplementation reduces high-fat diet-induced body weight gain and inhibits hepatic steatosis.
We initially believed that AITC elicited the observed anti-obesity effect. Unexpectedly, AITC
itself (the parent molecule) was not detected in the plasma and tissues, because it is completely
metabolized following administration. An investigation of the anti-adipogenic effects of AITC
metabolites has shown that both GSH-AITC and NAC-AITC attenuate lipid accumulation by
regulating adipogenesis-related genes such as PPAR-γ, C/EBPα, and FAS in 3T3-L1 cells.
Recent studies suggest that mTORC1 plays a critical role in adipogenesis [29,30]. AITC metab-
olites reduced S6K1 phosphorylation on Thr389 and 4EBP1 phosphorylation on Thr37/46,
which are both mTORC1-dependent phosphorylation sites, suggesting that AITC metabolites
inhibit lipid accumulation in 3T3-L1 adipocytes by attenuating mTORC1 activity. AITC
metabolites also significantly decreased hepatocyte triglyceride content following exogenous
lipid supplementation with oleic acid. Therefore, GSH-AITC and NAC-AITC may inhibit adi-
pose and hepatic lipid accumulation in the body.

Although our results show that AITC metabolites exert anti-lipogenic and adipogenic
effects in vitro, several issue are raised by our findings. According to the work of Bruggeman
and colleagues, around 9–15% of the GSH conjugate of AITC was converted to free AITC in
cellular medium [39]. Therefore, the observed efficacy of GSH-AITC in our study may have
been partially due to the presence of free AITC. However, Zhang’s work suggests that free iso-
thiocyanate released from conjugated compounds is taken up by cells as a GSH-conjugate,
which accumulates very rapidly to high intracellular concentration [40]. Although NAC-AITC
is the main metabolite of AITC, little is known about intracellular uptake of NAC-AITC, and

Red O stain. The intracellular triglyceride levels were indexed by quantifying the Oil Red O extracted from the cells by spectroscopy performed at an
excitation wavelength of 490 nm. Values are reported as means ± SD (n = 3, *** p < 0.001 compared to vehicle). (E) GSH-AITC and NAC-AITC suppressed
the expression of proteins associated with adipogenesis. Cell lysates were harvested into lysis buffer and analyzed by western blotting. To compare and
quantify levels of proteins, the density of each band was measured using ImageJ software with β–actin as an internal reference. (F) GSH-AITC and
NAC-AITC inhibited mTOR activity during cell differentiation.

doi:10.1371/journal.pone.0132151.g005
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Fig 6. Inhibitory effects of GSH-AITC and NAC-AITC on oleic acid-induced lipid accumulation.Hepa 1–6 cells were treated with the indicated
concentrations of GSH-AITC and NAC-AITC in the presence or absence of 100 μM oleic acid. Cells were stained with Oil Red O (A). The intracellular
triglyceride levels were indexed by quantifying the Oil Red O extracted from the cells by spectroscopy performed at an excitation wavelength of 490 nm (B).
The SCD1, FAS, and AMPK levels in cell lysates were detected by western blot analysis. To compare and quantify levels of proteins, the density of each
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further research is needed to address the mechanisms involved in this process. Nevertheless,
results show that AITC metabolites may have direct anti-lipogenic and adipogenic effects in
vitro.

On the basis of these findings, we conclude that GSH-AITC and NAC-AITC are active
metabolites with effects related to anti-adipogenesis and anti-lipogenesis. The mercapturic acid
pathway, a sequence of metabolic reactions catalyzed by phase II enzymes, may promote the
excretion of AITC and may regulate its optimal functionality (Fig 6D). Although AITC itself is
more active than its GSH- and NAC-conjugated forms, its metabolites exhibit pharmacological
activity, such as anti-obesity effects. Both GSH-AITC and NAC-AITC markedly inhibited the
accumulation of lipids in adipocytes and hepatocytes in vitro. This is the first study showing
that AITC metabolites exhibit anti-obesity effects in vitro.
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